OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [parisc/] [mm/] [init.c] - Rev 1765

Compare with Previous | Blame | View Log

/*
 *  linux/arch/parisc/mm/init.c
 *
 *  Copyright (C) 1995	Linus Torvalds
 *  Copyright 1999 SuSE GmbH
 *    changed by Philipp Rumpf
 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
 *
 */
 
#include <linux/config.h>
 
#include <linux/mm.h>
#include <linux/bootmem.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/pci.h>		/* for hppa_dma_ops and pcxl_dma_ops */
#include <linux/blk.h>          /* for initrd_start and initrd_end */
#include <linux/swap.h>
#include <linux/unistd.h>
 
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <asm/pdc_chassis.h>
 
mmu_gather_t mmu_gathers[NR_CPUS];
 
extern char _text;	/* start of kernel code, defined by linker */
extern int  data_start;
extern char _end;	/* end of BSS, defined by linker */
extern char __init_begin, __init_end;
 
#ifdef CONFIG_DISCONTIGMEM
struct node_map_data node_data[MAX_PHYSMEM_RANGES];
bootmem_data_t bmem_data[MAX_PHYSMEM_RANGES];
unsigned char *chunkmap;
unsigned int maxchunkmap;
#endif
 
static struct resource data_resource = {
	name:	"Kernel data",
	flags:	IORESOURCE_BUSY | IORESOURCE_MEM,
};
 
static struct resource code_resource = {
	name:	"Kernel code",
	flags:	IORESOURCE_BUSY | IORESOURCE_MEM,
};
 
static struct resource pdcdata_resource = {
	name:	"PDC data (Page Zero)",
	start:	0,
	end:	0x9ff,
	flags:	IORESOURCE_BUSY | IORESOURCE_MEM,
};
 
static struct resource sysram_resources[MAX_PHYSMEM_RANGES];
 
static unsigned long max_pfn;
 
/* The following array is initialized from the firmware specific
 * information retrieved in kernel/inventory.c.
 */
 
physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES];
int npmem_ranges;
 
#ifdef __LP64__
#define MAX_MEM         (~0UL)
#else /* !__LP64__ */
#define MAX_MEM         (3584U*1024U*1024U)
#endif /* !__LP64__ */
 
static unsigned long mem_limit = MAX_MEM;
 
static void __init mem_limit_func(void)
{
	char *cp, *end;
	unsigned long limit;
	extern char saved_command_line[];
 
	/* We need this before __setup() functions are called */
 
	limit = MAX_MEM;
	for (cp = saved_command_line; *cp; ) {
		if (memcmp(cp, "mem=", 4) == 0) {
			cp += 4;
			limit = memparse(cp, &end);
			if (end != cp)
				break;
			cp = end;
		} else {
			while (*cp != ' ' && *cp)
				++cp;
			while (*cp == ' ')
				++cp;
		}
	}
 
	if (limit < mem_limit)
		mem_limit = limit;
}
 
#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
 
static void __init setup_bootmem(void)
{
	unsigned long bootmap_size;
	unsigned long mem_max;
	unsigned long bootmap_pages;
	unsigned long bootmap_start_pfn;
	unsigned long bootmap_pfn;
#ifndef CONFIG_DISCONTIGMEM
	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
	int npmem_holes;
#endif
	int i, sysram_resource_count;
 
	disable_sr_hashing(); /* Turn off space register hashing */
 
#ifdef CONFIG_DISCONTIGMEM
	/*
	 * The below is still true as of 2.4.2. If this is ever fixed,
	 * we can remove this warning!
	 */
 
	printk(KERN_WARNING "\n\n");
	printk(KERN_WARNING "CONFIG_DISCONTIGMEM is enabled, which is probably a mistake. This\n");
	printk(KERN_WARNING "option can lead to heavy swapping, even when there are gigabytes\n");
	printk(KERN_WARNING "of free memory.\n\n");
#endif
 
