OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [ppc/] [kernel/] [head_8xx.S] - Rev 1765

Compare with Previous | Blame | View Log

/*
 *  arch/ppc/kernel/except_8xx.S
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *  Rewritten by Cort Dougan (cort@cs.nmt.edu) for PReP
 *    Copyright (C) 1996 Cort Dougan <cort@cs.nmt.edu>
 *  Low-level exception handlers and MMU support
 *  rewritten by Paul Mackerras.
 *    Copyright (C) 1996 Paul Mackerras.
 *  MPC8xx modifications by Dan Malek
 *    Copyright (C) 1997 Dan Malek (dmalek@jlc.net).
 *
 *  This file contains low-level support and setup for PowerPC 8xx
 *  embedded processors, including trap and interrupt dispatch.
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 *
 */

#include <linux/config.h>
#include <asm/processor.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/cache.h>
#include <asm/pgtable.h>
#include <asm/cputable.h>
#include <asm/ppc_asm.h>
#include "ppc_defs.h"

        .text
        .globl  _stext
_stext:

/*
 * _start is defined this way because the XCOFF loader in the OpenFirmware
 * on the powermac expects the entry point to be a procedure descriptor.
 */
        .text
        .globl  _start
_start:

/* MPC8xx
 * This port was done on an MBX board with an 860.  Right now I only
 * support an ELF compressed (zImage) boot from EPPC-Bug because the
 * code there loads up some registers before calling us:
 *   r3: ptr to board info data
 *   r4: initrd_start or if no initrd then 0
 *   r5: initrd_end - unused if r4 is 0
 *   r6: Start of command line string
 *   r7: End of command line string
 *
 * I decided to use conditional compilation instead of checking PVR and
 * adding more processor specific branches around code I don't need.
 * Since this is an embedded processor, I also appreciate any memory
 * savings I can get.
 *
 * The MPC8xx does not have any BATs, but it supports large page sizes.
 * We first initialize the MMU to support 8M byte pages, then load one
 * entry into each of the instruction and data TLBs to map the first
 * 8M 1:1.  I also mapped an additional I/O space 1:1 so we can get to
 * the "internal" processor registers before MMU_init is called.
 *
 * The TLB code currently contains a major hack.  Since I use the condition
 * code register, I have to save and restore it.  I am out of registers, so
 * I just store it in memory location 0 (the TLB handlers are not reentrant).
 * To avoid making any decisions, I need to use the "segment" valid bit
 * in the first level table, but that would require many changes to the
 * Linux page directory/table functions that I don't want to do right now.
 *
 * I used to use SPRG2 for a temporary register in the TLB handler, but it
 * has since been put to other uses.  I now use a hack to save a register
 * and the CCR at memory location 0.....Someday I'll fix this.....
 *
 * With regard to resetting the CPM. The UART console has a number of subtle
 * assumptions built around the initialization to support kgdb/xmon debugging.
 * The quick answer is we don't want to reset the CPM so we can proper support
 * this debugging.
 *
 * When the kernel is first booted, kgdb/xmon use the CPM as it was set up by
 * the boot rom.  There is a second initialization of the UART driver, but
 * before the console is initialized.  This changes the BDs, but the UART
 * still operates for kgdb/xmon.  The final stage initialization occurs when
 * the console is initialized, and all of the "normal path" debugging and
 * messages can occur after this point.  So the only time we want to do a CPM
 * is in the case of a microcode patch.
 *
 *      -- Dan
 */

        .globl  __start
__start:
        /* To accomodate some SMP systems that overwrite the first few
         * locations before cpu 0 starts, the bootloader starts us at 0xc.
         */
        nop
        nop
        nop
        mr      r31,r3                  /* save parameters */
        mr      r30,r4
        mr      r29,r5
        mr      r28,r6
        mr      r27,r7
        li      r24,0                   /* cpu # */

        /* We have to turn on the MMU right away so we get cache modes
         * set correctly.
         */
        bl      initial_mmu

/* We now have the lower 8 Meg mapped into TLB entries, and the caches
 * ready to work.
 */

turn_on_mmu:
        mfmsr   r0
        ori     r0,r0,MSR_DR|MSR_IR
        mtspr   SRR1,r0
        lis     r0,start_here@h
        ori     r0,r0,start_here@l
        mtspr   SRR0,r0
        SYNC
        rfi                             /* enables MMU */

