OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [ppc/] [cpm2_io/] [fcc_enet.c] - Rev 1765

Compare with Previous | Blame | View Log

/*
 * Fast Ethernet Controller (FCC) driver for Motorola MPC8260.
 * Copyright (c) 2000 MontaVista Software, Inc.   Dan Malek (dmalek@jlc.net)
 *
 * This version of the driver is a combination of the 8xx fec and
 * 8260 SCC Ethernet drivers.  This version has some additional
 * configuration options, which should probably be moved out of
 * here.  This driver currently works for the EST SBC8260,
 * SBS Diablo/BCM, Embedded Planet RPX6, TQM8260, and others.
 *
 * Right now, I am very watseful with the buffers.  I allocate memory
 * pages and then divide them into 2K frame buffers.  This way I know I
 * have buffers large enough to hold one frame within one buffer descriptor.
 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
 * will be much more memory efficient and will easily handle lots of
 * small packets.  Since this is a cache coherent processor and CPM,
 * I could also preallocate SKB's and use them directly on the interface.
 *
 */
 
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
 
#include <asm/immap_cpm2.h>
#include <asm/pgtable.h>
#include <asm/mpc8260.h>
#include <asm/irq.h>
#include <asm/bitops.h>
#include <asm/uaccess.h>
#include <asm/cpm2.h>
 
/* The transmitter timeout
 */
#define TX_TIMEOUT	(2*HZ)
 
#ifdef	CONFIG_USE_MDIO
/* Forward declarations of some structures to support different PHYs */
 
typedef struct {
	uint mii_data;
	void (*funct)(uint mii_reg, struct net_device *dev);
} phy_cmd_t;
 
typedef struct {
	uint id;
	char *name;
 
	const phy_cmd_t *config;
	const phy_cmd_t *startup;
	const phy_cmd_t *ack_int;
	const phy_cmd_t *shutdown;
} phy_info_t;
 
/* Register definitions for the PHY. */
 
#define MII_REG_CR          0  /* Control Register                         */
#define MII_REG_SR          1  /* Status Register                          */
#define MII_REG_PHYIR1      2  /* PHY Identification Register 1            */
#define MII_REG_PHYIR2      3  /* PHY Identification Register 2            */
#define MII_REG_ANAR        4  /* A-N Advertisement Register               */
#define MII_REG_ANLPAR      5  /* A-N Link Partner Ability Register        */
#define MII_REG_ANER        6  /* A-N Expansion Register                   */
#define MII_REG_ANNPTR      7  /* A-N Next Page Transmit Register          */
#define MII_REG_ANLPRNPR    8  /* A-N Link Partner Received Next Page Reg. */
 
/* values for phy_status */
 
#define PHY_CONF_ANE	0x0001  /* 1 auto-negotiation enabled */
#define PHY_CONF_LOOP	0x0002  /* 1 loopback mode enabled */
#define PHY_CONF_SPMASK	0x00f0  /* mask for speed */
#define PHY_CONF_10HDX	0x0010  /* 10 Mbit half duplex supported */
#define PHY_CONF_10FDX	0x0020  /* 10 Mbit full duplex supported */
#define PHY_CONF_100HDX	0x0040  /* 100 Mbit half duplex supported */
#define PHY_CONF_100FDX	0x0080  /* 100 Mbit full duplex supported */
 
#define PHY_STAT_LINK	0x0100  /* 1 up - 0 down */
#define PHY_STAT_FAULT	0x0200  /* 1 remote fault */
#define PHY_STAT_ANC	0x0400  /* 1 auto-negotiation complete	*/
#define PHY_STAT_SPMASK	0xf000  /* mask for speed */
#define PHY_STAT_10HDX	0x1000  /* 10 Mbit half duplex selected	*/
#define PHY_STAT_10FDX	0x2000  /* 10 Mbit full duplex selected	*/
#define PHY_STAT_100HDX	0x4000  /* 100 Mbit half duplex selected */
#define PHY_STAT_100FDX	0x8000  /* 100 Mbit full duplex selected */
#endif	/* CONFIG_USE_MDIO */
 
/* The number of Tx and Rx buffers.  These are allocated from the page
 * pool.  The code may assume these are power of two, so it is best
 * to keep them that size.
 * We don't need to allocate pages for the transmitter.  We just use
 * the skbuffer directly.
 */
#define FCC_ENET_RX_PAGES	16
#define FCC_ENET_RX_FRSIZE	2048
#define FCC_ENET_RX_FRPPG	(PAGE_SIZE / FCC_ENET_RX_FRSIZE)
#define RX_RING_SIZE		(FCC_ENET_RX_FRPPG * FCC_ENET_RX_PAGES)
#define TX_RING_SIZE		16	/* Must be power of two */
#define TX_RING_MOD_MASK	15	/*   for this to work */
 
/* The FCC stores dest/src/type, data, and checksum for receive packets.
 */
#define PKT_MAXBUF_SIZE		1518
#define PKT_MINBUF_SIZE		64
 
/* Maximum input DMA size.  Must be a should(?) be a multiple of 4.
*/
#define PKT_MAXDMA_SIZE		1520
 
/* Maximum input buffer size.  Must be a multiple of 32.
*/
#define PKT_MAXBLR_SIZE		1536
 
static int fcc_enet_open(struct net_device *dev);
static int fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
static int fcc_enet_rx(struct net_device *dev);
static	void fcc_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs);
static int fcc_enet_close(struct net_device *dev);
static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);
static void fcc_restart(struct net_device *dev, int duplex);
static int fcc_enet_set_mac_address(struct net_device *dev, void *addr);
 
/* These will be configurable for the FCC choice.
 * Multiple ports can be configured.  There is little choice among the
 * I/O pins to the PHY, except the clocks.  We will need some board
 * dependent clock selection.
 * Why in the hell did I put these inside #ifdef's?  I dunno, maybe to
 * help show what pins are used for each device.
 */
 
/* I/O Pin assignment for FCC1.  I don't yet know the best way to do this,
 * but there is little variation among the choices.
 */
#define PA1_COL		((uint)0x00000001)
#define PA1_CRS		((uint)0x00000002)
#define PA1_TXER	((uint)0x00000004)
#define PA1_TXEN	((uint)0x00000008)
#define PA1_RXDV	((uint)0x00000010)
#define PA1_RXER	((uint)0x00000020)
#define PA1_TXDAT	((uint)0x00003c00)
#define PA1_RXDAT	((uint)0x0003c000)
#define PA1_PSORA0	(PA1_RXDAT | PA1_TXDAT)
#define PA1_PSORA1	(PA1_COL | PA1_CRS | PA1_TXER | PA1_TXEN | \
				PA1_RXDV | PA1_RXER)
#define PA1_DIRA0	(PA1_RXDAT | PA1_CRS | PA1_COL | PA1_RXER | PA1_RXDV)
#define PA1_DIRA1	(PA1_TXDAT | PA1_TXEN | PA1_TXER)
 
/* CLK12 is receive, CLK11 is transmit.  These are board specific.
*/
#ifdef CONFIG_ADS8272
#define PC_F1RXCLK	((uint)0x00000400)
#define PC_F1TXCLK	((uint)0x00000200)
#define CMX1_CLK_ROUTE	((uint)0x36000000)
#define CMX1_CLK_MASK	((uint)0xff000000)
#else
#define PC_F1RXCLK	((uint)0x00000800)
#define PC_F1TXCLK	((uint)0x00000400)
#define CMX1_CLK_ROUTE	((uint)0x3e000000)
#define CMX1_CLK_MASK	((uint)0xff000000)
#endif
 
/* I/O Pin assignment for FCC2.  I don't yet know the best way to do this,
 * but there is little variation among the choices.
 */
#define PB2_TXER	((uint)0x00000001)
#define PB2_RXDV	((uint)0x00000002)
#define PB2_TXEN	((uint)0x00000004)
#define PB2_RXER	((uint)0x00000008)
#define PB2_COL		((uint)0x00000010)
#define PB2_CRS		((uint)0x00000020)
#define PB2_TXDAT	((uint)0x000003c0)
#define PB2_RXDAT	((uint)0x00003c00)
#define PB2_PSORB0	(PB2_RXDAT | PB2_TXDAT | PB2_CRS | PB2_COL | \
				PB2_RXER | PB2_RXDV | PB2_TXER)
#define PB2_PSORB1	(PB2_TXEN)
#define PB2_DIRB0	(PB2_RXDAT | PB2_CRS | PB2_COL | PB2_RXER | PB2_RXDV)
#define PB2_DIRB1	(PB2_TXDAT | PB2_TXEN | PB2_TXER)
 