#ifdef __LP64__
 
#ifndef CONFIG_DISCONTIGMEM
	/*
	 * Sort the ranges. Since the number of ranges is typically
	 * small, and performance is not an issue here, just do
	 * a simple insertion sort.
	 */
 
	for (i = 1; i < npmem_ranges; i++) {
		int j;
 
		for (j = i; j > 0; j--) {
			unsigned long tmp;
 
			if (pmem_ranges[j-1].start_pfn <
			    pmem_ranges[j].start_pfn) {
 
				break;
			}
			tmp = pmem_ranges[j-1].start_pfn;
			pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
			pmem_ranges[j].start_pfn = tmp;
			tmp = pmem_ranges[j-1].pages;
			pmem_ranges[j-1].pages = pmem_ranges[j].pages;
			pmem_ranges[j].pages = tmp;
		}
	}
 
	/*
	 * Throw out ranges that are too far apart (controlled by
	 * MAX_GAP). If CONFIG_DISCONTIGMEM wasn't implemented so
	 * poorly, we would recommend enabling that option, but,
	 * until it is fixed, this is the best way to go.
	 */
 
	for (i = 1; i < npmem_ranges; i++) {
		if (pmem_ranges[i].start_pfn -
			(pmem_ranges[i-1].start_pfn +
			 pmem_ranges[i-1].pages) > MAX_GAP) {
			npmem_ranges = i;
			break;
		}
	}
#endif
 
	if (npmem_ranges > 1) {
 
		/* Print the memory ranges */
 
		printk(KERN_INFO "Memory Ranges:\n");
 
		for (i = 0; i < npmem_ranges; i++) {
			unsigned long start;
			unsigned long size;
 
			size = (pmem_ranges[i].pages << PAGE_SHIFT);
			start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
			printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld Mb\n",
				i,start, start + (size - 1), size >> 20);
		}
	}
 
#endif /* __LP64__ */
 
#if 1
	/* KLUGE! this really belongs in kernel/resource.c! */
	iomem_resource.end = ~0UL;
#endif
 
	sysram_resource_count = npmem_ranges;
	for (i = 0; i < sysram_resource_count; i++) {
		struct resource *res = &sysram_resources[i];
		res->name = "System RAM";
		res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
		res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
		request_resource(&iomem_resource, res);
	}
 
	/*
	 * For 32 bit kernels we limit the amount of memory we can
	 * support, in order to preserve enough kernel address space
	 * for other purposes. For 64 bit kernels we don't normally
	 * limit the memory, but this mechanism can be used to
	 * artificially limit the amount of memory (and it is written
	 * to work with multiple memory ranges).
	 */
 
	mem_limit_func();       /* check for "mem=" argument */
 
	mem_max = 0;
	for (i = 0; i < npmem_ranges; i++) {
		unsigned long rsize;
 
		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
		if ((mem_max + rsize) > mem_limit) {
			printk(KERN_WARNING "Memory truncated to %ld Mb\n", mem_limit >> 20);
			if (mem_max == mem_limit)
				npmem_ranges = i;
			else {
				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
						       - (mem_max >> PAGE_SHIFT);
				npmem_ranges = i + 1;
				mem_max = mem_limit;
			}
			break;
		}
		mem_max += rsize;
	}
 
	printk(KERN_INFO "Total Memory: %ld Mb\n",mem_max >> 20);
 
#ifndef CONFIG_DISCONTIGMEM
 
	/* Merge the ranges, keeping track of the holes */
 
	{
		unsigned long end_pfn;
		unsigned long hole_pages;
 
		npmem_holes = 0;
		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
		for (i = 1; i < npmem_ranges; i++) {
 
			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
			if (hole_pages) {
				pmem_holes[npmem_holes].start_pfn = end_pfn;
				pmem_holes[npmem_holes++].pages = hole_pages;
				end_pfn += hole_pages;
			}
			end_pfn += pmem_ranges[i].pages;
		}
 