/*
 * Exception entry code.  This code runs with address translation
 * turned off, i.e. using physical addresses.
 * We assume sprg3 has the physical address of the current
 * task's thread_struct.
 */
#define EXCEPTION_PROLOG        \
        mtspr   SPRG0,r20;      \
        mtspr   SPRG1,r21;      \
        mfcr    r20;            \
        mfspr   r21,SPRG2;              /* exception stack to use from */ \
        cmpwi   0,r21,0;                /* user mode or RTAS */ \
        bne     1f;             \
        tophys(r21,r1);                 /* use tophys(kernel sp) otherwise */ \
        subi    r21,r21,INT_FRAME_SIZE; /* alloc exc. frame */\
1:      stw     r20,_CCR(r21);          /* save registers */ \
        stw     r22,GPR22(r21); \
        stw     r23,GPR23(r21); \
        mfspr   r20,SPRG0;      \
        stw     r20,GPR20(r21); \
        mfspr   r22,SPRG1;      \
        stw     r22,GPR21(r21); \
        mflr    r20;            \
        stw     r20,_LINK(r21); \
        mfctr   r22;            \
        stw     r22,_CTR(r21);  \
        mfspr   r20,XER;        \
        stw     r20,_XER(r21);  \
        mfspr   r22,SRR0;       \
        mfspr   r23,SRR1;       \
        stw     r0,GPR0(r21);   \
        stw     r1,GPR1(r21);   \
        stw     r2,GPR2(r21);   \
        stw     r1,0(r21);      \
        tovirt(r1,r21);                 /* set new kernel sp */ \
        SAVE_4GPRS(3, r21);     \
        SAVE_GPR(7, r21);
/*
 * Note: code which follows this uses cr0.eq (set if from kernel),
 * r21, r22 (SRR0), and r23 (SRR1).
 */

/*
 * Exception vectors.
 */

#define FINISH_EXCEPTION(func)                  \
        bl      transfer_to_handler;            \
        .long   func;                           \
        .long   ret_from_except

#define STD_EXCEPTION(n, label, hdlr)           \
        . = n;                                  \
label:                                          \
        EXCEPTION_PROLOG;                       \
        addi    r3,r1,STACK_FRAME_OVERHEAD;     \
        li      r20,MSR_KERNEL;                 \
        FINISH_EXCEPTION(hdlr)

/* System reset */
        STD_EXCEPTION(0x100, Reset, UnknownException)

/* Machine check */
        STD_EXCEPTION(0x200, MachineCheck, MachineCheckException)

/* Data access exception.
 * This is "never generated" by the MPC8xx.  We jump to it for other
 * translation errors.
 */
        . = 0x300
DataAccess:
        EXCEPTION_PROLOG
        mfspr   r20,DSISR
        stw     r20,_DSISR(r21)
        mr      r5,r20
        mfspr   r4,DAR
        stw     r4,_DAR(r21)
        addi    r3,r1,STACK_FRAME_OVERHEAD
        li      r20,MSR_KERNEL
        rlwimi  r20,r23,0,16,16         /* copy EE bit from saved MSR */
        FINISH_EXCEPTION(do_page_fault)

/* Instruction access exception.
 * This is "never generated" by the MPC8xx.  We jump to it for other
 * translation errors.
 */
        . = 0x400
InstructionAccess:
        EXCEPTION_PROLOG
        addi    r3,r1,STACK_FRAME_OVERHEAD
        mr      r4,r22
        mr      r5,r23
        li      r20,MSR_KERNEL
        rlwimi  r20,r23,0,16,16         /* copy EE bit from saved MSR */
        FINISH_EXCEPTION(do_page_fault)

/* External interrupt */
        . = 0x500;
HardwareInterrupt:
        EXCEPTION_PROLOG;
        addi    r3,r1,STACK_FRAME_OVERHEAD
        li      r20,MSR_KERNEL
        li      r4,0
        bl      transfer_to_handler
        .globl  do_IRQ_intercept
do_IRQ_intercept:
        .long   do_IRQ;
        .long   ret_from_intercept

/* Alignment exception */
        . = 0x600
Alignment:
        EXCEPTION_PROLOG
        mfspr   r4,DAR
        stw     r4,_DAR(r21)
        mfspr   r5,DSISR
        stw     r5,_DSISR(r21)
        addi    r3,r1,STACK_FRAME_OVERHEAD
        li      r20,MSR_KERNEL
        rlwimi  r20,r23,0,16,16         /* copy EE bit from saved MSR */
        FINISH_EXCEPTION(AlignmentException)

/* Program check exception */
        . = 0x700
ProgramCheck:
        EXCEPTION_PROLOG
        addi    r3,r1,STACK_FRAME_OVERHEAD
        li      r20,MSR_KERNEL
        rlwimi  r20,r23,0,16,16         /* copy EE bit from saved MSR */
        FINISH_EXCEPTION(ProgramCheckException)

/* No FPU on MPC8xx.  This exception is not supposed to happen.
*/
        STD_EXCEPTION(0x800, FPUnavailable, UnknownException)

