OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [mips64/] [kernel/] [traps.c] - Rev 1765

Compare with Previous | Blame | View Log

/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 1994 - 1999, 2000, 01 Ralf Baechle
 * Copyright (C) 1995, 1996 Paul M. Antoine
 * Copyright (C) 1998 Ulf Carlsson
 * Copyright (C) 1999 Silicon Graphics, Inc.
 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
 * Copyright (C) 2002, 2003  Maciej W. Rozycki
 */
#include <linux/config.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/spinlock.h>
 
#include <asm/bootinfo.h>
#include <asm/branch.h>
#include <asm/cpu.h>
#include <asm/fpu.h>
#include <asm/module.h>
#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/ptrace.h>
#include <asm/watch.h>
#include <asm/system.h>
#include <asm/tlbdebug.h>
#include <asm/traps.h>
#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/cachectl.h>
#include <asm/types.h>
 
extern asmlinkage void __xtlb_mod(void);
extern asmlinkage void __xtlb_tlbl(void);
extern asmlinkage void __xtlb_tlbs(void);
extern asmlinkage void handle_adel(void);
extern asmlinkage void handle_ades(void);
extern asmlinkage void handle_ibe(void);
extern asmlinkage void handle_dbe(void);
extern asmlinkage void handle_sys(void);
extern asmlinkage void handle_bp(void);
extern asmlinkage void handle_ri(void);
extern asmlinkage void handle_cpu(void);
extern asmlinkage void handle_ov(void);
extern asmlinkage void handle_tr(void);
extern asmlinkage void handle_fpe(void);
extern asmlinkage void handle_mdmx(void);
extern asmlinkage void handle_watch(void);
extern asmlinkage void handle_mcheck(void);
extern asmlinkage void handle_reserved(void);
 
extern int fpu_emulator_cop1Handler(int xcptno, struct pt_regs *xcp,
	struct mips_fpu_soft_struct *ctx);
 
void (*board_be_init)(void);
int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
 
int kstack_depth_to_print = 24;
 
/*
 * These constant is for searching for possible module text segments.
 * MODULE_RANGE is a guess of how much space is likely to be vmalloced.
 */
#define MODULE_RANGE (8*1024*1024)
 
/*
 * If the address is either in the .text section of the
 * kernel, or in the vmalloc'ed module regions, it *may*
 * be the address of a calling routine
 */
 
#ifdef CONFIG_MODULES
 
extern struct module *module_list;
extern struct module kernel_module;
 
static inline int kernel_text_address(long addr)
{
	extern char _stext, _etext;
	int retval = 0;
	struct module *mod;
 
	if (addr >= (long) &_stext && addr <= (long) &_etext)
		return 1;
 
	for (mod = module_list; mod != &kernel_module; mod = mod->next) {
		/* mod_bound tests for addr being inside the vmalloc'ed
		 * module area. Of course it'd be better to test only
		 * for the .text subset... */
		if (mod_bound(addr, 0, mod)) {
			retval = 1;
			break;
		}
	}
 
	return retval;
}
 
#else
 
static inline int kernel_text_address(long addr)
{
	extern char _stext, _etext;
 
	return (addr >= (long) &_stext && addr <= (long) &_etext);
}
 
#endif
 
/*
 * This routine abuses get_user()/put_user() to reference pointers
 * with at least a bit of error checking ...
 */
void show_stack(long *sp)
{
	int i;
	long stackdata;
 
	printk("Stack:");
	i = 0;
	while ((long) sp & (PAGE_SIZE - 1)) {
		if (i && ((i % 4) == 0))
			printk("\n      ");
		if (i > 40) {
			printk(" ...");
			break;
		}
 
		if (__get_user(stackdata, sp++)) {
			printk(" (Bad stack address)");
			break;
		}
 
		printk(" %016lx", stackdata);
		i++;
	}
	printk("\n");
}
 
void show_trace(long *sp)
{
	int i;
	long addr;
 
	printk("Call Trace:");
	i = 0;
	while ((long) sp & (PAGE_SIZE - 1)) {
 
		if (__get_user(addr, sp++)) {
			if (i && ((i % 3) == 0))
				printk("\n           ");
			printk(" (Bad stack address)\n");
			break;
		}
 