		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
		npmem_ranges = 1;
	}
#endif
 
	bootmap_pages = 0;
	for (i = 0; i < npmem_ranges; i++)
		bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
 
	bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
 
#ifdef CONFIG_DISCONTIGMEM
	for (i = 0; i < npmem_ranges; i++)
		node_data[i].pg_data.bdata = &bmem_data[i];
#endif
	/*
	 * Initialize and free the full range of memory in each range.
	 * Note that the only writing these routines do are to the bootmap,
	 * and we've made sure to locate the bootmap properly so that they
	 * won't be writing over anything important.
	 */
 
	bootmap_pfn = bootmap_start_pfn;
	max_pfn = 0;
	for (i = 0; i < npmem_ranges; i++) {
		unsigned long start_pfn;
		unsigned long npages;
 
		start_pfn = pmem_ranges[i].start_pfn;
		npages = pmem_ranges[i].pages;
 
		bootmap_size = init_bootmem_node(NODE_DATA(i),
						bootmap_pfn,
						start_pfn,
						(start_pfn + npages) );
		free_bootmem_node(NODE_DATA(i),
				  (start_pfn << PAGE_SHIFT),
				  (npages << PAGE_SHIFT) );
		bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
		if ((start_pfn + npages) > max_pfn)
			max_pfn = start_pfn + npages;
	}
 
	if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
		printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n");
		BUG();
	}
 
	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
 
#define PDC_CONSOLE_IO_IODC_SIZE 32768
 
	reserve_bootmem_node(NODE_DATA(0), 0UL,
			(unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE));
	reserve_bootmem_node(NODE_DATA(0),__pa((unsigned long)&_text),
			(unsigned long)(&_end - &_text));
	reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
			((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT));
 
#ifndef CONFIG_DISCONTIGMEM
 
	/* reserve the holes */
 
	for (i = 0; i < npmem_holes; i++) {
		reserve_bootmem_node(NODE_DATA(0),
				(pmem_holes[i].start_pfn << PAGE_SHIFT),
				(pmem_holes[i].pages << PAGE_SHIFT));
	}
#endif
 
#ifdef CONFIG_BLK_DEV_INITRD
	if (initrd_start) {
		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
		if (__pa(initrd_start) < mem_max) {
			unsigned long initrd_reserve;
 
			if (__pa(initrd_end) > mem_max) {
				initrd_reserve = mem_max - __pa(initrd_start);
			} else {
				initrd_reserve = initrd_end - initrd_start;
			}
			initrd_below_start_ok = 1;
			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
 
			reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve);
		}
	}
#endif
 
	data_resource.start =  virt_to_phys(&data_start);
	data_resource.end = virt_to_phys(&_end)-1;
	code_resource.start = virt_to_phys(&_text);
	code_resource.end = virt_to_phys(&data_start)-1;
 
	/* We don't know which region the kernel will be in, so try
	 * all of them.
	 */
	for (i = 0; i < sysram_resource_count; i++) {
		struct resource *res = &sysram_resources[i];
		request_resource(res, &code_resource);
		request_resource(res, &data_resource);
	}
	request_resource(&sysram_resources[0], &pdcdata_resource);
}
 
void free_initmem(void)
{
	/* FIXME: */
#if 0
	printk(KERN_INFO "NOT FREEING INITMEM (%dk)\n",
			(&__init_end - &__init_begin) >> 10);
	return;
#endif
	unsigned long addr;
 
	printk(KERN_INFO "Freeing unused kernel memory: ");
 
#if 1
	/* Attempt to catch anyone trying to execute code here
	 * by filling the page with BRK insns.
	 * 
	 * If we disable interrupts for all CPUs, then IPI stops working.
	 * Kinda breaks the global cache flushing.
	 */
	local_irq_disable();
 
	memset(&__init_begin, 0x00, 
		(unsigned long)&__init_end - (unsigned long)&__init_begin);
 
	flush_data_cache();
	asm volatile("sync" : : );
	flush_icache_range((unsigned long)&__init_begin, (unsigned long)&__init_end);
	asm volatile("sync" : : );
 
	local_irq_enable();
#endif
 
	addr = (unsigned long)(&__init_begin);
	for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
		ClearPageReserved(virt_to_page(addr));
		set_page_count(virt_to_page(addr), 1);
		free_page(addr);
		num_physpages++;
	}
 
	printk("%luk freed\n", (unsigned long)(&__init_end - &__init_begin) >> 10);
 
	/* set up a new led state on systems shipped LED State panel */
	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
}
 