        . = 0x900
Decrementer:
        EXCEPTION_PROLOG
        addi    r3,r1,STACK_FRAME_OVERHEAD
        li      r20,MSR_KERNEL
        bl      transfer_to_handler
        .globl  timer_interrupt_intercept
timer_interrupt_intercept:
        .long   timer_interrupt
        .long   ret_from_intercept

        STD_EXCEPTION(0xa00, Trap_0a, UnknownException)
        STD_EXCEPTION(0xb00, Trap_0b, UnknownException)

/* System call */
        . = 0xc00
SystemCall:
        EXCEPTION_PROLOG
        stw     r3,ORIG_GPR3(r21)
        li      r20,MSR_KERNEL
        rlwimi  r20,r23,0,16,16         /* copy EE bit from saved MSR */
        FINISH_EXCEPTION(DoSyscall)

/* Single step - not used on 601 */
        STD_EXCEPTION(0xd00, SingleStep, SingleStepException)

        STD_EXCEPTION(0xe00, Trap_0e, UnknownException)
        STD_EXCEPTION(0xf00, Trap_0f, UnknownException)

/* On the MPC8xx, this is a software emulation interrupt.  It occurs
 * for all unimplemented and illegal instructions.
 */
        STD_EXCEPTION(0x1000, SoftEmu, SoftwareEmulation)

        . = 0x1100
/*
 * For the MPC8xx, this is a software tablewalk to load the instruction
 * TLB.  It is modelled after the example in the Motorola manual.  The task
 * switch loads the M_TWB register with the pointer to the first level table.
 * If we discover there is no second level table (the value is zero), the
 * plan was to load that into the TLB, which causes another fault into the
 * TLB Error interrupt where we can handle such problems.  However, that did
 * not work, so if we discover there is no second level table, we restore
 * registers and branch to the error exception.  We have to use the MD_xxx
 * registers for the tablewalk because the equivalent MI_xxx registers
 * only perform the attribute functions.
 */
InstructionTLBMiss:
#ifdef CONFIG_8xx_CPU6
        stw     r3, 8(r0)
        li      r3, 0x3f80
        stw     r3, 12(r0)
        lwz     r3, 12(r0)
#endif
        mtspr   M_TW, r20       /* Save a couple of working registers */
        mfcr    r20
        stw     r20, 0(r0)
        stw     r21, 4(r0)
        mfspr   r20, SRR0       /* Get effective address of fault */
#ifdef CONFIG_8xx_CPU6
        li      r3, 0x3780
        stw     r3, 12(r0)
        lwz     r3, 12(r0)
#endif
        mtspr   MD_EPN, r20     /* Have to use MD_EPN for walk, MI_EPN can't */
        mfspr   r20, M_TWB      /* Get level 1 table entry address */

        /* If we are faulting a kernel address, we have to use the
         * kernel page tables.
         */
        andi.   r21, r20, 0x0800        /* Address >= 0x80000000 */
        beq     3f
        lis     r21, swapper_pg_dir@h
        ori     r21, r21, swapper_pg_dir@l
        rlwimi  r20, r21, 0, 2, 19
3:
        lwz     r21, 0(r20)     /* Get the level 1 entry */
        rlwinm. r20, r21,0,0,19 /* Extract page descriptor page address */
        beq     2f              /* If zero, don't try to find a pte */

        /* We have a pte table, so load the MI_TWC with the attributes
         * for this "segment."
         */
        tophys(r21,r21)
        ori     r21,r21,1               /* Set valid bit */
#ifdef CONFIG_8xx_CPU6
        li      r3, 0x2b80
        stw     r3, 12(r0)
        lwz     r3, 12(r0)
#endif
        mtspr   MI_TWC, r21     /* Set segment attributes */
#ifdef CONFIG_8xx_CPU6
        li      r3, 0x3b80
        stw     r3, 12(r0)
        lwz     r3, 12(r0)
#endif
        mtspr   MD_TWC, r21     /* Load pte table base address */
        mfspr   r21, MD_TWC     /* ....and get the pte address */
        lwz     r20, 0(r21)     /* Get the pte */

        ori     r20, r20, _PAGE_ACCESSED
        stw     r20, 0(r21)

        /* The Linux PTE won't go exactly into the MMU TLB.
         * Software indicator bits 21, 22 and 28 must be clear.
         * Software indicator bits 24, 25, 26, and 27 must be
         * set.  All other Linux PTE bits control the behavior
         * of the MMU.
         */
        li      r21, 0x00f0
        rlwimi  r20, r21, 0, 24, 28     /* Set 24-27, clear 28 */

#ifdef CONFIG_8xx_CPU6
        li      r3, 0x2d80
        stw     r3, 12(r0)
        lwz     r3, 12(r0)
#endif
        mtspr   MI_RPN, r20     /* Update TLB entry */

        mfspr   r20, M_TW       /* Restore registers */
        lwz     r21, 0(r0)
        mtcr    r21
        lwz     r21, 4(r0)
#ifdef CONFIG_8xx_CPU6
        lwz     r3, 8(r0)
#endif
        rfi