		/*
		 * If the address is either in the text segment of the
		 * kernel, or in the region which contains vmalloc'ed
		 * memory, it *may* be the address of a calling
		 * routine; if so, print it so that someone tracing
		 * down the cause of the crash will be able to figure
		 * out the call path that was taken.
		 */
 
		if (kernel_text_address(addr)) {
			if (i && ((i % 3) == 0))
				printk("\n           ");
			if (i > 40) {
				printk(" ...");
				break;
			}
 
			printk(" [<%016lx>]", addr);
			i++;
		}
	}
	printk("\n");
}
 
void show_trace_task(struct task_struct *tsk)
{
	show_trace((long *)tsk->thread.reg29);
}
 
void show_code(unsigned int *pc)
{
	long i;
 
	printk("\nCode:");
 
	for(i = -3 ; i < 6 ; i++) {
		unsigned int insn;
		if (__get_user(insn, pc + i)) {
			printk(" (Bad address in epc)\n");
			break;
		}
		printk("%c%08x%c",(i?' ':'<'),insn,(i?' ':'>'));
	}
}
 
void show_regs(struct pt_regs *regs)
{
	printk("Cpu %d\n", smp_processor_id());
	/* Saved main processor registers. */
	printk("$0      : %016lx %016lx %016lx %016lx\n",
	       0UL, regs->regs[1], regs->regs[2], regs->regs[3]);
	printk("$4      : %016lx %016lx %016lx %016lx\n",
	       regs->regs[4], regs->regs[5], regs->regs[6], regs->regs[7]);
	printk("$8      : %016lx %016lx %016lx %016lx\n",
	       regs->regs[8], regs->regs[9], regs->regs[10], regs->regs[11]);
	printk("$12     : %016lx %016lx %016lx %016lx\n",
	       regs->regs[12], regs->regs[13], regs->regs[14], regs->regs[15]);
	printk("$16     : %016lx %016lx %016lx %016lx\n",
	       regs->regs[16], regs->regs[17], regs->regs[18], regs->regs[19]);
	printk("$20     : %016lx %016lx %016lx %016lx\n",
	       regs->regs[20], regs->regs[21], regs->regs[22], regs->regs[23]);
	printk("$24     : %016lx %016lx\n",
	       regs->regs[24], regs->regs[25]);
	printk("$28     : %016lx %016lx %016lx %016lx\n",
	       regs->regs[28], regs->regs[29], regs->regs[30], regs->regs[31]);
	printk("Hi      : %016lx\n", regs->hi);
	printk("Lo      : %016lx\n", regs->lo);
 
	/* Saved cp0 registers. */
	printk("epc     : %016lx    %s\nbadvaddr: %016lx\n",
	       regs->cp0_epc, print_tainted(), regs->cp0_badvaddr);
	printk("Status  : %08x  [ ", (unsigned int) regs->cp0_status);
 
	if (regs->cp0_status & ST0_KX) printk("KX ");
	if (regs->cp0_status & ST0_SX) printk("SX ");
	if (regs->cp0_status & ST0_UX) printk("UX ");
	switch (regs->cp0_status & ST0_KSU) {
		case KSU_USER: printk("USER ");			break;
		case KSU_SUPERVISOR: printk("SUPERVISOR ");	break;
		case KSU_KERNEL: printk("KERNEL ");		break;
		default: printk("BAD_MODE ");			break;
	}
	if (regs->cp0_status & ST0_ERL) printk("ERL ");
	if (regs->cp0_status & ST0_EXL) printk("EXL ");
	if (regs->cp0_status & ST0_IE) printk("IE ");
	printk("]\n");
 