/* CLK13 is receive, CLK14 is transmit.  These are board dependent.
*/
#ifdef CONFIG_ADS8272
#define PC_F2RXCLK	((uint)0x00004000)
#define PC_F2TXCLK	((uint)0x00008000)
#define CMX2_CLK_ROUTE	((uint)0x00370000)
#define CMX2_CLK_MASK	((uint)0x00ff0000)
#else
#define PC_F2RXCLK	((uint)0x00001000)
#define PC_F2TXCLK	((uint)0x00002000)
#define CMX2_CLK_ROUTE	((uint)0x00250000)
#define CMX2_CLK_MASK	((uint)0x00ff0000)
#endif
 
/* I/O Pin assignment for FCC3.  I don't yet know the best way to do this,
 * but there is little variation among the choices.
 */
#define PB3_RXDV	((uint)0x00004000)
#define PB3_RXER	((uint)0x00008000)
#define PB3_TXER	((uint)0x00010000)
#define PB3_TXEN	((uint)0x00020000)
#define PB3_COL		((uint)0x00040000)
#define PB3_CRS		((uint)0x00080000)
#define PB3_TXDAT	((uint)0x0f000000)
#define PB3_RXDAT	((uint)0x00f00000)
#define PB3_PSORB0	(PB3_RXDAT | PB3_TXDAT | PB3_CRS | PB3_COL | \
				PB3_RXER | PB3_RXDV | PB3_TXER | PB3_TXEN)
#define PB3_PSORB1	(0)
#define PB3_DIRB0	(PB3_RXDAT | PB3_CRS | PB3_COL | PB3_RXER | PB3_RXDV)
#define PB3_DIRB1	(PB3_TXDAT | PB3_TXEN | PB3_TXER)
 
/* CLK15 is receive, CLK16 is transmit.  These are board dependent.
*/
#define PC_F3RXCLK	((uint)0x00004000)
#define PC_F3TXCLK	((uint)0x00008000)
#define CMX3_CLK_ROUTE	((uint)0x00003700)
#define CMX3_CLK_MASK	((uint)0x0000ff00)
 
/* MII status/control serial interface.
*/
#ifdef	CONFIG_TQM8260
/* TQM8260 has MDIO and MDCK on PC30 and PC31 respectively */
#define PC_MDIO		((uint)0x00000002)
#define PC_MDCK		((uint)0x00000001)
#elif defined(CONFIG_ADS8272)
#define PC_MDIO		((uint)0x00002000)
#define PC_MDCK		((uint)0x00001000)
#else
#define PC_MDIO		((uint)0x00000004)
#define PC_MDCK		((uint)0x00000020)
#endif
 
/* A table of information for supporting FCCs.  This does two things.
 * First, we know how many FCCs we have and they are always externally
 * numbered from zero.  Second, it holds control register and I/O
 * information that could be different among board designs.
 */
typedef struct fcc_info {
	uint	fc_fccnum;
	uint	fc_cpmblock;
	uint	fc_cpmpage;
	uint	fc_proff;
	uint	fc_interrupt;
	uint	fc_trxclocks;
	uint	fc_clockroute;
	uint	fc_clockmask;
	uint	fc_mdio;
	uint	fc_mdck;
} fcc_info_t;
 
static fcc_info_t fcc_ports[] = {
#ifdef CONFIG_FCC1_ENET
	{ 0, CPM_CR_FCC1_SBLOCK, CPM_CR_FCC1_PAGE, PROFF_FCC1, SIU_INT_FCC1,
		(PC_F1RXCLK | PC_F1TXCLK), CMX1_CLK_ROUTE, CMX1_CLK_MASK,
# if defined(CONFIG_TQM8260) || defined (CONFIG_ADS8272)
		PC_MDIO, PC_MDCK },
# else
		0x00000004, 0x00000100 },
# endif
#endif
#ifdef CONFIG_FCC2_ENET
	{ 1, CPM_CR_FCC2_SBLOCK, CPM_CR_FCC2_PAGE, PROFF_FCC2, SIU_INT_FCC2,
		(PC_F2RXCLK | PC_F2TXCLK), CMX2_CLK_ROUTE, CMX2_CLK_MASK,
# if defined(CONFIG_TQM8260) || defined (CONFIG_ADS8272)
		PC_MDIO, PC_MDCK },
# elif defined(CONFIG_EST8260) || defined(CONFIG_ADS8260)
		0x00400000, 0x00200000 },
# else
		0x00000002, 0x00000080 },
# endif
#endif
#ifdef CONFIG_FCC3_ENET
	{ 2, CPM_CR_FCC3_SBLOCK, CPM_CR_FCC3_PAGE, PROFF_FCC3, SIU_INT_FCC3,
		(PC_F3RXCLK | PC_F3TXCLK), CMX3_CLK_ROUTE, CMX3_CLK_MASK,
# if defined(CONFIG_TQM8260) || defined (CONFIG_ADS8272)
		PC_MDIO, PC_MDCK },
# else
		0x00000001, 0x00000040 },
# endif
#endif
};
 
/* The FCC buffer descriptors track the ring buffers.  The rx_bd_base and
 * tx_bd_base always point to the base of the buffer descriptors.  The
 * cur_rx and cur_tx point to the currently available buffer.
 * The dirty_tx tracks the current buffer that is being sent by the
 * controller.  The cur_tx and dirty_tx are equal under both completely
 * empty and completely full conditions.  The empty/ready indicator in
 * the buffer descriptor determines the actual condition.
 */
struct fcc_enet_private {
	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
	struct	sk_buff* tx_skbuff[TX_RING_SIZE];
	ushort	skb_cur;
	ushort	skb_dirty;
 
	/* CPM dual port RAM relative addresses.
	*/
	cbd_t	*rx_bd_base;		/* Address of Rx and Tx buffers. */
	cbd_t	*tx_bd_base;
	cbd_t	*cur_rx, *cur_tx;		/* The next free ring entry */
	cbd_t	*dirty_tx;	/* The ring entries to be free()ed. */
	volatile fcc_t	*fccp;
	volatile fcc_enet_t	*ep;
	struct	net_device_stats stats;
	uint	tx_full;
	spinlock_t lock;
 
#ifdef	CONFIG_USE_MDIO
	uint	phy_id;
	uint	phy_id_done;
	uint	phy_status;
	phy_info_t	*phy;
	struct tq_struct phy_task;
 
	uint	sequence_done;
 
	uint	phy_addr;
#endif	/* CONFIG_USE_MDIO */
 
	int	link;
	int	old_link;
	int	full_duplex;
 
	fcc_info_t	*fip;
};
 
static void init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
	volatile cpm2_map_t *immap);
static void init_fcc_startup(fcc_info_t *fip, struct net_device *dev);
static void init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io,
	volatile cpm2_map_t *immap);
static void init_fcc_param(fcc_info_t *fip, struct net_device *dev,
	volatile cpm2_map_t *immap);
 
#ifdef	CONFIG_USE_MDIO
static int	mii_queue(struct net_device *dev, int request, void (*func)(uint, struct net_device *));
static uint	mii_send_receive(fcc_info_t *fip, uint cmd);
 
static void	fcc_stop(struct net_device *dev);
 
/* Make MII read/write commands for the FCC.
*/
#define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | \
						(VAL & 0xffff))
#define mk_mii_end	0
#endif	/* CONFIG_USE_MDIO */
 
 
static int
fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
	volatile cbd_t	*bdp;
 
	if (!cep->link) {
		/* Link is down or autonegotiation is in progress. */
		return 1;
	}
 
	/* Fill in a Tx ring entry */
	bdp = cep->cur_tx;
 
#ifndef final_version
	if (bdp->cbd_sc & BD_ENET_TX_READY) {
		/* Ooops.  All transmit buffers are full.  Bail out.
		 * This should not happen, since cep->tx_full should be set.
		 */
		printk("%s: tx queue full!.\n", dev->name);
		return 1;
	}
#endif
 
	/* Clear all of the status flags. */
	bdp->cbd_sc &= ~BD_ENET_TX_STATS;
 
	/* If the frame is short, tell CPM to pad it. */
	if (skb->len <= ETH_ZLEN)
		bdp->cbd_sc |= BD_ENET_TX_PAD;
	else
		bdp->cbd_sc &= ~BD_ENET_TX_PAD;
 