2:      mfspr   r20, M_TW       /* Restore registers */
        lwz     r21, 0(r0)
        mtcr    r21
        lwz     r21, 4(r0)
#ifdef CONFIG_8xx_CPU6
        lwz     r3, 8(r0)
#endif
        b       InstructionAccess

        . = 0x1200
DataStoreTLBMiss:
#ifdef CONFIG_8xx_CPU6
        stw     r3, 8(r0)
        li      r3, 0x3f80
        stw     r3, 12(r0)
        lwz     r3, 12(r0)
#endif
        mtspr   M_TW, r20       /* Save a couple of working registers */
        mfcr    r20
        stw     r20, 0(r0)
        stw     r21, 4(r0)
        mfspr   r20, M_TWB      /* Get level 1 table entry address */

        /* If we are faulting a kernel address, we have to use the
         * kernel page tables.
         */
        andi.   r21, r20, 0x0800
        beq     3f
        lis     r21, swapper_pg_dir@h
        ori     r21, r21, swapper_pg_dir@l
        rlwimi r20, r21, 0, 2, 19
3:
        lwz     r21, 0(r20)     /* Get the level 1 entry */
        rlwinm. r20, r21,0,0,19 /* Extract page descriptor page address */
        beq     2f              /* If zero, don't try to find a pte */

        /* We have a pte table, so load fetch the pte from the table.
         */
        tophys(r21, r21)
        ori     r21, r21, 1     /* Set valid bit in physical L2 page */
#ifdef CONFIG_8xx_CPU6
        li      r3, 0x3b80
        stw     r3, 12(r0)
        lwz     r3, 12(r0)
#endif
        mtspr   MD_TWC, r21     /* Load pte table base address */
        mfspr   r20, MD_TWC     /* ....and get the pte address */
        lwz     r20, 0(r20)     /* Get the pte */

        /* Insert the Guarded flag into the TWC from the Linux PTE.
         * It is bit 27 of both the Linux PTE and the TWC (at least
         * I got that right :-).  It will be better when we can put
         * this into the Linux pgd/pmd and load it in the operation
         * above.
         */
        rlwimi  r21, r20, 0, 27, 27
#ifdef CONFIG_8xx_CPU6
        li      r3, 0x3b80
        stw     r3, 12(r0)
        lwz     r3, 12(r0)
#endif
        mtspr   MD_TWC, r21

        mfspr   r21, MD_TWC     /* get the pte address again */
        ori     r20, r20, _PAGE_ACCESSED
        stw     r20, 0(r21)

        /* The Linux PTE won't go exactly into the MMU TLB.
         * Software indicator bits 21, 22 and 28 must be clear.
         * Software indicator bits 24, 25, 26, and 27 must be
         * set.  All other Linux PTE bits control the behavior
         * of the MMU.
         */
        li      r21, 0x00f0
        rlwimi  r20, r21, 0, 24, 28     /* Set 24-27, clear 28 */

#ifdef CONFIG_8xx_CPU6
        li      r3, 0x3d80
        stw     r3, 12(r0)
        lwz     r3, 12(r0)
#endif
        mtspr   MD_RPN, r20     /* Update TLB entry */

        mfspr   r20, M_TW       /* Restore registers */
        lwz     r21, 0(r0)
        mtcr    r21
        lwz     r21, 4(r0)
#ifdef CONFIG_8xx_CPU6
        lwz     r3, 8(r0)
#endif
        rfi

2:
        /* Copy 20 msb from MD_EPN to DAR since the dcxx instructions fail
         * to update DAR when they cause a DTLB miss.
         */
        mfspr   r21, MD_EPN
        mfspr   r20, DAR
        rlwimi  r20, r21, 0, 0, 19
        mtspr   DAR, r20

        mfspr   r20, M_TW       /* Restore registers */
        lwz     r21, 0(r0)
        mtcr    r21
        lwz     r21, 4(r0)
#ifdef CONFIG_8xx_CPU6
        lwz     r3, 8(r0)
#endif
        b       DataAccess

/* This is an instruction TLB error on the MPC8xx.  This could be due
 * to many reasons, such as executing guarded memory or illegal instruction
 * addresses.  There is nothing to do but handle a big time error fault.
 */
        . = 0x1300
InstructionTLBError:
        b       InstructionAccess

