URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [parisc/] [mm/] [init.c] - Rev 1765
Compare with Previous | Blame | View Log
/* * linux/arch/parisc/mm/init.c * * Copyright (C) 1995 Linus Torvalds * Copyright 1999 SuSE GmbH * changed by Philipp Rumpf * Copyright 1999 Philipp Rumpf (prumpf@tux.org) * */ #include <linux/config.h> #include <linux/mm.h> #include <linux/bootmem.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */ #include <linux/blk.h> /* for initrd_start and initrd_end */ #include <linux/swap.h> #include <linux/unistd.h> #include <asm/pgalloc.h> #include <asm/tlb.h> #include <asm/pdc_chassis.h> mmu_gather_t mmu_gathers[NR_CPUS]; extern char _text; /* start of kernel code, defined by linker */ extern int data_start; extern char _end; /* end of BSS, defined by linker */ extern char __init_begin, __init_end; #ifdef CONFIG_DISCONTIGMEM struct node_map_data node_data[MAX_PHYSMEM_RANGES]; bootmem_data_t bmem_data[MAX_PHYSMEM_RANGES]; unsigned char *chunkmap; unsigned int maxchunkmap; #endif static struct resource data_resource = { name: "Kernel data", flags: IORESOURCE_BUSY | IORESOURCE_MEM, }; static struct resource code_resource = { name: "Kernel code", flags: IORESOURCE_BUSY | IORESOURCE_MEM, }; static struct resource pdcdata_resource = { name: "PDC data (Page Zero)", start: 0, end: 0x9ff, flags: IORESOURCE_BUSY | IORESOURCE_MEM, }; static struct resource sysram_resources[MAX_PHYSMEM_RANGES]; static unsigned long max_pfn; /* The following array is initialized from the firmware specific * information retrieved in kernel/inventory.c. */ physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES]; int npmem_ranges; #ifdef __LP64__ #define MAX_MEM (~0UL) #else /* !__LP64__ */ #define MAX_MEM (3584U*1024U*1024U) #endif /* !__LP64__ */ static unsigned long mem_limit = MAX_MEM; static void __init mem_limit_func(void) { char *cp, *end; unsigned long limit; extern char saved_command_line[]; /* We need this before __setup() functions are called */ limit = MAX_MEM; for (cp = saved_command_line; *cp; ) { if (memcmp(cp, "mem=", 4) == 0) { cp += 4; limit = memparse(cp, &end); if (end != cp) break; cp = end; } else { while (*cp != ' ' && *cp) ++cp; while (*cp == ' ') ++cp; } } if (limit < mem_limit) mem_limit = limit; } #define MAX_GAP (0x40000000UL >> PAGE_SHIFT) static void __init setup_bootmem(void) { unsigned long bootmap_size; unsigned long mem_max; unsigned long bootmap_pages; unsigned long bootmap_start_pfn; unsigned long bootmap_pfn; #ifndef CONFIG_DISCONTIGMEM physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1]; int npmem_holes; #endif int i, sysram_resource_count; disable_sr_hashing(); /* Turn off space register hashing */ #ifdef CONFIG_DISCONTIGMEM /* * The below is still true as of 2.4.2. If this is ever fixed, * we can remove this warning! */ printk(KERN_WARNING "\n\n"); printk(KERN_WARNING "CONFIG_DISCONTIGMEM is enabled, which is probably a mistake. This\n"); printk(KERN_WARNING "option can lead to heavy swapping, even when there are gigabytes\n"); printk(KERN_WARNING "of free memory.\n\n"); #endif #ifdef __LP64__ #ifndef CONFIG_DISCONTIGMEM /* * Sort the ranges. Since the number of ranges is typically * small, and performance is not an issue here, just do * a simple insertion sort. */ for (i = 1; i < npmem_ranges; i++) { int j; for (j = i; j > 0; j--) { unsigned long tmp; if (pmem_ranges[j-1].start_pfn < pmem_ranges[j].start_pfn) { break; } tmp = pmem_ranges[j-1].start_pfn; pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn; pmem_ranges[j].start_pfn = tmp; tmp = pmem_ranges[j-1].pages; pmem_ranges[j-1].pages = pmem_ranges[j].pages; pmem_ranges[j].pages = tmp; } } /* * Throw out ranges that are too far apart (controlled by * MAX_GAP). If CONFIG_DISCONTIGMEM wasn't implemented so * poorly, we would recommend enabling that option, but, * until it is fixed, this is the best way to go. */ for (i = 1; i < npmem_ranges; i++) { if (pmem_ranges[i].start_pfn - (pmem_ranges[i-1].start_pfn + pmem_ranges[i-1].pages) > MAX_GAP) { npmem_ranges = i; break; } } #endif if (npmem_ranges > 1) { /* Print the memory ranges */ printk(KERN_INFO "Memory Ranges:\n"); for (i = 0; i < npmem_ranges; i++) { unsigned long start; unsigned long size; size = (pmem_ranges[i].pages << PAGE_SHIFT); start = (pmem_ranges[i].start_pfn << PAGE_SHIFT); printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld Mb\n", i,start, start + (size - 1), size >> 20); } } #endif /* __LP64__ */ #if 1 /* KLUGE! this really belongs in kernel/resource.c! */ iomem_resource.end = ~0UL; #endif sysram_resource_count = npmem_ranges; for (i = 0; i < sysram_resource_count; i++) { struct resource *res = &sysram_resources[i]; res->name = "System RAM"; res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT; res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1; res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; request_resource(&iomem_resource, res); } /* * For 32 bit kernels we limit the amount of memory we can * support, in order to preserve enough kernel address space * for other purposes. For 64 bit kernels we don't normally * limit the memory, but this mechanism can be used to * artificially limit the amount of memory (and it is written * to work with multiple memory ranges). */ mem_limit_func(); /* check for "mem=" argument */ mem_max = 0; for (i = 0; i < npmem_ranges; i++) { unsigned long rsize; rsize = pmem_ranges[i].pages << PAGE_SHIFT; if ((mem_max + rsize) > mem_limit) { printk(KERN_WARNING "Memory truncated to %ld Mb\n", mem_limit >> 20); if (mem_max == mem_limit) npmem_ranges = i; else { pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT) - (mem_max >> PAGE_SHIFT); npmem_ranges = i + 1; mem_max = mem_limit; } break; } mem_max += rsize; } printk(KERN_INFO "Total Memory: %ld Mb\n",mem_max >> 20); #ifndef CONFIG_DISCONTIGMEM /* Merge the ranges, keeping track of the holes */ { unsigned long end_pfn; unsigned long hole_pages; npmem_holes = 0; end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages; for (i = 1; i < npmem_ranges; i++) { hole_pages = pmem_ranges[i].start_pfn - end_pfn; if (hole_pages) { pmem_holes[npmem_holes].start_pfn = end_pfn; pmem_holes[npmem_holes++].pages = hole_pages; end_pfn += hole_pages; } end_pfn += pmem_ranges[i].pages; } pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn; npmem_ranges = 1; } #endif bootmap_pages = 0; for (i = 0; i < npmem_ranges; i++) bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages); bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT; #ifdef CONFIG_DISCONTIGMEM for (i = 0; i < npmem_ranges; i++) node_data[i].pg_data.bdata = &bmem_data[i]; #endif /* * Initialize and free the full range of memory in each range. * Note that the only writing these routines do are to the bootmap, * and we've made sure to locate the bootmap properly so that they * won't be writing over anything important. */ bootmap_pfn = bootmap_start_pfn; max_pfn = 0; for (i = 0; i < npmem_ranges; i++) { unsigned long start_pfn; unsigned long npages; start_pfn = pmem_ranges[i].start_pfn; npages = pmem_ranges[i].pages; bootmap_size = init_bootmem_node(NODE_DATA(i), bootmap_pfn, start_pfn, (start_pfn + npages) ); free_bootmem_node(NODE_DATA(i), (start_pfn << PAGE_SHIFT), (npages << PAGE_SHIFT) ); bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT; if ((start_pfn + npages) > max_pfn) max_pfn = start_pfn + npages; } if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) { printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n"); BUG(); } /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */ #define PDC_CONSOLE_IO_IODC_SIZE 32768 reserve_bootmem_node(NODE_DATA(0), 0UL, (unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE)); reserve_bootmem_node(NODE_DATA(0),__pa((unsigned long)&_text), (unsigned long)(&_end - &_text)); reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT), ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT)); #ifndef CONFIG_DISCONTIGMEM /* reserve the holes */ for (i = 0; i < npmem_holes; i++) { reserve_bootmem_node(NODE_DATA(0), (pmem_holes[i].start_pfn << PAGE_SHIFT), (pmem_holes[i].pages << PAGE_SHIFT)); } #endif #ifdef CONFIG_BLK_DEV_INITRD if (initrd_start) { printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end); if (__pa(initrd_start) < mem_max) { unsigned long initrd_reserve; if (__pa(initrd_end) > mem_max) { initrd_reserve = mem_max - __pa(initrd_start); } else { initrd_reserve = initrd_end - initrd_start; } initrd_below_start_ok = 1; printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max); reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve); } } #endif data_resource.start = virt_to_phys(&data_start); data_resource.end = virt_to_phys(&_end)-1; code_resource.start = virt_to_phys(&_text); code_resource.end = virt_to_phys(&data_start)-1; /* We don't know which region the kernel will be in, so try * all of them. */ for (i = 0; i < sysram_resource_count; i++) { struct resource *res = &sysram_resources[i]; request_resource(res, &code_resource); request_resource(res, &data_resource); } request_resource(&sysram_resources[0], &pdcdata_resource); } void free_initmem(void) { /* FIXME: */ #if 0 printk(KERN_INFO "NOT FREEING INITMEM (%dk)\n", (&__init_end - &__init_begin) >> 10); return; #endif unsigned long addr; printk(KERN_INFO "Freeing unused kernel memory: "); #if 1 /* Attempt to catch anyone trying to execute code here * by filling the page with BRK insns. * * If we disable interrupts for all CPUs, then IPI stops working. * Kinda breaks the global cache flushing. */ local_irq_disable(); memset(&__init_begin, 0x00, (unsigned long)&__init_end - (unsigned long)&__init_begin); flush_data_cache(); asm volatile("sync" : : ); flush_icache_range((unsigned long)&__init_begin, (unsigned long)&__init_end); asm volatile("sync" : : ); local_irq_enable(); #endif addr = (unsigned long)(&__init_begin); for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) { ClearPageReserved(virt_to_page(addr)); set_page_count(virt_to_page(addr), 1); free_page(addr); num_physpages++; } printk("%luk freed\n", (unsigned long)(&__init_end - &__init_begin) >> 10); /* set up a new led state on systems shipped LED State panel */ pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE); } /* * Just an arbitrary offset to serve as a "hole" between mapping areas * (between top of physical memory and a potential pcxl dma mapping * area, and below the vmalloc mapping area). * * The current 32K value just means that there will be a 32K "hole" * between mapping areas. That means that any out-of-bounds memory * accesses will hopefully be caught. The vmalloc() routines leaves * a hole of 4kB between each vmalloced area for the same reason. */ #define MAP_START 0x4000 /* Leave room for gateway page expansion */ #define VM_MAP_OFFSET (32*1024) #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \ & ~(VM_MAP_OFFSET-1))) void *vmalloc_start; #ifdef CONFIG_PA11 unsigned long pcxl_dma_start; #endif void __init mem_init(void) { int i; high_memory = __va((max_pfn << PAGE_SHIFT)); max_mapnr = (virt_to_page(high_memory - 1) - mem_map) + 1; num_physpages = 0; for (i = 0; i < npmem_ranges; i++) num_physpages += free_all_bootmem_node(NODE_DATA(i)); printk(KERN_INFO "Memory: %luk available\n", num_physpages << (PAGE_SHIFT-10)); #ifdef CONFIG_PA11 if (hppa_dma_ops == &pcxl_dma_ops) { pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START); vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE); } else { pcxl_dma_start = 0; vmalloc_start = SET_MAP_OFFSET(MAP_START); } #else vmalloc_start = SET_MAP_OFFSET(MAP_START); #endif } int do_check_pgt_cache(int low, int high) { return 0; } unsigned long *empty_zero_page; void show_mem(void) { int i,free = 0,total = 0,reserved = 0; int shared = 0, cached = 0; printk(KERN_INFO "Mem-info:\n"); show_free_areas(); printk(KERN_INFO "Free swap: %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10)); i = max_mapnr; while (i-- > 0) { total++; if (PageReserved(mem_map+i)) reserved++; else