	/* Set buffer length and buffer pointer. */
	bdp->cbd_datlen = skb->len;
	bdp->cbd_bufaddr = __pa(skb->data);
 
	/* Save skb pointer. */
	cep->tx_skbuff[cep->skb_cur] = skb;
 
	cep->stats.tx_bytes += skb->len;
	cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
 
	spin_lock_irq(&cep->lock);
 
	/* Send it on its way.  Tell CPM its ready, interrupt when done,
	 * its the last BD of the frame, and to put the CRC on the end.
	 */
	bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
 
#if 0
	/* Errata says don't do this. */
	cep->fccp->fcc_ftodr = 0x8000;
#endif
	dev->trans_start = jiffies;
 
	/* If this was the last BD in the ring, start at the beginning again. */
	if (bdp->cbd_sc & BD_ENET_TX_WRAP)
		bdp = cep->tx_bd_base;
	else
		bdp++;
 
	if (bdp->cbd_sc & BD_ENET_TX_READY) {
		netif_stop_queue(dev);
		cep->tx_full = 1;
	}
 
	cep->cur_tx = (cbd_t *)bdp;
 
	spin_unlock_irq(&cep->lock);
 
	return 0;
}
 
 
static void
fcc_enet_timeout(struct net_device *dev)
{
	struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
 
	printk("%s: transmit timed out.\n", dev->name);
	cep->stats.tx_errors++;
#ifndef final_version
	{
		int	i;
		cbd_t	*bdp;
		printk(" Ring data dump: cur_tx %p%s cur_rx %p.\n",
		       cep->cur_tx, cep->tx_full ? " (full)" : "",
		       cep->cur_rx);
		bdp = cep->tx_bd_base;
		printk(" Tx @base %p :\n", bdp);
		for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
			printk("%04x %04x %08x\n",
			       bdp->cbd_sc,
			       bdp->cbd_datlen,
			       bdp->cbd_bufaddr);
		bdp = cep->rx_bd_base;
		printk(" Rx @base %p :\n", bdp);
		for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
			printk("%04x %04x %08x\n",
			       bdp->cbd_sc,
			       bdp->cbd_datlen,
			       bdp->cbd_bufaddr);
	}
#endif
	if (!cep->tx_full)
		netif_wake_queue(dev);
}
 
/* The interrupt handler. */
static void
fcc_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs)
{
	struct	net_device *dev = dev_id;
	volatile struct	fcc_enet_private *cep;
	volatile cbd_t	*bdp;
	ushort	int_events;
	int	must_restart;
 
	cep = (struct fcc_enet_private *)dev->priv;
 
	/* Get the interrupt events that caused us to be here.
	*/
	int_events = cep->fccp->fcc_fcce;
	cep->fccp->fcc_fcce = int_events;
	must_restart = 0;
 
	/* Handle receive event in its own function.
	*/
	if (int_events & FCC_ENET_RXF)
		fcc_enet_rx(dev_id);
 
	/* Check for a transmit error.  The manual is a little unclear
	 * about this, so the debug code until I get it figured out.  It
	 * appears that if TXE is set, then TXB is not set.  However,
	 * if carrier sense is lost during frame transmission, the TXE
	 * bit is set, "and continues the buffer transmission normally."
	 * I don't know if "normally" implies TXB is set when the buffer
	 * descriptor is closed.....trial and error :-).
	 */
 
	/* Transmit OK, or non-fatal error.  Update the buffer descriptors.
	*/
	if (int_events & (FCC_ENET_TXE | FCC_ENET_TXB)) {
	    spin_lock(&cep->lock);
	    bdp = cep->dirty_tx;
	    while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
		if ((bdp==cep->cur_tx) && (cep->tx_full == 0))
		    break;
 
		if (bdp->cbd_sc & BD_ENET_TX_HB)	/* No heartbeat */
			cep->stats.tx_heartbeat_errors++;
		if (bdp->cbd_sc & BD_ENET_TX_LC)	/* Late collision */
			cep->stats.tx_window_errors++;
		if (bdp->cbd_sc & BD_ENET_TX_RL)	/* Retrans limit */
			cep->stats.tx_aborted_errors++;
		if (bdp->cbd_sc & BD_ENET_TX_UN)	/* Underrun */
			cep->stats.tx_fifo_errors++;
		if (bdp->cbd_sc & BD_ENET_TX_CSL)	/* Carrier lost */
			cep->stats.tx_carrier_errors++;
 
 
		/* No heartbeat or Lost carrier are not really bad errors.
		 * The others require a restart transmit command.
		 */
		if (bdp->cbd_sc &
		    (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
			must_restart = 1;
			cep->stats.tx_errors++;
		}
 
		cep->stats.tx_packets++;
 
		/* Deferred means some collisions occurred during transmit,
		 * but we eventually sent the packet OK.
		 */
		if (bdp->cbd_sc & BD_ENET_TX_DEF)
			cep->stats.collisions++;
 
		/* Free the sk buffer associated with this last transmit. */
		dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]);
		cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;
 
		/* Update pointer to next buffer descriptor to be transmitted. */
		if (bdp->cbd_sc & BD_ENET_TX_WRAP)
			bdp = cep->tx_bd_base;
		else
			bdp++;
 
		/* I don't know if we can be held off from processing these
		 * interrupts for more than one frame time.  I really hope
		 * not.  In such a case, we would now want to check the
		 * currently available BD (cur_tx) and determine if any
		 * buffers between the dirty_tx and cur_tx have also been
		 * sent.  We would want to process anything in between that
		 * does not have BD_ENET_TX_READY set.
		 */
 
		/* Since we have freed up a buffer, the ring is no longer
		 * full.
		 */
		if (cep->tx_full) {
			cep->tx_full = 0;
			if (netif_queue_stopped(dev)) {
				netif_wake_queue(dev);
			}
		}
 
		cep->dirty_tx = (cbd_t *)bdp;
	    }
 
	    if (must_restart) {
		volatile cpm_cpm2_t *cp;
 
		/* Some transmit errors cause the transmitter to shut
		 * down.  We now issue a restart transmit.  Since the
		 * errors close the BD and update the pointers, the restart
		 * _should_ pick up without having to reset any of our
		 * pointers either.  Also, To workaround 8260 device erratum 
		 * CPM37, we must disable and then re-enable the transmitter
		 * following a Late Collision, Underrun, or Retry Limit error.
		 */
		cep->fccp->fcc_gfmr &= ~FCC_GFMR_ENT;
		udelay(10); /* wait a few microseconds just on principle */
		cep->fccp->fcc_gfmr |=  FCC_GFMR_ENT;
 
		cp = cpmp;
		cp->cp_cpcr =
		    mk_cr_cmd(cep->fip->fc_cpmpage, cep->fip->fc_cpmblock,
		    		0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG;
		while (cp->cp_cpcr & CPM_CR_FLG);
	    }
	    spin_unlock(&cep->lock);
	}
 
	/* Check for receive busy, i.e. packets coming but no place to
	 * put them.
	 */
	if (int_events & FCC_ENET_BSY) {
		cep->stats.rx_dropped++;
	}
	return;
}
 
/* During a receive, the cur_rx points to the current incoming buffer.
 * When we update through the ring, if the next incoming buffer has
 * not been given to the system, we just set the empty indicator,
 * effectively tossing the packet.
 */
static int
fcc_enet_rx(struct net_device *dev)
{
	struct	fcc_enet_private *cep;
	volatile cbd_t	*bdp;
	struct	sk_buff *skb;
	ushort	pkt_len;
 
	cep = (struct fcc_enet_private *)dev->priv;
 
	/* First, grab all of the stats for the incoming packet.
	 * These get messed up if we get called due to a busy condition.
	 */
	bdp = cep->cur_rx;
 
for (;;) {
	if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
		break;
 
#ifndef final_version
	/* Since we have allocated space to hold a complete frame, both
	 * the first and last indicators should be set.
	 */
	if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) !=
		(BD_ENET_RX_FIRST | BD_ENET_RX_LAST))
			printk("CPM ENET: rcv is not first+last\n");
#endif
 