/* This is the data TLB error on the MPC8xx.  This could be due to
 * many reasons, including a dirty update to a pte.  We can catch that
 * one here, but anything else is an error.  First, we track down the
 * Linux pte.  If it is valid, write access is allowed, but the
 * page dirty bit is not set, we will set it and reload the TLB.  For
 * any other case, we bail out to a higher level function that can
 * handle it.
 */
        . = 0x1400
DataTLBError:
#ifdef CONFIG_8xx_CPU6
        stw     r3, 8(r0)
        li      r3, 0x3f80
        stw     r3, 12(r0)
        lwz     r3, 12(r0)
#endif
        mtspr   M_TW, r20       /* Save a couple of working registers */
        mfcr    r20
        stw     r20, 0(r0)
        stw     r21, 4(r0)

        /* First, make sure this was a store operation.
        */
        mfspr   r20, DSISR
        andis.  r21, r20, 0x0200        /* If set, indicates store op */
        beq     2f

        /* The EA of a data TLB miss is automatically stored in the MD_EPN
         * register.  The EA of a data TLB error is automatically stored in
         * the DAR, but not the MD_EPN register.  We must copy the 20 most
         * significant bits of the EA from the DAR to MD_EPN before we
         * start walking the page tables.  We also need to copy the CASID
         * value from the M_CASID register.
         * Addendum:  The EA of a data TLB error is _supposed_ to be stored
         * in DAR, but it seems that this doesn't happen in some cases, such
         * as when the error is due to a dcbi instruction to a page with a
         * TLB that doesn't have the changed bit set.  In such cases, there
         * does not appear to be any way  to recover the EA of the error
         * since it is neither in DAR nor MD_EPN.  As a workaround, the
         * _PAGE_HWWRITE bit is set for all kernel data pages when the PTEs
         * are initialized in mapin_ram().  This will avoid the problem,
         * assuming we only use the dcbi instruction on kernel addresses.
         */
        mfspr   r20, DAR
        rlwinm  r21, r20, 0, 0, 19
        ori     r21, r21, MD_EVALID
        mfspr   r20, M_CASID
        rlwimi  r21, r20, 0, 28, 31
#ifdef CONFIG_8xx_CPU6
        li      r3, 0x3780
        stw     r3, 12(r0)
        lwz     r3, 12(r0)
#endif
        mtspr   MD_EPN, r21

        mfspr   r20, M_TWB      /* Get level 1 table entry address */

        /* If we are faulting a kernel address, we have to use the
         * kernel page tables.
         */
        andi.   r21, r20, 0x0800
        beq     3f
        lis     r21, swapper_pg_dir@h
        ori     r21, r21, swapper_pg_dir@l
        rlwimi  r20, r21, 0, 2, 19
3:
        lwz     r21, 0(r20)     /* Get the level 1 entry */
        rlwinm. r20, r21,0,0,19 /* Extract page descriptor page address */
        beq     2f              /* If zero, bail */

        /* We have a pte table, so fetch the pte from the table.
         */
        tophys(r21, r21)
        ori     r21, r21, 1             /* Set valid bit in physical L2 page */
#ifdef CONFIG_8xx_CPU6
        li      r3, 0x3b80
        stw     r3, 12(r0)
        lwz     r3, 12(r0)
#endif
        mtspr   MD_TWC, r21             /* Load pte table base address */
        mfspr   r21, MD_TWC             /* ....and get the pte address */
        lwz     r20, 0(r21)             /* Get the pte */

        andi.   r21, r20, _PAGE_RW      /* Is it writeable? */
        beq     2f                      /* Bail out if not */

        /* Update 'changed', among others.
        */
        ori     r20, r20, _PAGE_DIRTY|_PAGE_ACCESSED|_PAGE_HWWRITE
        mfspr   r21, MD_TWC             /* Get pte address again */
        stw     r20, 0(r21)             /* and update pte in table */

        /* The Linux PTE won't go exactly into the MMU TLB.
         * Software indicator bits 21, 22 and 28 must be clear.
         * Software indicator bits 24, 25, 26, and 27 must be
         * set.  All other Linux PTE bits control the behavior
         * of the MMU.
         */
        li      r21, 0x00f0
        rlwimi  r20, r21, 0, 24, 28     /* Set 24-27, clear 28 */

#ifdef CONFIG_8xx_CPU6
        li      r3, 0x3d80
        stw     r3, 12(r0)
        lwz     r3, 12(r0)
#endif
        mtspr   MD_RPN, r20     /* Update TLB entry */

        mfspr   r20, M_TW       /* Restore registers */
        lwz     r21, 0(r0)
        mtcr    r21
        lwz     r21, 4(r0)
#ifdef CONFIG_8xx_CPU6
        lwz     r3, 8(r0)
#endif
        rfi
2:
        mfspr   r20, M_TW       /* Restore registers */
        lwz     r21, 0(r0)
        mtcr    r21
        lwz     r21, 4(r0)
#ifdef CONFIG_8xx_CPU6
        lwz     r3, 8(r0)
#endif
        b       DataAccess