	printk("Cause   : %08x\n", (unsigned int) regs->cp0_cause);
	printk("PrId  : %08x\n", read_c0_prid());
}
 
void show_registers(struct pt_regs *regs)
{
	show_regs(regs);
	printk("Process %s (pid: %d, stackpage=%016lx)\n",
		current->comm, current->pid, (unsigned long) current);
	show_stack((long *) regs->regs[29]);
	show_trace((long *) regs->regs[29]);
	show_code((unsigned int *) regs->cp0_epc);
	printk("\n");
}
 
static spinlock_t die_lock = SPIN_LOCK_UNLOCKED;
 
void __die(const char * str, struct pt_regs * regs, const char * file,
	   const char * func, unsigned long line)
{
	console_verbose();
	spin_lock_irq(&die_lock);
	printk("%s", str);
	if (file && func)
		printk(" in %s:%s, line %ld", file, func, line);
	printk(":\n");
	show_registers(regs);
	spin_unlock_irq(&die_lock);
	do_exit(SIGSEGV);
}
 
void __die_if_kernel(const char * str, struct pt_regs * regs,
		     const char * file, const char * func, unsigned long line)
{
	if (!user_mode(regs))
		__die(str, regs, file, func, line);
}
 
extern const struct exception_table_entry __start___dbe_table[];
extern const struct exception_table_entry __stop___dbe_table[];
 
void __declare_dbe_table(void)
{
	__asm__ __volatile__(
	".section\t__dbe_table,\"a\"\n\t"
	".previous"
	);
}
 
static inline unsigned long
search_one_table(const struct exception_table_entry *first,
		 const struct exception_table_entry *last,
		 unsigned long value)
{
	const struct exception_table_entry *mid;
	long diff;
 
	while (first < last) {
		mid = (last - first) / 2 + first;
		diff = mid->insn - value;
		if (diff < 0)
			first = mid + 1;
		else
			last = mid;
	}
	return (first == last && first->insn == value) ? first->nextinsn : 0;
}
 
extern spinlock_t modlist_lock;
 
static inline unsigned long
search_dbe_table(unsigned long addr)
{
	unsigned long ret = 0;
 
#ifndef CONFIG_MODULES
	/* There is only the kernel to search.  */
	ret = search_one_table(__start___dbe_table, __stop___dbe_table-1, addr);
	return ret;
#else
	unsigned long flags;
 
	/* The kernel is the last "module" -- no need to treat it special.  */
	struct module *mp;
	struct archdata *ap;
 
	spin_lock_irqsave(&modlist_lock, flags);
	for (mp = module_list; mp != NULL; mp = mp->next) {
		if (!mod_member_present(mp, archdata_end) ||
		    !mod_archdata_member_present(mp, struct archdata,
						 dbe_table_end))
			continue;
		ap = (struct archdata *)(mp->archdata_start);
 
		if (ap->dbe_table_start == NULL ||
		    !(mp->flags & (MOD_RUNNING | MOD_INITIALIZING)))
			continue;
		ret = search_one_table(ap->dbe_table_start,
				       ap->dbe_table_end - 1, addr);
		if (ret)
			break;
	}
	spin_unlock_irqrestore(&modlist_lock, flags);
	return ret;
#endif
}
 
asmlinkage void do_be(struct pt_regs *regs)
{
	unsigned long new_epc;
	unsigned long fixup = 0;
	int data = regs->cp0_cause & 4;
	int action = MIPS_BE_FATAL;
 
	if (data && !user_mode(regs))
		fixup = search_dbe_table(regs->cp0_epc);
 
	if (fixup)
		action = MIPS_BE_FIXUP;
 
	if (board_be_handler)
		action = board_be_handler(regs, fixup != 0);
 
	switch (action) {
	case MIPS_BE_DISCARD:
		return;
	case MIPS_BE_FIXUP:
		if (fixup) {
			new_epc = fixup_exception(dpf_reg, fixup,
						  regs->cp0_epc);
			regs->cp0_epc = new_epc;
			return;
		}
		break;
	default:
		break;
	}
 