	/* Frame too long or too short. */
	if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
		cep->stats.rx_length_errors++;
	if (bdp->cbd_sc & BD_ENET_RX_NO)	/* Frame alignment */
		cep->stats.rx_frame_errors++;
	if (bdp->cbd_sc & BD_ENET_RX_CR)	/* CRC Error */
		cep->stats.rx_crc_errors++;
	if (bdp->cbd_sc & BD_ENET_RX_OV)	/* FIFO overrun */
		cep->stats.rx_crc_errors++;
	if (bdp->cbd_sc & BD_ENET_RX_CL)	/* Late Collision */
		cep->stats.rx_frame_errors++;
 
	if (!(bdp->cbd_sc &
	      (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | BD_ENET_RX_CR
	       | BD_ENET_RX_OV | BD_ENET_RX_CL)))
	{
		/* Process the incoming frame. */
		cep->stats.rx_packets++;
 
		/* Remove the FCS from the packet length. */
		pkt_len = bdp->cbd_datlen - 4;
		cep->stats.rx_bytes += pkt_len;
 
		/* This does 16 byte alignment, much more than we need. */
		skb = dev_alloc_skb(pkt_len);
 
		if (skb == NULL) {
			printk("%s: Memory squeeze, dropping packet.\n", dev->name);
			cep->stats.rx_dropped++;
		}
		else {
			skb->dev = dev;
			skb_put(skb,pkt_len);	/* Make room */
			eth_copy_and_sum(skb,
				(unsigned char *)__va(bdp->cbd_bufaddr),
				pkt_len, 0);
			skb->protocol=eth_type_trans(skb,dev);
			netif_rx(skb);
		}
	}
 
	/* Clear the status flags for this buffer. */
	bdp->cbd_sc &= ~BD_ENET_RX_STATS;
 
	/* Mark the buffer empty. */
	bdp->cbd_sc |= BD_ENET_RX_EMPTY;
 
	/* Update BD pointer to next entry. */
	if (bdp->cbd_sc & BD_ENET_RX_WRAP)
		bdp = cep->rx_bd_base;
	else
		bdp++;
 
   }
	cep->cur_rx = (cbd_t *)bdp;
 
	return 0;
}
 
static int
fcc_enet_close(struct net_device *dev)
{
	/* Don't know what to do yet. */
	netif_stop_queue(dev);
 
	return 0;
}
 
static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev)
{
	struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
 
	return &cep->stats;
}
 
#ifdef	CONFIG_USE_MDIO
 
/* NOTE: Most of the following comes from the FEC driver for 860. The
 * overall structure of MII code has been retained (as it's proved stable
 * and well-tested), but actual transfer requests are processed "at once"
 * instead of being queued (there's no interrupt-driven MII transfer
 * mechanism, one has to toggle the data/clock bits manually).
 */
static int
mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
{
	struct fcc_enet_private *fep;
	int		retval, tmp;
 
	/* Add PHY address to register command. */
	fep = dev->priv;
	regval |= fep->phy_addr << 23;
 
	retval = 0;
 
	tmp = mii_send_receive(fep->fip, regval);
	if (func)
		func(tmp, dev);
 
	return retval;
}
 
static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
{
	int k;
 
	if(!c)
		return;
 
	for(k = 0; (c+k)->mii_data != mk_mii_end; k++)
		mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
}
 
static void mii_parse_sr(uint mii_reg, struct net_device *dev)
{
	volatile struct fcc_enet_private *fep = dev->priv;
	uint s = fep->phy_status;
 
	s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
 
	if (mii_reg & 0x0004)
		s |= PHY_STAT_LINK;
	if (mii_reg & 0x0010)
		s |= PHY_STAT_FAULT;
	if (mii_reg & 0x0020)
		s |= PHY_STAT_ANC;
 
	fep->phy_status = s;
	fep->link = (s & PHY_STAT_LINK) ? 1 : 0;
}
 
static void mii_parse_cr(uint mii_reg, struct net_device *dev)
{
	volatile struct fcc_enet_private *fep = dev->priv;
	uint s = fep->phy_status;
 
	s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP);
 
	if (mii_reg & 0x1000)
		s |= PHY_CONF_ANE;
	if (mii_reg & 0x4000)
		s |= PHY_CONF_LOOP;
 
	fep->phy_status = s;
}
 
static void mii_parse_anar(uint mii_reg, struct net_device *dev)
{
	volatile struct fcc_enet_private *fep = dev->priv;
	uint s = fep->phy_status;
 
	s &= ~(PHY_CONF_SPMASK);
 
	if (mii_reg & 0x0020)
		s |= PHY_CONF_10HDX;
	if (mii_reg & 0x0040)
		s |= PHY_CONF_10FDX;
	if (mii_reg & 0x0080)
		s |= PHY_CONF_100HDX;
	if (mii_reg & 0x00100)
		s |= PHY_CONF_100FDX;
 
	fep->phy_status = s;
}
/* ------------------------------------------------------------------------- */
/* The Level one LXT970 is used by many boards				     */
 
#ifdef CONFIG_FCC_LXT970
 
#define MII_LXT970_MIRROR    16  /* Mirror register           */
#define MII_LXT970_IER       17  /* Interrupt Enable Register */
#define MII_LXT970_ISR       18  /* Interrupt Status Register */
#define MII_LXT970_CONFIG    19  /* Configuration Register    */
#define MII_LXT970_CSR       20  /* Chip Status Register      */
 
static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
{
	volatile struct fcc_enet_private *fep = dev->priv;
	uint s = fep->phy_status;
 
	s &= ~(PHY_STAT_SPMASK);
 
	if (mii_reg & 0x0800) {
		if (mii_reg & 0x1000)
			s |= PHY_STAT_100FDX;
		else
			s |= PHY_STAT_100HDX;
	} else {
		if (mii_reg & 0x1000)
			s |= PHY_STAT_10FDX;
		else
			s |= PHY_STAT_10HDX;
	}
 
	fep->phy_status = s;
}
 
static phy_info_t phy_info_lxt970 = {
	0x07810000,
	"LXT970",
 
	(const phy_cmd_t []) {  /* config */
#if 0
//		{ mk_mii_write(MII_REG_ANAR, 0x0021), NULL },
 
		/* Set default operation of 100-TX....for some reason
		 * some of these bits are set on power up, which is wrong.
		 */
		{ mk_mii_write(MII_LXT970_CONFIG, 0), NULL },
#endif
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* startup - enable interrupts */
		{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) { /* ack_int */
		/* read SR and ISR to acknowledge */
 
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_LXT970_ISR), NULL },
 
		/* find out the current status */
 
		{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* shutdown - disable interrupts */
		{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
		{ mk_mii_end, }
	},
};
 
#endif /* CONFIG_FEC_LXT970 */
 
/* ------------------------------------------------------------------------- */
/* The Level one LXT971 is used on some of my custom boards                  */
 
#ifdef CONFIG_FCC_LXT971
 
/* register definitions for the 971 */
 
#define MII_LXT971_PCR       16  /* Port Control Register     */
#define MII_LXT971_SR2       17  /* Status Register 2         */
#define MII_LXT971_IER       18  /* Interrupt Enable Register */
#define MII_LXT971_ISR       19  /* Interrupt Status Register */
#define MII_LXT971_LCR       20  /* LED Control Register      */
#define MII_LXT971_TCR       30  /* Transmit Control Register */
 
/*
 * I had some nice ideas of running the MDIO faster...
 * The 971 should support 8MHz and I tried it, but things acted really
 * weird, so 2.5 MHz ought to be enough for anyone...
 */
 
static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
{
	volatile struct fcc_enet_private *fep = dev->priv;
	uint s = fep->phy_status;
 
	s &= ~(PHY_STAT_SPMASK);
 
	if (mii_reg & 0x4000) {
		if (mii_reg & 0x0200)
			s |= PHY_STAT_100FDX;
		else
			s |= PHY_STAT_100HDX;
	} else {
		if (mii_reg & 0x0200)
			s |= PHY_STAT_10FDX;
		else
			s |= PHY_STAT_10HDX;
	}
	if (mii_reg & 0x0008)
		s |= PHY_STAT_FAULT;
 
	fep->phy_status = s;
}
 
static phy_info_t phy_info_lxt971 = {
	0x0001378e,
	"LXT971",
 
	(const phy_cmd_t []) {  /* config */
//		{ mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10  Mbps, HD */
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* startup - enable interrupts */
		{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
 
		/* Somehow does the 971 tell me that the link is down
		 * the first read after power-up.
		 * read here to get a valid value in ack_int */
 
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) { /* ack_int */
		/* find out the current status */
 
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
 
		/* we only need to read ISR to acknowledge */
 
		{ mk_mii_read(MII_LXT971_ISR), NULL },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* shutdown - disable interrupts */
		{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
		{ mk_mii_end, }
	},
};
 