        STD_EXCEPTION(0x1500, Trap_15, UnknownException)
        STD_EXCEPTION(0x1600, Trap_16, UnknownException)
        STD_EXCEPTION(0x1700, Trap_17, TAUException)
        STD_EXCEPTION(0x1800, Trap_18, UnknownException)
        STD_EXCEPTION(0x1900, Trap_19, UnknownException)
        STD_EXCEPTION(0x1a00, Trap_1a, UnknownException)
        STD_EXCEPTION(0x1b00, Trap_1b, UnknownException)

/* On the MPC8xx, these next four traps are used for development
 * support of breakpoints and such.  Someday I will get around to
 * using them.
 */
        STD_EXCEPTION(0x1c00, Trap_1c, UnknownException)
        STD_EXCEPTION(0x1d00, Trap_1d, UnknownException)
        STD_EXCEPTION(0x1e00, Trap_1e, UnknownException)
        STD_EXCEPTION(0x1f00, Trap_1f, UnknownException)

        . = 0x2000

/*
 * This code finishes saving the registers to the exception frame
 * and jumps to the appropriate handler for the exception, turning
 * on address translation.
 */
        .globl  transfer_to_handler
transfer_to_handler:
        stw     r22,_NIP(r21)
        lis     r22,MSR_POW@h
        andc    r23,r23,r22
        stw     r23,_MSR(r21)
        SAVE_4GPRS(8, r21)
        SAVE_8GPRS(12, r21)
        SAVE_8GPRS(24, r21)
        andi.   r23,r23,MSR_PR
        mfspr   r23,SPRG3               /* if from user, fix up THREAD.regs */
        beq     2f
        addi    r24,r1,STACK_FRAME_OVERHEAD
        stw     r24,PT_REGS(r23)
2:      addi    r2,r23,-THREAD          /* set r2 to current */
        tovirt(r2,r2)
        mflr    r23
        andi.   r24,r23,0x3f00          /* get vector offset */
        stw     r24,TRAP(r21)
        li      r22,0
        stw     r22,RESULT(r21)
        mtspr   SPRG2,r22               /* r1 is now kernel sp */
        addi    r24,r2,TASK_STRUCT_SIZE /* check for kernel stack overflow */
        cmplw   0,r1,r2
        cmplw   1,r1,r24
        crand   1,1,4
        bgt-    stack_ovf               /* if r2 < r1 < r2+TASK_STRUCT_SIZE */
        lwz     r24,0(r23)              /* virtual address of handler */
        lwz     r23,4(r23)              /* where to go when done */
        mtspr   SRR0,r24
        mtspr   SRR1,r20
        mtlr    r23
        SYNC
        rfi                             /* jump to handler, enable MMU */

/*
 * On kernel stack overflow, load up an initial stack pointer
 * and call StackOverflow(regs), which should not return.
 */
stack_ovf:
        addi    r3,r1,STACK_FRAME_OVERHEAD
        lis     r1,init_task_union@ha
        addi    r1,r1,init_task_union@l
        addi    r1,r1,TASK_UNION_SIZE-STACK_FRAME_OVERHEAD
        lis     r24,StackOverflow@ha
        addi    r24,r24,StackOverflow@l
        li      r20,MSR_KERNEL
        mtspr   SRR0,r24
        mtspr   SRR1,r20
        SYNC
        rfi

        .globl  giveup_fpu
giveup_fpu:
        blr

/* Maybe someday.......
*/
_GLOBAL(__setup_cpu_8xx)
        blr

/*
 * This is where the main kernel code starts.
 */
start_here:

        /* ptr to current */
        lis     r2,init_task_union@h
        ori     r2,r2,init_task_union@l

        /* ptr to phys current thread */
        tophys(r4,r2)
        addi    r4,r4,THREAD    /* init task's THREAD */
        mtspr   SPRG3,r4
        li      r3,0
        mtspr   SPRG2,r3        /* 0 => r1 has kernel sp */

        /* stack */
        addi    r1,r2,TASK_UNION_SIZE
        li      r0,0
        stwu    r0,-STACK_FRAME_OVERHEAD(r1)

        bl      early_init      /* We have to do this with MMU on */

/*
 * Decide what sort of machine this is and initialize the MMU.
 */
        mr      r3,r31
        mr      r4,r30
        mr      r5,r29
        mr      r6,r28
        mr      r7,r27
        bl      machine_init
        bl      MMU_init