/*
 * Just an arbitrary offset to serve as a "hole" between mapping areas
 * (between top of physical memory and a potential pcxl dma mapping
 * area, and below the vmalloc mapping area).
 *
 * The current 32K value just means that there will be a 32K "hole"
 * between mapping areas. That means that  any out-of-bounds memory
 * accesses will hopefully be caught. The vmalloc() routines leaves
 * a hole of 4kB between each vmalloced area for the same reason.
 */
 
#define MAP_START 0x4000 /* Leave room for gateway page expansion */
#define VM_MAP_OFFSET  (32*1024)
#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
				     & ~(VM_MAP_OFFSET-1)))
 
void *vmalloc_start;
#ifdef CONFIG_PA11
unsigned long pcxl_dma_start;
#endif
 
void __init mem_init(void)
{
	int i;
 
	high_memory = __va((max_pfn << PAGE_SHIFT));
	max_mapnr = (virt_to_page(high_memory - 1) - mem_map) + 1;
 
	num_physpages = 0;
	for (i = 0; i < npmem_ranges; i++)
		num_physpages += free_all_bootmem_node(NODE_DATA(i));
 
	printk(KERN_INFO "Memory: %luk available\n", num_physpages << (PAGE_SHIFT-10));
 
#ifdef CONFIG_PA11
	if (hppa_dma_ops == &pcxl_dma_ops) {
	    pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
	    vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
	}
	else {
	    pcxl_dma_start = 0;
	    vmalloc_start = SET_MAP_OFFSET(MAP_START);
	}
#else
	vmalloc_start = SET_MAP_OFFSET(MAP_START);
#endif
 
}
 
int do_check_pgt_cache(int low, int high)
{
	return 0;
}
 
unsigned long *empty_zero_page;
 
void show_mem(void)
{
	int i,free = 0,total = 0,reserved = 0;
	int shared = 0, cached = 0;
 
	printk(KERN_INFO "Mem-info:\n");
	show_free_areas();
	printk(KERN_INFO "Free swap:	 %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10));
	i = max_mapnr;
	while (i-- > 0) {
		total++;
		if (PageReserved(mem_map+i))
			reserved++;
		else if (PageSwapCache(mem_map+i))
			cached++;
		else if (!atomic_read(&mem_map[i].count))
			free++;
		else
			shared += atomic_read(&mem_map[i].count) - 1;
	}
	printk(KERN_INFO "%d pages of RAM\n", total);
	printk(KERN_INFO "%d reserved pages\n", reserved);
	printk(KERN_INFO "%d pages shared\n", shared);
	printk(KERN_INFO "%d pages swap cached\n", cached);
	show_buffers();
}
 
 
static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
{
	pgd_t *pg_dir;
	pmd_t *pmd;
	pte_t *pg_table;
	unsigned long end_paddr;
	unsigned long start_pmd;
	unsigned long start_pte;
	unsigned long tmp1;
	unsigned long tmp2;
	unsigned long address;
	unsigned long ro_start;
	unsigned long ro_end;
	unsigned long fv_addr;
	unsigned long gw_addr;
	extern const unsigned long fault_vector_20;
	extern void * const linux_gateway_page;
 
	ro_start = __pa((unsigned long)&_text);
	ro_end   = __pa((unsigned long)&data_start);
	fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
	gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
 
	end_paddr = start_paddr + size;
 
	pg_dir = pgd_offset_k(start_vaddr);
 
#if PTRS_PER_PMD == 1
	start_pmd = 0;
#else
	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
#endif
	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 
	address = start_paddr;
	while (address < end_paddr) {
#if PTRS_PER_PMD == 1
		pmd = (pmd_t *)__pa(pg_dir);
#else
		pmd = (pmd_t *) (PAGE_MASK & pgd_val(*pg_dir));
 
		/*
		 * pmd is physical at this point
		 */
 
		if (!pmd) {
			pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
			pmd = (pmd_t *) __pa(pmd);
		}
 
		pgd_val(*pg_dir) = _PAGE_TABLE | (unsigned long) pmd;
#endif
		pg_dir++;
 
		/* now change pmd to kernel virtual addresses */
 
		pmd = (pmd_t *)__va(pmd) + start_pmd;
		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
 