#endif /* CONFIG_FEC_LXT970 */
 
 
/* ------------------------------------------------------------------------- */
/* The Quality Semiconductor QS6612 is used on the RPX CLLF                  */
 
#ifdef CONFIG_FCC_QS6612
 
/* register definitions */
 
#define MII_QS6612_MCR       17  /* Mode Control Register      */
#define MII_QS6612_FTR       27  /* Factory Test Register      */
#define MII_QS6612_MCO       28  /* Misc. Control Register     */
#define MII_QS6612_ISR       29  /* Interrupt Source Register  */
#define MII_QS6612_IMR       30  /* Interrupt Mask Register    */
#define MII_QS6612_PCR       31  /* 100BaseTx PHY Control Reg. */
 
static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
{
	volatile struct fcc_enet_private *fep = dev->priv;
	uint s = fep->phy_status;
 
	s &= ~(PHY_STAT_SPMASK);
 
	switch((mii_reg >> 2) & 7) {
	case 1: s |= PHY_STAT_10HDX;  break;
	case 2: s |= PHY_STAT_100HDX; break;
	case 5: s |= PHY_STAT_10FDX;  break;
	case 6: s |= PHY_STAT_100FDX; break;
	}
 
	fep->phy_status = s;
}
 
static phy_info_t phy_info_qs6612 = {
	0x00181440,
	"QS6612",
 
	(const phy_cmd_t []) {  /* config */
//	{ mk_mii_write(MII_REG_ANAR, 0x061), NULL }, /* 10  Mbps */
 
		/* The PHY powers up isolated on the RPX,
		 * so send a command to allow operation.
		 */
 
		{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
 
		/* parse cr and anar to get some info */
 
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* startup - enable interrupts */
		{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) { /* ack_int */
 
		/* we need to read ISR, SR and ANER to acknowledge */
 
		{ mk_mii_read(MII_QS6612_ISR), NULL },
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_REG_ANER), NULL },
 
		/* read pcr to get info */
 
		{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* shutdown - disable interrupts */
		{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
		{ mk_mii_end, }
	},
};
 
 
#endif /* CONFIG_FEC_QS6612 */
 
 
/* ------------------------------------------------------------------------- */
/* The Davicom DM9131 is used on the HYMOD board			     */
 
#ifdef CONFIG_FCC_DM9131
 
/* register definitions */
 
#define MII_DM9131_ACR		16	/* Aux. Config Register		*/
#define MII_DM9131_ACSR		17	/* Aux. Config/Status Register	*/
#define MII_DM9131_10TCSR	18	/* 10BaseT Config/Status Reg.	*/
#define MII_DM9131_INTR		21	/* Interrupt Register		*/
#define MII_DM9131_RECR		22	/* Receive Error Counter Reg.	*/
#define MII_DM9131_DISCR	23	/* Disconnect Counter Register	*/
 
static void mii_parse_dm9131_acsr(uint mii_reg, struct net_device *dev)
{
	volatile struct fcc_enet_private *fep = dev->priv;
	uint s = fep->phy_status;
 
	s &= ~(PHY_STAT_SPMASK);
 
	switch ((mii_reg >> 12) & 0xf) {
	case 1: s |= PHY_STAT_10HDX;  break;
	case 2: s |= PHY_STAT_10FDX;  break;
	case 4: s |= PHY_STAT_100HDX; break;
	case 8: s |= PHY_STAT_100FDX; break;
	}
 
	fep->phy_status = s;
}
 
static phy_info_t phy_info_dm9131 = {
	0x00181b80,
	"DM9131",
 
	(const phy_cmd_t []) {  /* config */
		/* parse cr and anar to get some info */
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* startup - enable interrupts */
		{ mk_mii_write(MII_DM9131_INTR, 0x0002), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) { /* ack_int */
 
		/* we need to read INTR, SR and ANER to acknowledge */
 
		{ mk_mii_read(MII_DM9131_INTR), NULL },
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_REG_ANER), NULL },
 
		/* read acsr to get info */
 
		{ mk_mii_read(MII_DM9131_ACSR), mii_parse_dm9131_acsr },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* shutdown - disable interrupts */
		{ mk_mii_write(MII_DM9131_INTR, 0x0f00), NULL },
		{ mk_mii_end, }
	},
};
 
 
#endif /* CONFIG_FEC_DM9131 */
 
 
static phy_info_t *phy_info[] = {
 
#ifdef CONFIG_FCC_LXT970
	&phy_info_lxt970,
#endif /* CONFIG_FEC_LXT970 */
 
#ifdef CONFIG_FCC_LXT971
	&phy_info_lxt971,
#endif /* CONFIG_FEC_LXT971 */
 
#ifdef CONFIG_FCC_QS6612
	&phy_info_qs6612,
#endif /* CONFIG_FEC_QS6612 */
 
#ifdef CONFIG_FCC_DM9131
	&phy_info_dm9131,
#endif /* CONFIG_FEC_DM9131 */
 
	NULL
};
 
static void mii_display_status(struct net_device *dev)
{
	volatile struct fcc_enet_private *fep = dev->priv;
	uint s = fep->phy_status;
 
	if (!fep->link && !fep->old_link) {
		/* Link is still down - don't print anything */
		return;
	}
 
	printk("%s: status: ", dev->name);
 
	if (!fep->link) {
		printk("link down");
	} else {
		printk("link up");
 
		switch(s & PHY_STAT_SPMASK) {
		case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break;
		case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break;
		case PHY_STAT_10FDX:  printk(", 10 Mbps Full Duplex");  break;
		case PHY_STAT_10HDX:  printk(", 10 Mbps Half Duplex");  break;
		default:
			printk(", Unknown speed/duplex");
		}
 
		if (s & PHY_STAT_ANC)
			printk(", auto-negotiation complete");
	}
 
	if (s & PHY_STAT_FAULT)
		printk(", remote fault");
 
	printk(".\n");
}
 
static void mii_display_config(struct net_device *dev)
{
	volatile struct fcc_enet_private *fep = dev->priv;
	uint s = fep->phy_status;
 
	printk("%s: config: auto-negotiation ", dev->name);
 
	if (s & PHY_CONF_ANE)
		printk("on");
	else
		printk("off");
 
	if (s & PHY_CONF_100FDX)
		printk(", 100FDX");
	if (s & PHY_CONF_100HDX)
		printk(", 100HDX");
	if (s & PHY_CONF_10FDX)
		printk(", 10FDX");
	if (s & PHY_CONF_10HDX)
		printk(", 10HDX");
	if (!(s & PHY_CONF_SPMASK))
		printk(", No speed/duplex selected?");
 
	if (s & PHY_CONF_LOOP)
		printk(", loopback enabled");
 
	printk(".\n");
 
	fep->sequence_done = 1;
}
 
static void mii_relink(struct net_device *dev)
{
	struct fcc_enet_private *fep = dev->priv;
	int duplex;
 
	fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
	mii_display_status(dev);
	fep->old_link = fep->link;
 
	if (fep->link) {
		duplex = 0;
		if (fep->phy_status
		    & (PHY_STAT_100FDX | PHY_STAT_10FDX))
			duplex = 1;
		fcc_restart(dev, duplex);
	} else {
		fcc_stop(dev);
	}
}
 
static void mii_queue_relink(uint mii_reg, struct net_device *dev)
{
	struct fcc_enet_private *fep = dev->priv;
 
	fep->phy_task.routine = (void *)mii_relink;
	fep->phy_task.data = dev;
	schedule_task(&fep->phy_task);
}
 
static void mii_queue_config(uint mii_reg, struct net_device *dev)
{
	struct fcc_enet_private *fep = dev->priv;
 
	fep->phy_task.routine = (void *)mii_display_config;
	fep->phy_task.data = dev;
	schedule_task(&fep->phy_task);
}
 
 
 
phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_REG_CR), mii_queue_relink },
			       { mk_mii_end, } };
phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_REG_CR), mii_queue_config },
			       { mk_mii_end, } };
 
 
/* Read remainder of PHY ID.
*/
static void
mii_discover_phy3(uint mii_reg, struct net_device *dev)
{
	struct fcc_enet_private *fep;
	int	i;
 
	fep = dev->priv;
	fep->phy_id |= (mii_reg & 0xffff);
 
	for(i = 0; phy_info[i]; i++)
		if(phy_info[i]->id == (fep->phy_id >> 4))
			break;
 
	if(!phy_info[i])
		panic("%s: PHY id 0x%08x is not supported!\n",
		      dev->name, fep->phy_id);
 
	fep->phy = phy_info[i];
 
	printk("%s: Phy @ 0x%x, type %s (0x%08x)\n",
		dev->name, fep->phy_addr, fep->phy->name, fep->phy_id);
}
 