/*
 * Go back to running unmapped so we can load up new values
 * and change to using our exception vectors.
 * On the 8xx, all we have to do is invalidate the TLB to clear
 * the old 8M byte TLB mappings and load the page table base register.
 */
        /* The right way to do this would be to track it down through
         * init's THREAD like the context switch code does, but this is
         * easier......until someone changes init's static structures.
         */
        lis     r6, swapper_pg_dir@h
        ori     r6, r6, swapper_pg_dir@l
        tophys(r6,r6)
#ifdef CONFIG_8xx_CPU6
        lis     r4, cpu6_errata_word@h
        ori     r4, r4, cpu6_errata_word@l
        li      r3, 0x3980
        stw     r3, 12(r4)
        lwz     r3, 12(r4)
#endif
        mtspr   M_TWB, r6
        lis     r4,2f@h
        ori     r4,r4,2f@l
        tophys(r4,r4)
        li      r3,MSR_KERNEL & ~(MSR_IR|MSR_DR)
        mtspr   SRR0,r4
        mtspr   SRR1,r3
        rfi
/* Load up the kernel context */
2:
        SYNC                    /* Force all PTE updates to finish */
        tlbia                   /* Clear all TLB entries */
        sync                    /* wait for tlbia/tlbie to finish */
        TLBSYNC                 /* ... on all CPUs */

#ifdef CONFIG_BDI_SWITCH
        /* Add helper information for the Abatron bdiGDB debugger.
         * We do this here because we know the mmu is disabled, and
         * will be enabled for real in just a few instructions.
         */
        tovirt(r6,r6)
        lis     r5, abatron_pteptrs@h
        ori     r5, r5, abatron_pteptrs@l
        stw     r5, 0xf0(r0)    /* Must match your Abatron config file */
        tophys(r5,r5)
        stw     r6, 0(r5)
#endif

/* Now turn on the MMU for real! */
        li      r4,MSR_KERNEL
        lis     r3,start_kernel@h
        ori     r3,r3,start_kernel@l
        mtspr   SRR0,r3
        mtspr   SRR1,r4
        rfi                     /* enable MMU and jump to start_kernel */

/* Set up the initial MMU state so we can do the first level of
 * kernel initialization.  This maps the first 8 MBytes of memory 1:1
 * virtual to physical.  Also, set the cache mode since that is defined
 * by TLB entries and perform any additional mapping (like of the IMMR).
 * If configured to pin some TLBs, we pin the first 8 Mbytes of kernel,
 * 24 Mbytes of data, and the 8M IMMR space.  Anything not covered by
 * these mappings is mapped by page tables.
 */
initial_mmu:
        tlbia                   /* Invalidate all TLB entries */
#ifdef CONFIG_PIN_TLB
        lis     r8, MI_RSV4I@h
        ori     r8, r8, 0x1c00
#else
        li      r8, 0
#endif
        mtspr   MI_CTR, r8      /* Set instruction MMU control */

#ifdef CONFIG_PIN_TLB
        lis     r10, (MD_RSV4I | MD_RESETVAL)@h
        ori     r10, r10, 0x1c00
        mr      r8, r10
#else
        lis     r10, MD_RESETVAL@h
#endif
#ifndef CONFIG_8xx_COPYBACK
        oris    r10, r10, MD_WTDEF@h
#endif
        mtspr   MD_CTR, r10     /* Set data TLB control */

        /* Now map the lower 8 Meg into the TLBs.  For this quick hack,
         * we can load the instruction and data TLB registers with the
         * same values.
         */
        lis     r8, KERNELBASE@h        /* Create vaddr for TLB */
        ori     r8, r8, MI_EVALID       /* Mark it valid */
        mtspr   MI_EPN, r8
        mtspr   MD_EPN, r8
        li      r8, MI_PS8MEG           /* Set 8M byte page */
        ori     r8, r8, MI_SVALID       /* Make it valid */
        mtspr   MI_TWC, r8
        mtspr   MD_TWC, r8
        li      r8, MI_BOOTINIT         /* Create RPN for address 0 */
        mtspr   MI_RPN, r8              /* Store TLB entry */
        mtspr   MD_RPN, r8
        lis     r8, MI_Kp@h             /* Set the protection mode */
        mtspr   MI_AP, r8
        mtspr   MD_AP, r8

        /* Map another 8 MByte at the IMMR to get the processor
         * internal registers (among other things).
         */
#ifdef CONFIG_PIN_TLB
        addi    r10, r10, 0x0100
        mtspr   MD_CTR, r10
#endif
        mfspr   r9, 638                 /* Get current IMMR */
        andis.  r9, r9, 0xff80          /* Get 8Mbyte boundary */

        mr      r8, r9                  /* Create vaddr for TLB */
        ori     r8, r8, MD_EVALID       /* Mark it valid */
        mtspr   MD_EPN, r8
        li      r8, MD_PS8MEG           /* Set 8M byte page */
        ori     r8, r8, MD_SVALID       /* Make it valid */
        mtspr   MD_TWC, r8
        mr      r8, r9                  /* Create paddr for TLB */
        ori     r8, r8, MI_BOOTINIT|0x2 /* Inhibit cache -- Cort */
        mtspr   MD_RPN, r8