	/*
	 * Assume it would be too dangerous to continue ...
	 */
	printk(KERN_ALERT "%s bus error, epc == %08lx, ra == %08lx\n",
	       data ? "Data" : "Instruction",
	       regs->cp0_epc, regs->regs[31]);
	die_if_kernel("Oops", regs);
	force_sig(SIGBUS, current);
}
 
static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode)
{
	unsigned int *epc;
 
	epc = (unsigned int *) regs->cp0_epc +
	      ((regs->cp0_cause & CAUSEF_BD) != 0);
	if (!get_user(*opcode, epc))
		return 0;
 
	force_sig(SIGSEGV, current);
	return 1;
}
 
/*
 * ll/sc emulation
 */
 
#define OPCODE 0xfc000000
#define BASE   0x03e00000
#define RT     0x001f0000
#define OFFSET 0x0000ffff
#define LL     0xc0000000
#define SC     0xe0000000
 
/*
 * The ll_bit is cleared by r*_switch.S
 */
 
unsigned long ll_bit;
 
static struct task_struct *ll_task = NULL;
 
static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
{
	unsigned long value, *vaddr;
	long offset;
	int signal = 0;
 
	/*
	 * analyse the ll instruction that just caused a ri exception
	 * and put the referenced address to addr.
	 */
 
	/* sign extend offset */
	offset = opcode & OFFSET;
	offset <<= 16;
	offset >>= 16;
 
	vaddr = (unsigned long *)((long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 
	if ((unsigned long)vaddr & 3) {
		signal = SIGBUS;
		goto sig;
	}
	if (get_user(value, vaddr)) {
		signal = SIGSEGV;
		goto sig;
	}
 
	if (ll_task == NULL || ll_task == current) {
		ll_bit = 1;
	} else {
		ll_bit = 0;
	}
	ll_task = current;
 
	regs->regs[(opcode & RT) >> 16] = value;
 
	compute_return_epc(regs);
	return;
 
sig:
	force_sig(signal, current);
}
 
static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
{
	unsigned long *vaddr, reg;
	long offset;
	int signal = 0;
 
	/*
	 * analyse the sc instruction that just caused a ri exception
	 * and put the referenced address to addr.
	 */
 
	/* sign extend offset */
	offset = opcode & OFFSET;
	offset <<= 16;
	offset >>= 16;
 
	vaddr = (unsigned long *)((long)(regs->regs[(opcode & BASE) >> 21]) + offset);
	reg = (opcode & RT) >> 16;
 
	if ((unsigned long)vaddr & 3) {
		signal = SIGBUS;
		goto sig;
	}
	if (ll_bit == 0 || ll_task != current) {
		regs->regs[reg] = 0;
		compute_return_epc(regs);
		return;
	}
 
	if (put_user(regs->regs[reg], vaddr)) {
		signal = SIGSEGV;
		goto sig;
	}
 
	regs->regs[reg] = 1;
 
	compute_return_epc(regs);
	return;
 
sig:
	force_sig(signal, current);
}
 
/*
 * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
 * opcodes are supposed to result in coprocessor unusable exceptions if
 * executed on ll/sc-less processors.  That's the theory.  In practice a
 * few processors such as NEC's VR4100 throw reserved instruction exceptions
 * instead, so we're doing the emulation thing in both exception handlers.
 */
static inline int simulate_llsc(struct pt_regs *regs)
{
	unsigned int opcode;
 
	if (unlikely(get_insn_opcode(regs, &opcode)))
		return -EFAULT;
 
	if ((opcode & OPCODE) == LL) {
		simulate_ll(regs, opcode);
		return 0;
	}
	if ((opcode & OPCODE) == SC) {
		simulate_sc(regs, opcode);
		return 0;
	}
 
	return -EFAULT;			/* Strange things going on ... */
}
 
asmlinkage void do_ov(struct pt_regs *regs)
{
	siginfo_t info;
 
	info.si_code = FPE_INTOVF;
	info.si_signo = SIGFPE;
	info.si_errno = 0;
	info.si_addr = (void *)regs->cp0_epc;
	force_sig_info(SIGFPE, &info, current);
}
 