/* Scan all of the MII PHY addresses looking for someone to respond
 * with a valid ID.  This usually happens quickly.
 */
static void
mii_discover_phy(uint mii_reg, struct net_device *dev)
{
	struct fcc_enet_private *fep;
	uint	phytype;
 
	fep = dev->priv;
 
	if ((phytype = (mii_reg & 0xfff)) != 0xfff) {
 
		/* Got first part of ID, now get remainder. */
		fep->phy_id = phytype << 16;
		mii_queue(dev, mk_mii_read(MII_REG_PHYIR2), mii_discover_phy3);
	} else {
		fep->phy_addr++;
		if (fep->phy_addr < 32) {
			mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
							mii_discover_phy);
		} else {
			printk("fec: No PHY device found.\n");
		}
	}
}
 
/* This interrupt occurs when the PHY detects a link change. */
static void
mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs)
{
	struct	net_device *dev = dev_id;
	struct fcc_enet_private *fep = dev->priv;
 
	mii_do_cmd(dev, fep->phy->ack_int);
	mii_do_cmd(dev, phy_cmd_relink);  /* restart and display status */
}
 
#endif	/* CONFIG_USE_MDIO */
 
/* Set or clear the multicast filter for this adaptor.
 * Skeleton taken from sunlance driver.
 * The CPM Ethernet implementation allows Multicast as well as individual
 * MAC address filtering.  Some of the drivers check to make sure it is
 * a group multicast address, and discard those that are not.  I guess I
 * will do the same for now, but just remove the test if you want
 * individual filtering as well (do the upper net layers want or support
 * this kind of feature?).
 */
static void
set_multicast_list(struct net_device *dev)
{
	struct	fcc_enet_private *cep;
	struct	dev_mc_list *dmi;
	u_char	*mcptr, *tdptr;
	volatile fcc_enet_t *ep;
	int	i, j;
 
	cep = (struct fcc_enet_private *)dev->priv;
 
return;
	/* Get pointer to FCC area in parameter RAM.
	*/
	ep = (fcc_enet_t *)dev->base_addr;
 
	if (dev->flags&IFF_PROMISC) {
 
		/* Log any net taps. */
		printk("%s: Promiscuous mode enabled.\n", dev->name);
		cep->fccp->fcc_fpsmr |= FCC_PSMR_PRO;
	} else {
 
		cep->fccp->fcc_fpsmr &= ~FCC_PSMR_PRO;
 
		if (dev->flags & IFF_ALLMULTI) {
			/* Catch all multicast addresses, so set the
			 * filter to all 1's.
			 */
			ep->fen_gaddrh = 0xffffffff;
			ep->fen_gaddrl = 0xffffffff;
		}
		else {
			/* Clear filter and add the addresses in the list.
			*/
			ep->fen_gaddrh = 0;
			ep->fen_gaddrl = 0;
 
			dmi = dev->mc_list;
 
			for (i=0; i<dev->mc_count; i++, dmi = dmi->next) {
 
				/* Only support group multicast for now.
				*/
				if (!(dmi->dmi_addr[0] & 1))
					continue;
 
				/* The address in dmi_addr is LSB first,
				 * and taddr is MSB first.  We have to
				 * copy bytes MSB first from dmi_addr.
				 */
				mcptr = (u_char *)dmi->dmi_addr + 5;
				tdptr = (u_char *)&ep->fen_taddrh;
				for (j=0; j<6; j++)
					*tdptr++ = *mcptr--;
 
				/* Ask CPM to run CRC and set bit in
				 * filter mask.
				 */
				cpmp->cp_cpcr = mk_cr_cmd(cep->fip->fc_cpmpage,
						cep->fip->fc_cpmblock, 0x0c,
						CPM_CR_SET_GADDR) | CPM_CR_FLG;
				udelay(10);
				while (cpmp->cp_cpcr & CPM_CR_FLG);
			}
		}
	}
}
 
 
/* Set the individual MAC address.
 */
int fcc_enet_set_mac_address(struct net_device *dev, void *p)
{
	struct sockaddr *addr= (struct sockaddr *) p;
	struct fcc_enet_private *cep;
	volatile fcc_enet_t *ep;
	unsigned char *eap;
	int i;
 
	cep = (struct fcc_enet_private *)(dev->priv);
	ep = cep->ep;
 
        if (netif_running(dev))
                return -EBUSY;
 
        memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
 
	eap = (unsigned char *) &(ep->fen_paddrh);
	for (i=5; i>=0; i--)
		*eap++ = addr->sa_data[i];
 
        return 0;
}
 
 
/* Initialize the CPM Ethernet on FCC.
 */
int __init fec_enet_init(void)
{
	struct net_device *dev;
	struct fcc_enet_private *cep;
	fcc_info_t	*fip;
	int	i, np;
	volatile	cpm2_map_t		*immap;
	volatile	iop_cpm2_t	*io;
 
	immap = (cpm2_map_t *)CPM_MAP_ADDR;	/* and to internal registers */
	io = &immap->im_ioport;
 
	np = sizeof(fcc_ports) / sizeof(fcc_info_t);
	fip = fcc_ports;
 
	while (np-- > 0) {
 
		/* Allocate some private information.
		*/
		cep = (struct fcc_enet_private *)
					kmalloc(sizeof(*cep), GFP_KERNEL);
		if (cep == NULL)
			return -ENOMEM;
 
		__clear_user(cep,sizeof(*cep));
		spin_lock_init(&cep->lock);
		cep->fip = fip;
 
		/* Create an Ethernet device instance.
		*/
		dev = init_etherdev(0, 0);
		dev->priv = cep;
 
		init_fcc_shutdown(fip, cep, immap);
		init_fcc_ioports(fip, io, immap);
		init_fcc_param(fip, dev, immap);
 
		dev->base_addr = (unsigned long)(cep->ep);
 
		/* The CPM Ethernet specific entries in the device
		 * structure.
		 */
		dev->open = fcc_enet_open;
		dev->hard_start_xmit = fcc_enet_start_xmit;
		dev->tx_timeout = fcc_enet_timeout;
		dev->watchdog_timeo = TX_TIMEOUT;
		dev->stop = fcc_enet_close;
		dev->get_stats = fcc_enet_get_stats;
		dev->set_multicast_list = set_multicast_list;
		dev->set_mac_address = fcc_enet_set_mac_address;
 
		init_fcc_startup(fip, dev);
 
		printk("%s: FCC ENET Version 0.3, ", dev->name);
		for (i=0; i<5; i++)
			printk("%02x:", dev->dev_addr[i]);
		printk("%02x\n", dev->dev_addr[5]);
 
#ifdef	CONFIG_USE_MDIO
		/* Queue up command to detect the PHY and initialize the
	 	* remainder of the interface.
	 	*/
		cep->phy_addr = 0;
		mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
#endif	/* CONFIG_USE_MDIO */
 
		fip++;
	}
 
	return 0;
}
 
/* Make sure the device is shut down during initialization.
*/
static void __init
init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
						volatile cpm2_map_t *immap)
{
	volatile	fcc_enet_t	*ep;
	volatile	fcc_t		*fccp;
 
	/* Get pointer to FCC area in parameter RAM.
	*/
	ep = (fcc_enet_t *)(&immap->im_dprambase[fip->fc_proff]);
 
	/* And another to the FCC register area.
	*/
	fccp = (volatile fcc_t *)(&immap->im_fcc[fip->fc_fccnum]);
	cep->fccp = fccp;		/* Keep the pointers handy */
	cep->ep = ep;
 
	/* Disable receive and transmit in case someone left it running.
	*/
	fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
}
 
/* Initialize the I/O pins for the FCC Ethernet.
*/
static void __init
init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io,
						volatile cpm2_map_t *immap)
{
 