if (PageSwapCache(mem_map+i)) cached++; else if (!atomic_read(&mem_map[i].count)) free++; else shared += atomic_read(&mem_map[i].count) - 1; } printk(KERN_INFO "%d pages of RAM\n", total); printk(KERN_INFO "%d reserved pages\n", reserved); printk(KERN_INFO "%d pages shared\n", shared); printk(KERN_INFO "%d pages swap cached\n", cached); show_buffers(); } static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot) { pgd_t *pg_dir; pmd_t *pmd; pte_t *pg_table; unsigned long end_paddr; unsigned long start_pmd; unsigned long start_pte; unsigned long tmp1; unsigned long tmp2; unsigned long address; unsigned long ro_start; unsigned long ro_end; unsigned long fv_addr; unsigned long gw_addr; extern const unsigned long fault_vector_20; extern void * const linux_gateway_page; ro_start = __pa((unsigned long)&_text); ro_end = __pa((unsigned long)&data_start); fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK; gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK; end_paddr = start_paddr + size; pg_dir = pgd_offset_k(start_vaddr); #if PTRS_PER_PMD == 1 start_pmd = 0; #else start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); #endif start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); address = start_paddr; while (address < end_paddr) { #if PTRS_PER_PMD == 1 pmd = (pmd_t *)__pa(pg_dir); #else pmd = (pmd_t *) (PAGE_MASK & pgd_val(*pg_dir)); /* * pmd is physical at this point */ if (!pmd) { pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE); pmd = (pmd_t *) __pa(pmd); } pgd_val(*pg_dir) = _PAGE_TABLE | (unsigned long) pmd; #endif pg_dir++; /* now change pmd to kernel virtual addresses */ pmd = (pmd_t *)__va(pmd) + start_pmd; for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) { /* * pg_table is physical at this point */ pg_table = (pte_t *) (PAGE_MASK & pmd_val(*pmd)); if (!pg_table) { pg_table = (pte_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE); pg_table = (pte_t *) __pa(pg_table); } pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) pg_table; /* now change pg_table to kernel virtual addresses */ pg_table = (pte_t *) __va(pg_table) + start_pte; for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) { pte_t pte; #if !defined(CONFIG_STI_CONSOLE) #warning STI console should explicitly allocate executable pages but does not /* * Map the fault vector writable so we can * write the HPMC checksum. */ if (address >= ro_start && address < ro_end && address != fv_addr && address != gw_addr) pte = __mk_pte(address, PAGE_KERNEL_RO); else #endif pte = __mk_pte(address, pgprot); if (address >= end_paddr) pte_val(pte) = 0; set_pte(pg_table, pte); address += PAGE_SIZE; } start_pte = 0; if (address >= end_paddr) break; } start_pmd = 0; } } /* * pagetable_init() sets up the page tables * * Note that gateway_init() places the Linux gateway page at page 0. * Since gateway pages cannot be dereferenced this has the desirable * side effect of trapping those pesky NULL-reference errors in the * kernel. */ static void __init pagetable_init(void) { int range; printk("pagetable_init\n"); /* Map each physical memory range to its kernel vaddr */ for (range = 0; range < npmem_ranges; range++) { unsigned long start_paddr; unsigned long end_paddr; unsigned long size; start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT; end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT); size = pmem_ranges[range].pages << PAGE_SHIFT; map_pages((unsigned long)__va(start_paddr), start_paddr, size, PAGE_KERNEL); } #ifdef CONFIG_BLK_DEV_INITRD if (initrd_end && initrd_end > mem_limit) { printk("initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end); map_pages(initrd_start, __pa(initrd_start), initrd_end - initrd_start, PAGE_KERNEL); } #endif empty_zero_page = alloc_bootmem_pages(PAGE_SIZE); memset(empty_zero_page, 0, PAGE_SIZE); } static void __init gateway_init(void) { unsigned long linux_gateway_page_addr; /* FIXME: This is 'const' in order to trick the compiler into not treating it as DP-relative data. */ extern void * const linux_gateway_page; linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK; /* * Setup Linux Gateway page. * * The Linux gateway page will reside in kernel space (on virtual * page 0), so it doesn't need to be aliased into user space. */ map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page), PAGE_SIZE, PAGE_GATEWAY); } void map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm) { pgd_t *pg_dir; pmd_t *pmd; pte_t *pg_table; unsigned long start_pmd; unsigned long start_pte; unsigned long address; unsigned long hpux_gw_page_addr; /* FIXME: This is 'const' in order to trick the compiler into not treating it as DP-relative data. */ extern void * const hpux_gateway_page; hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK; /* * Setup HP-UX Gateway page. * * The HP-UX gateway page resides in the user address space, * so it needs to be aliased into each process. */ pg_dir = pgd_offset(mm,hpux_gw_page_addr); #if PTRS_PER_PMD == 1 start_pmd = 0; #else start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); #endif start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); address = __pa(&hpux_gateway_page); #if PTRS_PER_PMD == 1 pmd = (pmd_t *)__pa(pg_dir); #else pmd = (pmd_t *) (PAGE_MASK & pgd_val(*pg_dir)); /* * pmd is physical at this point */ if (!pmd) { pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL); pmd = (pmd_t *) __pa(pmd); } pgd_val(*pg_dir) = _PAGE_TABLE | (unsigned long) pmd; #endif /* now change pmd to kernel virtual addresses */ pmd = (pmd_t *)__va(pmd) + start_pmd; /* * pg_table is physical at this point */ pg_table = (pte_t *) (PAGE_MASK & pmd_val(*pmd)); if (!pg_table) pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL)); pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) pg_table; /* now change pg_table to kernel virtual addresses */ pg_table = (pte_t *) __va(pg_table) + start_pte; set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY)); } extern void flush_tlb_all_local(void); void __init paging_init(void) { int i; setup_bootmem(); pagetable_init(); gateway_init(); flush_cache_all_local(); /* start with known state */ flush_tlb_all_local(); for (i = 0; i < npmem_ranges; i++) { unsigned long zones_size[MAX_NR_ZONES] = { 0, 0, 0, }; zones_size[ZONE_DMA] = pmem_ranges[i].pages; free_area_init_node(i,NODE_DATA(i),NULL,zones_size, (pmem_ranges[i].start_pfn << PAGE_SHIFT),0); } #ifdef CONFIG_DISCONTIGMEM /* * Initialize support for virt_to_page() macro. * * Note that MAX_ADDRESS is the largest virtual address that * we can map. However, since we map all physical memory into * the kernel address space, it also has an effect on the maximum * physical address we can map (MAX_ADDRESS - PAGE_OFFSET). */ maxchunkmap = MAX_ADDRESS >> CHUNKSHIFT; chunkmap = (unsigned char *)alloc_bootmem(maxchunkmap); for (i = 0; i < maxchunkmap; i++) chunkmap[i] = BADCHUNK; for (i = 0; i < npmem_ranges; i++) { ADJ_NODE_MEM_MAP(i) = NODE_MEM_MAP(i) - pmem_ranges[i].start_pfn; { unsigned long chunk_paddr; unsigned long end_paddr; int chunknum; chunk_paddr = (pmem_ranges[i].start_pfn << PAGE_SHIFT); end_paddr = chunk_paddr + (pmem_ranges[i].pages << PAGE_SHIFT); chunk_paddr &= CHUNKMASK; chunknum = (int)CHUNKNUM(chunk_paddr); while (chunk_paddr < end_paddr) { if (chunknum >= maxchunkmap) goto badchunkmap1; if (chunkmap[chunknum] != BADCHUNK) goto badchunkmap2; chunkmap[chunknum] = (unsigned char)i; chunk_paddr += CHUNKSZ; chunknum++; } } } return; badchunkmap1: panic("paging_init: Physical address exceeds maximum address space!