			/*
			 * pg_table is physical at this point
			 */
 
			pg_table = (pte_t *) (PAGE_MASK & pmd_val(*pmd));
			if (!pg_table) {
				pg_table = (pte_t *)
					alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
				pg_table = (pte_t *) __pa(pg_table);
			}
 
			pmd_val(*pmd) = _PAGE_TABLE |
					   (unsigned long) pg_table;
 
			/* now change pg_table to kernel virtual addresses */
 
			pg_table = (pte_t *) __va(pg_table) + start_pte;
			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
				pte_t pte;
 
#if !defined(CONFIG_STI_CONSOLE)
#warning STI console should explicitly allocate executable pages but does not
				/*
				 * Map the fault vector writable so we can
				 * write the HPMC checksum.
				 */
				if (address >= ro_start && address < ro_end
							&& address != fv_addr
							&& address != gw_addr)
				    pte = __mk_pte(address, PAGE_KERNEL_RO);
				else
#endif
				    pte = __mk_pte(address, pgprot);
 
				if (address >= end_paddr)
					pte_val(pte) = 0;
 
				set_pte(pg_table, pte);
 
				address += PAGE_SIZE;
			}
			start_pte = 0;
 
			if (address >= end_paddr)
			    break;
		}
		start_pmd = 0;
	}
}
 
/*
 * pagetable_init() sets up the page tables
 *
 * Note that gateway_init() places the Linux gateway page at page 0.
 * Since gateway pages cannot be dereferenced this has the desirable
 * side effect of trapping those pesky NULL-reference errors in the
 * kernel.
 */
static void __init pagetable_init(void)
{
	int range;
 
	printk("pagetable_init\n");
 
	/* Map each physical memory range to its kernel vaddr */
 
	for (range = 0; range < npmem_ranges; range++) {
		unsigned long start_paddr;
		unsigned long end_paddr;
		unsigned long size;
 
		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
		end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
		size = pmem_ranges[range].pages << PAGE_SHIFT;
 
		map_pages((unsigned long)__va(start_paddr), start_paddr,
			size, PAGE_KERNEL);
	}
 
#ifdef CONFIG_BLK_DEV_INITRD
	if (initrd_end && initrd_end > mem_limit) {
		printk("initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
		map_pages(initrd_start, __pa(initrd_start),
			initrd_end - initrd_start, PAGE_KERNEL);
	}
#endif
 
	empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
	memset(empty_zero_page, 0, PAGE_SIZE);
}
 
static void __init gateway_init(void)
{
	unsigned long linux_gateway_page_addr;
	/* FIXME: This is 'const' in order to trick the compiler
	   into not treating it as DP-relative data. */
	extern void * const linux_gateway_page;
 
	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
 
	/*
	 * Setup Linux Gateway page.
	 *
	 * The Linux gateway page will reside in kernel space (on virtual
	 * page 0), so it doesn't need to be aliased into user space.
	 */
 
	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
		PAGE_SIZE, PAGE_GATEWAY);
}
 
void
map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
{
	pgd_t *pg_dir;
	pmd_t *pmd;
	pte_t *pg_table;
	unsigned long start_pmd;
	unsigned long start_pte;
	unsigned long address;
	unsigned long hpux_gw_page_addr;
	/* FIXME: This is 'const' in order to trick the compiler
	   into not treating it as DP-relative data. */
	extern void * const hpux_gateway_page;
 
	hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
 
	/*
	 * Setup HP-UX Gateway page.
	 *
	 * The HP-UX gateway page resides in the user address space,
	 * so it needs to be aliased into each process.
	 */
 
	pg_dir = pgd_offset(mm,hpux_gw_page_addr);
 
#if PTRS_PER_PMD == 1
	start_pmd = 0;
#else
	start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
#endif
	start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 
	address = __pa(&hpux_gateway_page);
#if PTRS_PER_PMD == 1
	pmd = (pmd_t *)__pa(pg_dir);
#else
	pmd = (pmd_t *) (PAGE_MASK & pgd_val(*pg_dir));
 