	/* FCC1 pins are on port A/C.  FCC2/3 are port B/C.
	*/
	if (fip->fc_proff == PROFF_FCC1) {
		/* Configure port A and C pins for FCC1 Ethernet.
		 */
		io->iop_pdira &= ~PA1_DIRA0;
		io->iop_pdira |= PA1_DIRA1;
		io->iop_psora &= ~PA1_PSORA0;
		io->iop_psora |= PA1_PSORA1;
		io->iop_ppara |= (PA1_DIRA0 | PA1_DIRA1);
	}
	if (fip->fc_proff == PROFF_FCC2) {
		/* Configure port B and C pins for FCC Ethernet.
		 */
		io->iop_pdirb &= ~PB2_DIRB0;
		io->iop_pdirb |= PB2_DIRB1;
		io->iop_psorb &= ~PB2_PSORB0;
		io->iop_psorb |= PB2_PSORB1;
		io->iop_pparb |= (PB2_DIRB0 | PB2_DIRB1);
	}
	if (fip->fc_proff == PROFF_FCC3) {
		/* Configure port B and C pins for FCC Ethernet.
		 */
		io->iop_pdirb &= ~PB3_DIRB0;
		io->iop_pdirb |= PB3_DIRB1;
		io->iop_psorb &= ~PB3_PSORB0;
		io->iop_psorb |= PB3_PSORB1;
		io->iop_pparb |= (PB3_DIRB0 | PB3_DIRB1);
	}
 
	/* Port C has clocks......
	*/
	io->iop_psorc &= ~(fip->fc_trxclocks);
	io->iop_pdirc &= ~(fip->fc_trxclocks);
	io->iop_pparc |= fip->fc_trxclocks;
 
#ifdef	CONFIG_USE_MDIO
	/* ....and the MII serial clock/data.
	*/
	io->iop_pdatc |= (fip->fc_mdio | fip->fc_mdck);
	io->iop_podrc &= ~(fip->fc_mdio | fip->fc_mdck);
	io->iop_pdirc |= (fip->fc_mdio | fip->fc_mdck);
	io->iop_pparc &= ~(fip->fc_mdio | fip->fc_mdck);
#endif	/* CONFIG_USE_MDIO */
 
	/* Configure Serial Interface clock routing.
	 * First, clear all FCC bits to zero,
	 * then set the ones we want.
	 */
	immap->im_cpmux.cmx_fcr &= ~(fip->fc_clockmask);
	immap->im_cpmux.cmx_fcr |= fip->fc_clockroute;
}
 
static void __init
init_fcc_param(fcc_info_t *fip, struct net_device *dev,
						volatile cpm2_map_t *immap)
{
	unsigned char	*eap;
	unsigned long	mem_addr;
	bd_t		*bd;
	int		i, j;
	struct		fcc_enet_private *cep;
	volatile	fcc_enet_t	*ep;
	volatile	cbd_t		*bdp;
	volatile	cpm_cpm2_t	*cp;
 
	cep = (struct fcc_enet_private *)(dev->priv);
	ep = cep->ep;
	cp = cpmp;
 
	bd = (bd_t *)__res;
 
	/* Zero the whole thing.....I must have missed some individually.
	 * It works when I do this.
	 */
	memset((char *)ep, 0, sizeof(fcc_enet_t));
 
	/* Allocate space for the buffer descriptors in the DP ram.
	 * These are relative offsets in the DP ram address space.
	 * Initialize base addresses for the buffer descriptors.
	 */
#if 0
	/* I really want to do this, but for some reason it doesn't
	 * work with the data cache enabled, so I allocate from the
	 * main memory instead.
	 */
	i = cpm2_dpalloc(sizeof(cbd_t) * RX_RING_SIZE, 8);
	ep->fen_genfcc.fcc_rbase = (uint)&immap->im_dprambase[i];
	cep->rx_bd_base = (cbd_t *)&immap->im_dprambase[i];
 
	i = cpm2_dpalloc(sizeof(cbd_t) * TX_RING_SIZE, 8);
	ep->fen_genfcc.fcc_tbase = (uint)&immap->im_dprambase[i];
	cep->tx_bd_base = (cbd_t *)&immap->im_dprambase[i];
#else
	cep->rx_bd_base = (cbd_t *)cpm2_hostalloc(sizeof(cbd_t) * RX_RING_SIZE, 8);
	ep->fen_genfcc.fcc_rbase = __pa(cep->rx_bd_base);
	cep->tx_bd_base = (cbd_t *)cpm2_hostalloc(sizeof(cbd_t) * TX_RING_SIZE, 8);
	ep->fen_genfcc.fcc_tbase = __pa(cep->tx_bd_base);
#endif
 
	cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
	cep->cur_rx = cep->rx_bd_base;
 
	ep->fen_genfcc.fcc_rstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
	ep->fen_genfcc.fcc_tstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
 
	/* Set maximum bytes per receive buffer.
	 * It must be a multiple of 32.
	 */
	ep->fen_genfcc.fcc_mrblr = PKT_MAXBLR_SIZE;
 
	/* Allocate space in the reserved FCC area of DPRAM for the
	 * internal buffers.  No one uses this space (yet), so we
	 * can do this.  Later, we will add resource management for
	 * this area.
	 */
	mem_addr = CPM_FCC_SPECIAL_BASE + (fip->fc_fccnum * 128);
	ep->fen_genfcc.fcc_riptr = mem_addr;
	ep->fen_genfcc.fcc_tiptr = mem_addr+32;
	ep->fen_padptr = mem_addr+64;
	memset((char *)(&(immap->im_dprambase[(mem_addr+64)])), 0x88, 32);
 
	ep->fen_genfcc.fcc_rbptr = 0;
	ep->fen_genfcc.fcc_tbptr = 0;
	ep->fen_genfcc.fcc_rcrc = 0;
	ep->fen_genfcc.fcc_tcrc = 0;
	ep->fen_genfcc.fcc_res1 = 0;
	ep->fen_genfcc.fcc_res2 = 0;
 
	ep->fen_camptr = 0;	/* CAM isn't used in this driver */
 
	/* Set CRC preset and mask.
	*/
	ep->fen_cmask = 0xdebb20e3;
	ep->fen_cpres = 0xffffffff;
 
	ep->fen_crcec = 0;	/* CRC Error counter */
	ep->fen_alec = 0;	/* alignment error counter */
	ep->fen_disfc = 0;	/* discard frame counter */
	ep->fen_retlim = 15;	/* Retry limit threshold */
	ep->fen_pper = 0;	/* Normal persistence */
 
	/* Clear hash filter tables.
	*/
	ep->fen_gaddrh = 0;
	ep->fen_gaddrl = 0;
	ep->fen_iaddrh = 0;
	ep->fen_iaddrl = 0;
 
	/* Clear the Out-of-sequence TxBD.
	*/
	ep->fen_tfcstat = 0;
	ep->fen_tfclen = 0;
	ep->fen_tfcptr = 0;
 
	ep->fen_mflr = PKT_MAXBUF_SIZE;   /* maximum frame length register */
	ep->fen_minflr = PKT_MINBUF_SIZE;  /* minimum frame length register */
 
	/* Set Ethernet station address.
	 *
	 * This is supplied in the board information structure, so we
	 * copy that into the controller.
	 * So, far we have only been given one Ethernet address. We make
	 * it unique by toggling selected bits in the upper byte of the
	 * non-static part of the address (for the second and third ports,
	 * the first port uses the address supplied as is).
	 */
	eap = (unsigned char *)&(ep->fen_paddrh);
	for (i=5; i>=0; i--) {
 
/* 
 * The EP8260 only uses FCC3, so we can safely give it the real
 * MAC address.
 */
#ifndef CONFIG_RPX6
		if (i == 3 && fip->fc_fccnum != 0) {
			dev->dev_addr[i] = bd->bi_enetaddr[i];
			dev->dev_addr[i] ^= (1 << (7 - fip->fc_fccnum));
			*eap++ = dev->dev_addr[i];
		}
		else {
			*eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
		}
#else
		*eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
#endif
	}
 
	ep->fen_taddrh = 0;
	ep->fen_taddrm = 0;
	ep->fen_taddrl = 0;
 
	ep->fen_maxd1 = PKT_MAXDMA_SIZE;	/* maximum DMA1 length */
	ep->fen_maxd2 = PKT_MAXDMA_SIZE;	/* maximum DMA2 length */
 
	/* Clear stat counters, in case we ever enable RMON.
	*/
	ep->fen_octc = 0;
	ep->fen_colc = 0;
	ep->fen_broc = 0;
	ep->fen_mulc = 0;
	ep->fen_uspc = 0;
	ep->fen_frgc = 0;
	ep->fen_ospc = 0;
	ep->fen_jbrc = 0;
	ep->fen_p64c = 0;
	ep->fen_p65c = 0;
	ep->fen_p128c = 0;
	ep->fen_p256c = 0;
	ep->fen_p512c = 0;
	ep->fen_p1024c = 0;
 
	ep->fen_rfthr = 0;	/* Suggested by manual */
	ep->fen_rfcnt = 0;
	ep->fen_cftype = 0;
 