/*
 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
 */
asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
{
	if (fcr31 & FPU_CSR_UNI_X) {
		int sig;
 
		/*
	 	 * Unimplemented operation exception.  If we've got the full
		 * software emulator on-board, let's use it...
		 *
		 * Force FPU to dump state into task/thread context.  We're
		 * moving a lot of data here for what is probably a single
		 * instruction, but the alternative is to pre-decode the FP
		 * register operands before invoking the emulator, which seems
		 * a bit extreme for what should be an infrequent event.
		 */
		save_fp(current);
 
		/* Run the emulator */
		sig = fpu_emulator_cop1Handler (0, regs,
			&current->thread.fpu.soft);
 
		/*
		 * We can't allow the emulated instruction to leave any of
		 * the cause bit set in $fcr31.
		 */
		current->thread.fpu.soft.sr &= ~FPU_CSR_ALL_X;
 
		/* Restore the hardware register state */
		restore_fp(current);
 
		/* If something went wrong, signal */
		if (sig)
			force_sig(sig, current);
 
		return;
	}
 
	force_sig(SIGFPE, current);
}
 
asmlinkage void do_bp(struct pt_regs *regs)
{
	unsigned int opcode, bcode;
	siginfo_t info;
 
	die_if_kernel("Break instruction in kernel code", regs);
 
	if (get_insn_opcode(regs, &opcode))
		return;
 
	/*
	 * There is the ancient bug in the MIPS assemblers that the break
	 * code starts left to bit 16 instead to bit 6 in the opcode.
	 * Gas is bug-compatible ...
	 */
	bcode = ((opcode >> 16) & ((1 << 20) - 1));
 
	/*
	 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
	 * insns, even for break codes that indicate arithmetic failures.
	 * Weird ...)
	 * But should we continue the brokenness???  --macro
	 */
	switch (bcode) {
	case 6:
	case 7:
		if (bcode == 7)
			info.si_code = FPE_INTDIV;
		else
			info.si_code = FPE_INTOVF;
		info.si_signo = SIGFPE;
		info.si_errno = 0;
		info.si_addr = (void *)regs->cp0_epc;
		force_sig_info(SIGFPE, &info, current);
		break;
	default:
		force_sig(SIGTRAP, current);
	}
}
 
asmlinkage void do_tr(struct pt_regs *regs)
{
	unsigned int opcode, tcode = 0;
	siginfo_t info;
 
	if (get_insn_opcode(regs, &opcode))
		return;
 
	/* Immediate versions don't provide a code.  */
	if (!(opcode & OPCODE))
		tcode = ((opcode >> 6) & ((1 << 20) - 1));
 
	/*
	 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
	 * insns, even for trap codes that indicate arithmetic failures.
	 * Weird ...)
	 * But should we continue the brokenness???  --macro
	 */
	switch (tcode) {
	case 6:
	case 7:
		if (tcode == 7)
			info.si_code = FPE_INTDIV;
		else
			info.si_code = FPE_INTOVF;
		info.si_signo = SIGFPE;
		info.si_errno = 0;
		info.si_addr = (void *)regs->cp0_epc;
		force_sig_info(SIGFPE, &info, current);
		break;
	default:
		force_sig(SIGTRAP, current);
	}
}
 
asmlinkage void do_ri(struct pt_regs *regs)
{
	die_if_kernel("Reserved instruction in kernel code", regs);
 
	if (!cpu_has_llsc)
		if (!simulate_llsc(regs))
			return;
 
	force_sig(SIGILL, current);
}
 
asmlinkage void do_cpu(struct pt_regs *regs)
{
	unsigned int cpid;
 
	die_if_kernel("do_cpu invoked from kernel context!", regs);
 