	/*
	 * pmd is physical at this point
	 */
 
	if (!pmd) {
		pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
		pmd = (pmd_t *) __pa(pmd);
	}
 
	pgd_val(*pg_dir) = _PAGE_TABLE | (unsigned long) pmd;
#endif
	/* now change pmd to kernel virtual addresses */
 
	pmd = (pmd_t *)__va(pmd) + start_pmd;
 
	/*
	 * pg_table is physical at this point
	 */
 
	pg_table = (pte_t *) (PAGE_MASK & pmd_val(*pmd));
	if (!pg_table)
		pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
 
	pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) pg_table;
 
	/* now change pg_table to kernel virtual addresses */
 
	pg_table = (pte_t *) __va(pg_table) + start_pte;
	set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
}
 
extern void flush_tlb_all_local(void);
 
void __init paging_init(void)
{
	int i;
 
	setup_bootmem();
	pagetable_init();
	gateway_init();
	flush_cache_all_local(); /* start with known state */
	flush_tlb_all_local();
 
	for (i = 0; i < npmem_ranges; i++) {
		unsigned long zones_size[MAX_NR_ZONES] = { 0, 0, 0, };
 
		zones_size[ZONE_DMA] = pmem_ranges[i].pages;
		free_area_init_node(i,NODE_DATA(i),NULL,zones_size,
				(pmem_ranges[i].start_pfn << PAGE_SHIFT),0);
	}
 
#ifdef CONFIG_DISCONTIGMEM
	/*
	 * Initialize support for virt_to_page() macro.
	 *
	 * Note that MAX_ADDRESS is the largest virtual address that
	 * we can map. However, since we map all physical memory into
	 * the kernel address space, it also has an effect on the maximum
	 * physical address we can map (MAX_ADDRESS - PAGE_OFFSET).
	 */
 
	maxchunkmap = MAX_ADDRESS >> CHUNKSHIFT;
	chunkmap = (unsigned char *)alloc_bootmem(maxchunkmap);
 
	for (i = 0; i < maxchunkmap; i++)
	    chunkmap[i] = BADCHUNK;
 
	for (i = 0; i < npmem_ranges; i++) {
 
		ADJ_NODE_MEM_MAP(i) = NODE_MEM_MAP(i) - pmem_ranges[i].start_pfn;
		{
			unsigned long chunk_paddr;
			unsigned long end_paddr;
			int chunknum;
 
			chunk_paddr = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
			end_paddr = chunk_paddr + (pmem_ranges[i].pages << PAGE_SHIFT);
			chunk_paddr &= CHUNKMASK;
 
			chunknum = (int)CHUNKNUM(chunk_paddr);
			while (chunk_paddr < end_paddr) {
				if (chunknum >= maxchunkmap)
					goto badchunkmap1;
				if (chunkmap[chunknum] != BADCHUNK)
					goto badchunkmap2;
				chunkmap[chunknum] = (unsigned char)i;
				chunk_paddr += CHUNKSZ;
				chunknum++;
			}
		}
	}
 
	return;
 
badchunkmap1:
	panic("paging_init: Physical address exceeds maximum address space!\n");
badchunkmap2:
	panic("paging_init: Collision in chunk map array. CHUNKSZ needs to be smaller\n");
#endif
}
 
#ifdef CONFIG_PA20
 
/*
 * Currently, all PA20 chips have 18 bit protection id's, which is the
 * limiting factor (space ids are 32 bits).
 */
 
#define NR_SPACE_IDS 262144
 
#else
 
/*
 * Currently we have a one-to-one relationship between space id's and
 * protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
 * support 15 bit protection id's, so that is the limiting factor.
 * PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's
 * probably not worth the effort for a special case here.
 */
 
#define NR_SPACE_IDS 32768
 
#endif  /* !CONFIG_PA20 */
 
#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
 
static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
static unsigned long dirty_space_id[SID_ARRAY_SIZE];
static unsigned long space_id_index;
static unsigned long free_space_ids = NR_SPACE_IDS - 1;
static unsigned long dirty_space_ids = 0;
 
static spinlock_t sid_lock = SPIN_LOCK_UNLOCKED;
 
unsigned long alloc_sid(void)
{
	unsigned long index;
 
	spin_lock(&sid_lock);
 
	if (free_space_ids == 0) {
		if (dirty_space_ids != 0) {
			spin_unlock(&sid_lock);
			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
			spin_lock(&sid_lock);
		}
		if (free_space_ids == 0)
			BUG();
	}
 
	free_space_ids--;
 