	/* Now allocate the host memory pages and initialize the
	 * buffer descriptors.
	 */
	bdp = cep->tx_bd_base;
	for (i=0; i<TX_RING_SIZE; i++) {
 
		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = 0;
		bdp->cbd_datlen = 0;
		bdp->cbd_bufaddr = 0;
		bdp++;
	}
 
	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;
 
	bdp = cep->rx_bd_base;
	for (i=0; i<FCC_ENET_RX_PAGES; i++) {
 
		/* Allocate a page.
		*/
		mem_addr = __get_free_page(GFP_KERNEL);
 
		/* Initialize the BD for every fragment in the page.
		*/
		for (j=0; j<FCC_ENET_RX_FRPPG; j++) {
			bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
			bdp->cbd_datlen = 0;
			bdp->cbd_bufaddr = __pa(mem_addr);
			mem_addr += FCC_ENET_RX_FRSIZE;
			bdp++;
		}
	}
 
	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;
 
	/* Let's re-initialize the channel now.  We have to do it later
	 * than the manual describes because we have just now finished
	 * the BD initialization.
	 */
	cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, 0x0c,
			CPM_CR_INIT_TRX) | CPM_CR_FLG;
	while (cp->cp_cpcr & CPM_CR_FLG);
 
	cep->skb_cur = cep->skb_dirty = 0;
}
 
/* Let 'er rip.
*/
static void __init
init_fcc_startup(fcc_info_t *fip, struct net_device *dev)
{
	volatile fcc_t	*fccp;
	struct fcc_enet_private *cep;
 
	cep = (struct fcc_enet_private *)(dev->priv);
	fccp = cep->fccp;
 
	fccp->fcc_fcce = 0xffff;	/* Clear any pending events */
 
	/* Enable interrupts for transmit error, complete frame
	 * received, and any transmit buffer we have also set the
	 * interrupt flag.
	 */
	fccp->fcc_fccm = (FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
 
	/* Install our interrupt handler.
	*/
	if (request_irq(fip->fc_interrupt, fcc_enet_interrupt, 0, "fenet",
				dev) < 0)
		printk("Can't get FCC IRQ %d\n", fip->fc_interrupt);
 
#ifdef	CONFIG_USE_MDIO
	if (request_8xxirq(PHY_INTERRUPT, mii_link_interrupt, 0,
							"mii", dev) < 0)
		printk("Can't get MII IRQ %d\n", fip->fc_interrupt);
#endif	/* CONFIG_USE_MDIO */
 
	/* Set GFMR to enable Ethernet operating mode.
	 */
	fccp->fcc_gfmr = (FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
 
	/* Set sync/delimiters.
	*/
	fccp->fcc_fdsr = 0xd555;
 
	/* Set protocol specific processing mode for Ethernet.
	 * This has to be adjusted for Full Duplex operation after we can
	 * determine how to detect that.
	 */
	fccp->fcc_fpsmr = FCC_PSMR_ENCRC;
 
#ifdef CONFIG_PQ2ADS
	/* Enable the PHY.
	*/
        *(volatile uint *)(BCSR_ADDR + 4) &= ~BCSR1_FETHIEN;
        *(volatile uint *)(BCSR_ADDR + 4) |=  BCSR1_FETH_RST;
#endif
 
#if defined(CONFIG_USE_MDIO) || defined(CONFIG_TQM8260)
	/* start in full duplex mode, and negotiate speed
	 */
	fcc_restart (dev, 1);
#else
	/* start in half duplex mode
	 */
	fcc_restart (dev, 0);
#endif
}
 
#ifdef	CONFIG_USE_MDIO
/* MII command/status interface.
 * I'm not going to describe all of the details.  You can find the
 * protocol definition in many other places, including the data sheet
 * of most PHY parts.
 * I wonder what "they" were thinking (maybe weren't) when they leave
 * the I2C in the CPM but I have to toggle these bits......
 */
 
#define FCC_PDATC_MDIO(bit)					\
	if (bit)						\
		io->iop_pdatc |= fip->fc_mdio;			\
	else							\
		io->iop_pdatc &= ~fip->fc_mdio;
 
#define FCC_PDATC_MDC(bit)					\
	if (bit)						\
		io->iop_pdatc |= fip->fc_mdck;			\
	else							\
		io->iop_pdatc &= ~fip->fc_mdck;
 
static uint
mii_send_receive(fcc_info_t *fip, uint cmd)
{
	uint		retval;
	int		read_op, i, off;
	volatile	cpm2_map_t		*immap;
	volatile	iop_cpm2_t	*io;
 
	immap = (cpm2_map_t *)CPM_MAP_ADDR;
	io = &immap->im_ioport;
 
	io->iop_pdirc |= (fip->fc_mdio | fip->fc_mdck);
 
	read_op = ((cmd & 0xf0000000) == 0x60000000);
 
	/* Write preamble
	 */
	for (i = 0; i < 32; i++)
	{
		FCC_PDATC_MDC(0);
		FCC_PDATC_MDIO(1);
		udelay(1);
		FCC_PDATC_MDC(1);
		udelay(1);
	}
 
	/* Write data
	 */
	for (i = 0, off = 31; i < (read_op ? 14 : 32); i++, --off)
	{
		FCC_PDATC_MDC(0);
		FCC_PDATC_MDIO((cmd >> off) & 0x00000001);
		udelay(1);
		FCC_PDATC_MDC(1);
		udelay(1);
	}
 
	retval = cmd;
 
	if (read_op)
	{
		retval >>= 16;
 
		FCC_PDATC_MDC(0);
		io->iop_pdirc &= ~fip->fc_mdio;
		udelay(1);
		FCC_PDATC_MDC(1);
		udelay(1);
		FCC_PDATC_MDC(0);
		udelay(1);
 
		for (i = 0, off = 15; i < 16; i++, off--)
		{
			FCC_PDATC_MDC(1);
			retval <<= 1;
			if (io->iop_pdatc & fip->fc_mdio)
				retval++;
			udelay(1);
			FCC_PDATC_MDC(0);
			udelay(1);
		}
	}
 
	io->iop_pdirc |= (fip->fc_mdio | fip->fc_mdck);
 
	for (i = 0; i < 32; i++)
	{
		FCC_PDATC_MDC(0);
		FCC_PDATC_MDIO(1);
		udelay(1);
		FCC_PDATC_MDC(1);
		udelay(1);
	}
 
	return retval;
}
 
static void
fcc_stop(struct net_device *dev)
{
	volatile fcc_t	*fccp;
	struct fcc_enet_private	*fcp;
 
	fcp = (struct fcc_enet_private *)(dev->priv);
	fccp = fcp->fccp;
 
	/* Disable transmit/receive */
	fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
}
#endif	/* CONFIG_USE_MDIO */
 
static void
fcc_restart(struct net_device *dev, int duplex)
{
	volatile fcc_t	*fccp;
	struct fcc_enet_private	*fcp;
 
	fcp = (struct fcc_enet_private *)(dev->priv);
	fccp = fcp->fccp;
 
	if (duplex)
		fccp->fcc_fpsmr |= FCC_PSMR_FDE;
	else
		fccp->fcc_fpsmr &= ~FCC_PSMR_FDE;
 
	/* Enable transmit/receive */
	fccp->fcc_gfmr |= FCC_GFMR_ENR | FCC_GFMR_ENT;
}
 
static int
fcc_enet_open(struct net_device *dev)
{
	struct fcc_enet_private *fep = dev->priv;
 
#ifdef	CONFIG_USE_MDIO
	fep->sequence_done = 0;
	fep->link = 0;
 
	if (fep->phy) {
		mii_do_cmd(dev, fep->phy->ack_int);
		mii_do_cmd(dev, fep->phy->config);
		mii_do_cmd(dev, phy_cmd_config);  /* display configuration */
		while(!fep->sequence_done)
			schedule();
 
		mii_do_cmd(dev, fep->phy->startup);
		netif_start_queue(dev);
		return 0;		/* Success */
	}
	return -ENODEV;		/* No PHY we understand */
#else
	fep->link = 1;
	netif_start_queue(dev);
	return 0;					/* Always succeed */
#endif	/* CONFIG_USE_MDIO */
}
 
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.