	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
 
	switch (cpid) {
	case 0:
		if (cpu_has_llsc)
			break;
 
		if (!simulate_llsc(regs))
			return;
		break;
 
	case 1:
		own_fpu();
		if (current->used_math) {	/* Using the FPU again.  */
			restore_fp(current);
		} else {			/* First time FPU user.  */
			init_fpu();
			current->used_math = 1;
		}
 
		if (!cpu_has_fpu) {
			int sig = fpu_emulator_cop1Handler(0, regs,
						&current->thread.fpu.soft);
			if (sig)
				force_sig(sig, current);
		}
 
		return;
 
	case 2:
	case 3:
		break;
	}
 
	force_sig(SIGILL, current);
}
 
asmlinkage void do_mdmx(struct pt_regs *regs)
{
	force_sig(SIGILL, current);
}
 
asmlinkage void do_watch(struct pt_regs *regs)
{
	/*
	 * We use the watch exception where available to detect stack
	 * overflows.
	 */
	dump_tlb_all();
	show_regs(regs);
	panic("Caught WATCH exception - probably caused by stack overflow.");
}
 
asmlinkage void do_mcheck(struct pt_regs *regs)
{
	show_regs(regs);
	dump_tlb_all();
	/*
	 * Some chips may have other causes of machine check (e.g. SB1
	 * graduation timer)
	 */
	panic("Caught Machine Check exception - %scaused by multiple "
	      "matching entries in the TLB.",
	      (regs->cp0_status & ST0_TS) ? "" : "not ");
}
 
asmlinkage void do_reserved(struct pt_regs *regs)
{
	/*
	 * Game over - no way to handle this if it ever occurs.  Most probably
	 * caused by a new unknown cpu type or after another deadly
	 * hard/software error.
	 */
	show_regs(regs);
	panic("Caught reserved exception %ld - should not happen.",
	      (regs->cp0_cause & 0x7f) >> 2);
}
 
unsigned long exception_handlers[32];
 
/*
 * As a side effect of the way this is implemented we're limited
 * to interrupt handlers in the address range from
 * KSEG0 <= x < KSEG0 + 256mb on the Nevada.  Oh well ...
 */
void *set_except_vector(int n, void *addr)
{
	unsigned long handler = (unsigned long) addr;
	unsigned long old_handler = exception_handlers[n];
 
	exception_handlers[n] = handler;
	if (n == 0 && cpu_has_divec) {
		*(volatile u32 *)(KSEG0+0x200) = 0x08000000 |
		                                 (0x03ffffff & (handler >> 2));
		flush_icache_range(KSEG0+0x200, KSEG0 + 0x204);
	}
	return (void *)old_handler;
}
 
asmlinkage int (*save_fp_context)(struct sigcontext *sc);
asmlinkage int (*restore_fp_context)(struct sigcontext *sc);
 
asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc);
asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc);
 
extern asmlinkage int _save_fp_context(struct sigcontext *sc);
extern asmlinkage int _restore_fp_context(struct sigcontext *sc);
 
extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc);
extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc);
 
extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc);
extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc);
 
extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc);
extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc);
 
void __init per_cpu_trap_init(void)
{
	unsigned int cpu = smp_processor_id();
 
	/* Some firmware leaves the BEV flag set, clear it.  */
	clear_c0_status(ST0_CU1|ST0_CU2|ST0_CU3|ST0_BEV);
	set_c0_status(ST0_CU0|ST0_FR|ST0_KX|ST0_SX|ST0_UX);
 
	if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
		set_c0_status(ST0_XX);
 
	/*
	 * Some MIPS CPUs have a dedicated interrupt vector which reduces the
	 * interrupt processing overhead.  Use it where available.
	 */
	if (cpu_has_divec)
		set_c0_cause(CAUSEF_IV);
 
	cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
	write_c0_context(((long)(&pgd_current[cpu])) << 23);
	write_c0_wired(0);
 
	atomic_inc(&init_mm.mm_count);
	current->active_mm = &init_mm;
	if (current->mm)
		BUG();
	enter_lazy_tlb(&init_mm, current, cpu);
}
 
void __init trap_init(void)
{
	extern char except_vec0_generic;
	extern char except_vec3_generic, except_vec3_r4000;
	extern char except_vec4;
	unsigned long i;
 
	per_cpu_trap_init();
 