	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
	space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
	space_id_index = index;
 
	spin_unlock(&sid_lock);
 
	return index << SPACEID_SHIFT;
}
 
void free_sid(unsigned long spaceid)
{
	unsigned long index = spaceid >> SPACEID_SHIFT;
	unsigned long *dirty_space_offset;
 
	dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
	index &= (BITS_PER_LONG - 1);
 
	spin_lock(&sid_lock);
 
	if (*dirty_space_offset & (1L << index))
	    BUG(); /* attempt to free space id twice */
 
	*dirty_space_offset |= (1L << index);
	dirty_space_ids++;
 
	spin_unlock(&sid_lock);
}
 
 
#ifdef CONFIG_SMP
static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
{
	int i;
 
	/* NOTE: sid_lock must be held upon entry */
 
	*ndirtyptr = dirty_space_ids;
	if (dirty_space_ids != 0) {
	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
		dirty_array[i] = dirty_space_id[i];
		dirty_space_id[i] = 0;
	    }
	    dirty_space_ids = 0;
	}
 
	return;
}
 
static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
{
	int i;
 
	/* NOTE: sid_lock must be held upon entry */
 
	if (ndirty != 0) {
		for (i = 0; i < SID_ARRAY_SIZE; i++) {
			space_id[i] ^= dirty_array[i];
		}
 
		free_space_ids += ndirty;
		space_id_index = 0;
	}
}
 
#else /* CONFIG_SMP */
 
static void recycle_sids(void)
{
	int i;
 
	/* NOTE: sid_lock must be held upon entry */
 
	if (dirty_space_ids != 0) {
		for (i = 0; i < SID_ARRAY_SIZE; i++) {
			space_id[i] ^= dirty_space_id[i];
			dirty_space_id[i] = 0;
		}
 
		free_space_ids += dirty_space_ids;
		dirty_space_ids = 0;
		space_id_index = 0;
	}
}
#endif
 
/*
 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
 * purged, we can safely reuse the space ids that were released but
 * not flushed from the tlb.
 */
 
#ifdef CONFIG_SMP
 
static unsigned long recycle_ndirty;
static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
static unsigned int recycle_inuse = 0;
 
void flush_tlb_all(void)
{
	int do_recycle;
 
	do_recycle = 0;
	spin_lock(&sid_lock);
	if (dirty_space_ids > RECYCLE_THRESHOLD) {
	    if (recycle_inuse) {
		BUG();  /* FIXME: Use a semaphore/wait queue here */
	    }
	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
	    recycle_inuse++;
	    do_recycle++;
	}
	spin_unlock(&sid_lock);
	smp_call_function((void (*)(void *))flush_tlb_all_local, NULL, 1, 1);
	flush_tlb_all_local();
	if (do_recycle) {
	    spin_lock(&sid_lock);
	    recycle_sids(recycle_ndirty,recycle_dirty_array);
	    recycle_inuse = 0;
	    spin_unlock(&sid_lock);
	}
}
#else
void flush_tlb_all(void)
{
	spin_lock(&sid_lock);
	flush_tlb_all_local();
	recycle_sids();
	spin_unlock(&sid_lock);
}
#endif
 
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
#if 0
	if (start < end)
		printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
	for (; start < end; start += PAGE_SIZE) {
		ClearPageReserved(virt_to_page(start));
		set_page_count(virt_to_page(start), 1);
		free_page(start);
		num_physpages++;
	}
#endif
}
#endif
 
void si_meminfo(struct sysinfo *val)
{
	val->totalram = num_physpages;
	val->sharedram = 0;
	val->freeram = nr_free_pages();
	val->bufferram = atomic_read(&buffermem_pages);
	val->totalhigh = 0;
	val->freehigh = 0;
	val->mem_unit = PAGE_SIZE;
	return;
}
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.