#ifdef CONFIG_PIN_TLB
        /* Map two more 8M kernel data pages.
        */
        addi    r10, r10, 0x0100
        mtspr   MD_CTR, r10

        lis     r8, KERNELBASE@h        /* Create vaddr for TLB */
        addis   r8, r8, 0x0080          /* Add 8M */
        ori     r8, r8, MI_EVALID       /* Mark it valid */
        mtspr   MD_EPN, r8
        li      r9, MI_PS8MEG           /* Set 8M byte page */
        ori     r9, r9, MI_SVALID       /* Make it valid */
        mtspr   MD_TWC, r9
        li      r11, MI_BOOTINIT        /* Create RPN for address 0 */
        addis   r11, r11, 0x0080        /* Add 8M */
        mtspr   MD_RPN, r8

        addis   r8, r8, 0x0080          /* Add 8M */
        mtspr   MD_EPN, r8
        mtspr   MD_TWC, r9
        addis   r11, r11, 0x0080        /* Add 8M */
        mtspr   MD_RPN, r8
#endif

        /* Since the cache is enabled according to the information we
         * just loaded into the TLB, invalidate and enable the caches here.
         * We should probably check/set other modes....later.
         */
        lis     r8, IDC_INVALL@h
        mtspr   IC_CST, r8
        mtspr   DC_CST, r8
        lis     r8, IDC_ENABLE@h
        mtspr   IC_CST, r8
#ifdef CONFIG_8xx_COPYBACK
        mtspr   DC_CST, r8
#else
        /* For a debug option, I left this here to easily enable
         * the write through cache mode
         */
        lis     r8, DC_SFWT@h
        mtspr   DC_CST, r8
        lis     r8, IDC_ENABLE@h
        mtspr   DC_CST, r8
#endif
        blr


/*
 * Set up to use a given MMU context.
 * r3 is context number, r4 is PGD pointer.
 *
 * We place the physical address of the new task page directory loaded
 * into the MMU base register, and set the ASID compare register with
 * the new "context."
 */
_GLOBAL(set_context)

#ifdef CONFIG_BDI_SWITCH
        /* Context switch the PTE pointer for the Abatron BDI2000.
         * The PGDIR is passed as second argument.
         */
        lis     r5, KERNELBASE@h
        lwz     r5, 0xf0(r5)
        stw     r4, 0x4(r5)
#endif

#ifdef CONFIG_8xx_CPU6
        lis     r6, cpu6_errata_word@h
        ori     r6, r6, cpu6_errata_word@l
        tophys  (r4, r4)
        li      r7, 0x3980
        stw     r7, 12(r6)
        lwz     r7, 12(r6)
        mtspr   M_TWB, r4               /* Update MMU base address */
        li      r7, 0x3380
        stw     r7, 12(r6)
        lwz     r7, 12(r6)
        mtspr   M_CASID, r3             /* Update context */
#else
        mtspr   M_CASID,r3              /* Update context */
        tophys  (r4, r4)
        mtspr   M_TWB, r4               /* and pgd */
#endif
        SYNC
        blr

#ifdef CONFIG_8xx_CPU6
/* It's here because it is unique to the 8xx.
 * It is important we get called with interrupts disabled.  I used to
 * do that, but it appears that all code that calls this already had
 * interrupt disabled.
 */
        .globl  set_dec_cpu6
set_dec_cpu6:
        lis     r7, cpu6_errata_word@h
        ori     r7, r7, cpu6_errata_word@l
        li      r4, 0x2c00
        stw     r4, 8(r7)
        lwz     r4, 8(r7)
        mtspr   22, r3          /* Update Decrementer */
        SYNC
        blr
#endif

/*
 * We put a few things here that have to be page-aligned.
 * This stuff goes at the beginning of the data segment,
 * which is page-aligned.
 */
        .data
        .globl  sdata
sdata:
        .globl  empty_zero_page
empty_zero_page:
        .space  4096

        .globl  swapper_pg_dir
swapper_pg_dir:
        .space  4096

/*
 * This space gets a copy of optional info passed to us by the bootstrap
 * Used to pass parameters into the kernel like root=/dev/sda1, etc.
 */
        .globl  cmd_line
cmd_line:
        .space  512

#ifdef CONFIG_BDI_SWITCH
/* Room for two PTE table poiners, usually the kernel and current user
 * pointer to their respective root page table (pgdir).
 */
abatron_pteptrs:
        .space  8
#endif

#ifdef CONFIG_8xx_CPU6
        .globl  cpu6_errata_word
cpu6_errata_word:
        .space  16
#endif

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.