	/* Copy the generic exception handlers to their final destination. */
	memcpy((void *) KSEG0         , &except_vec0_generic, 0x80);
	memcpy((void *)(KSEG0 + 0x180), &except_vec3_generic, 0x80);
 
	/*
	 * Setup default vectors
	 */
	for (i = 0; i <= 31; i++)
		set_except_vector(i, handle_reserved);
 
	/*
	 * Only some CPUs have the watch exceptions or a dedicated
	 * interrupt vector.
	 */
	if (cpu_has_watch)
		set_except_vector(23, handle_watch);
 
	/*
	 * Some MIPS CPUs have a dedicated interrupt vector which reduces the
	 * interrupt processing overhead.  Use it where available.
	 */
	if (cpu_has_divec)
		memcpy((void *)(KSEG0 + 0x200), &except_vec4, 0x8);
 
	/*
	 * The Data Bus Errors / Instruction Bus Errors are signaled
	 * by external hardware.  Therefore these two exceptions
	 * may have board specific handlers.
	 */
	if (board_be_init)
		board_be_init();
 
	set_except_vector(1, __xtlb_mod);
	set_except_vector(2, __xtlb_tlbl);
	set_except_vector(3, __xtlb_tlbs);
	set_except_vector(4, handle_adel);
	set_except_vector(5, handle_ades);
 
	set_except_vector(6, handle_ibe);
	set_except_vector(7, handle_dbe);
 
	set_except_vector(8, handle_sys);
	set_except_vector(9, handle_bp);
	set_except_vector(10, handle_ri);
	set_except_vector(11, handle_cpu);
	set_except_vector(12, handle_ov);
	set_except_vector(13, handle_tr);
	set_except_vector(22, handle_mdmx);
 
	if (cpu_has_fpu && !cpu_has_nofpuex)
		set_except_vector(15, handle_fpe);
 
	if (cpu_has_mcheck)
		set_except_vector(24, handle_mcheck);
 
	if (cpu_has_vce)
		memcpy((void *)(KSEG0 + 0x180), &except_vec3_r4000, 0x100);
	else if (cpu_has_4kex)
		memcpy((void *)(KSEG0 + 0x180), &except_vec3_generic, 0x80);
	else
		memcpy((void *)(KSEG0 + 0x080), &except_vec3_generic, 0x80);
 
	if (current_cpu_data.cputype == CPU_R6000 ||
	    current_cpu_data.cputype == CPU_R6000A) {
		/*
		 * The R6000 is the only R-series CPU that features a machine
		 * check exception (similar to the R4000 cache error) and
		 * unaligned ldc1/sdc1 exception.  The handlers have not been
		 * written yet.  Well, anyway there is no R6000 machine on the
		 * current list of targets for Linux/MIPS.
		 * (Duh, crap, there is someone with a tripple R6k machine)
		 */
		//set_except_vector(14, handle_mc);
		//set_except_vector(15, handle_ndc);
	}
 
	if (cpu_has_fpu) {
		save_fp_context = _save_fp_context;
		restore_fp_context = _restore_fp_context;
		save_fp_context32 = _save_fp_context32;
		restore_fp_context32 = _restore_fp_context32;
	} else {
		save_fp_context = fpu_emulator_save_context;
		restore_fp_context = fpu_emulator_restore_context;
		save_fp_context32 = fpu_emulator_save_context32;
		restore_fp_context32 = fpu_emulator_restore_context32;
	}
 
	flush_icache_range(KSEG0, KSEG0 + 0x400);
 
	atomic_inc(&init_mm.mm_count);	/* XXX UP?  */
	current->active_mm = &init_mm;
}
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.