\n"); badchunkmap2: panic("paging_init: Collision in chunk map array. CHUNKSZ needs to be smaller\n"); #endif } #ifdef CONFIG_PA20 /* * Currently, all PA20 chips have 18 bit protection id's, which is the * limiting factor (space ids are 32 bits). */ #define NR_SPACE_IDS 262144 #else /* * Currently we have a one-to-one relationship between space id's and * protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only * support 15 bit protection id's, so that is the limiting factor. * PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's * probably not worth the effort for a special case here. */ #define NR_SPACE_IDS 32768 #endif /* !CONFIG_PA20 */ #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2) #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long))) static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */ static unsigned long dirty_space_id[SID_ARRAY_SIZE]; static unsigned long space_id_index; static unsigned long free_space_ids = NR_SPACE_IDS - 1; static unsigned long dirty_space_ids = 0; static spinlock_t sid_lock = SPIN_LOCK_UNLOCKED; unsigned long alloc_sid(void) { unsigned long index; spin_lock(&sid_lock); if (free_space_ids == 0) { if (dirty_space_ids != 0) { spin_unlock(&sid_lock); flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */ spin_lock(&sid_lock); } if (free_space_ids == 0) BUG(); } free_space_ids--; index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index); space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1))); space_id_index = index; spin_unlock(&sid_lock); return index << SPACEID_SHIFT; } void free_sid(unsigned long spaceid) { unsigned long index = spaceid >> SPACEID_SHIFT; unsigned long *dirty_space_offset; dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG); index &= (BITS_PER_LONG - 1); spin_lock(&sid_lock); if (*dirty_space_offset & (1L << index)) BUG(); /* attempt to free space id twice */ *dirty_space_offset |= (1L << index); dirty_space_ids++; spin_unlock(&sid_lock); } #ifdef CONFIG_SMP static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array) { int i; /* NOTE: sid_lock must be held upon entry */ *ndirtyptr = dirty_space_ids; if (dirty_space_ids != 0) { for (i = 0; i < SID_ARRAY_SIZE; i++) { dirty_array[i] = dirty_space_id[i]; dirty_space_id[i] = 0; } dirty_space_ids = 0; } return; } static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array) { int i; /* NOTE: sid_lock must be held upon entry */ if (ndirty != 0) { for (i = 0; i < SID_ARRAY_SIZE; i++) { space_id[i] ^= dirty_array[i]; } free_space_ids += ndirty; space_id_index = 0; } } #else /* CONFIG_SMP */ static void recycle_sids(void) { int i; /* NOTE: sid_lock must be held upon entry */ if (dirty_space_ids != 0) { for (i = 0; i < SID_ARRAY_SIZE; i++) { space_id[i] ^= dirty_space_id[i]; dirty_space_id[i] = 0; } free_space_ids += dirty_space_ids; dirty_space_ids = 0; space_id_index = 0; } } #endif /* * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is * purged, we can safely reuse the space ids that were released but * not flushed from the tlb. */ #ifdef CONFIG_SMP static unsigned long recycle_ndirty; static unsigned long recycle_dirty_array[SID_ARRAY_SIZE]; static unsigned int recycle_inuse = 0; void flush_tlb_all(void) { int do_recycle; do_recycle = 0; spin_lock(&sid_lock); if (dirty_space_ids > RECYCLE_THRESHOLD) { if (recycle_inuse) { BUG(); /* FIXME: Use a semaphore/wait queue here */ } get_dirty_sids(&recycle_ndirty,recycle_dirty_array); recycle_inuse++; do_recycle++; } spin_unlock(&sid_lock); smp_call_function((void (*)(void *))flush_tlb_all_local, NULL, 1, 1); flush_tlb_all_local(); if (do_recycle) { spin_lock(&sid_lock); recycle_sids(recycle_ndirty,recycle_dirty_array); recycle_inuse = 0; spin_unlock(&sid_lock); } } #else void flush_tlb_all(void) { spin_lock(&sid_lock); flush_tlb_all_local(); recycle_sids(); spin_unlock(&sid_lock); } #endif #ifdef CONFIG_BLK_DEV_INITRD void free_initrd_mem(unsigned long start, unsigned long end) { #if 0 if (start < end) printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10); for (; start < end; start += PAGE_SIZE) { ClearPageReserved(virt_to_page(start)); set_page_count(virt_to_page(start), 1); free_page(start); num_physpages++; } #endif } #endif void si_meminfo(struct sysinfo *val) { val->totalram = num_physpages; val->sharedram = 0; val->freeram = nr_free_pages(); val->bufferram = atomic_read(&buffermem_pages); val->totalhigh = 0; val->freehigh = 0; val->mem_unit = PAGE_SIZE; return; }