OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [sparc64/] [kernel/] [irq.c] - Rev 1275

Go to most recent revision | Compare with Previous | Blame | View Log

/* $Id: irq.c,v 1.1.1.1 2004-04-15 01:34:10 phoenix Exp $
 * irq.c: UltraSparc IRQ handling/init/registry.
 *
 * Copyright (C) 1997  David S. Miller  (davem@caip.rutgers.edu)
 * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
 * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
 */
 
#include <linux/config.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/kernel_stat.h>
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/proc_fs.h>
#include <linux/kbd_ll.h>
 
#include <asm/ptrace.h>
#include <asm/processor.h>
#include <asm/atomic.h>
#include <asm/system.h>
#include <asm/irq.h>
#include <asm/sbus.h>
#include <asm/iommu.h>
#include <asm/upa.h>
#include <asm/oplib.h>
#include <asm/timer.h>
#include <asm/smp.h>
#include <asm/hardirq.h>
#include <asm/softirq.h>
#include <asm/starfire.h>
#include <asm/uaccess.h>
#include <asm/cache.h>
 
#ifdef CONFIG_SMP
static void distribute_irqs(void);
#endif
 
/* UPA nodes send interrupt packet to UltraSparc with first data reg
 * value low 5 (7 on Starfire) bits holding the IRQ identifier being
 * delivered.  We must translate this into a non-vector IRQ so we can
 * set the softint on this cpu.
 *
 * To make processing these packets efficient and race free we use
 * an array of irq buckets below.  The interrupt vector handler in
 * entry.S feeds incoming packets into per-cpu pil-indexed lists.
 * The IVEC handler does not need to act atomically, the PIL dispatch
 * code uses CAS to get an atomic snapshot of the list and clear it
 * at the same time.
 */
 
struct ino_bucket ivector_table[NUM_IVECS] __attribute__ ((aligned (SMP_CACHE_BYTES)));
 
#ifndef CONFIG_SMP
unsigned int __up_workvec[16] __attribute__ ((aligned (SMP_CACHE_BYTES)));
#define irq_work(__cpu, __pil)	&(__up_workvec[(void)(__cpu), (__pil)])
#else
#define irq_work(__cpu, __pil)	&(cpu_data[(__cpu)].irq_worklists[(__pil)])
#endif
 
#ifdef CONFIG_PCI
/* This is a table of physical addresses used to deal with IBF_DMA_SYNC.
 * It is used for PCI only to synchronize DMA transfers with IRQ delivery
 * for devices behind busses other than APB on Sabre systems.
 *
 * Currently these physical addresses are just config space accesses
 * to the command register for that device.
 */
unsigned long pci_dma_wsync;
unsigned long dma_sync_reg_table[256];
unsigned char dma_sync_reg_table_entry = 0;
#endif
 
/* This is based upon code in the 32-bit Sparc kernel written mostly by
 * David Redman (djhr@tadpole.co.uk).
 */
#define MAX_STATIC_ALLOC	4
static struct irqaction static_irqaction[MAX_STATIC_ALLOC];
static int static_irq_count;
 
/* This is exported so that fast IRQ handlers can get at it... -DaveM */
struct irqaction *irq_action[NR_IRQS+1] = {
	  NULL, NULL, NULL, NULL, NULL, NULL , NULL, NULL,
	  NULL, NULL, NULL, NULL, NULL, NULL , NULL, NULL
};
 
static void register_irq_proc (unsigned int irq);
 
/*
 * Upper 2b of irqaction->flags holds the ino.
 * irqaction->mask holds the smp affinity information.
 */
#define put_ino_in_irqaction(action, irq) \
	action->flags &= 0xffffffffffffUL; \
	if (__bucket(irq) == &pil0_dummy_bucket) \
		action->flags |= 0xdeadUL << 48;  \
	else \
		action->flags |= __irq_ino(irq) << 48;
#define get_ino_in_irqaction(action)	(action->flags >> 48)
 
#define put_smpaff_in_irqaction(action, smpaff)	(action)->mask = (smpaff)
#define get_smpaff_in_irqaction(action) 	((action)->mask)
 
int get_irq_list(char *buf)
{
	int i, len = 0;
	struct irqaction *action;
#ifdef CONFIG_SMP
	int j;
#endif
 
	for(i = 0; i < (NR_IRQS + 1); i++) {
		if(!(action = *(i + irq_action)))
			continue;
		len += sprintf(buf + len, "%3d: ", i);
#ifndef CONFIG_SMP
		len += sprintf(buf + len, "%10u ", kstat_irqs(i));
#else
		for (j = 0; j < smp_num_cpus; j++)
			len += sprintf(buf + len, "%10u ",
				       kstat.irqs[cpu_logical_map(j)][i]);
#endif
		len += sprintf(buf + len, " %s:%lx", action->name, \
						get_ino_in_irqaction(action));
		for(action = action->next; action; action = action->next) {
			len += sprintf(buf+len, ", %s:%lx", action->name, \
						get_ino_in_irqaction(action));
		}
		len += sprintf(buf + len, "\n");
	}
	return len;
}
 
/* Now these are always passed a true fully specified sun4u INO. */
void enable_irq(unsigned int irq)
{
	struct ino_bucket *bucket = __bucket(irq);
	unsigned long imap;
	unsigned long tid;
 
	imap = bucket->imap;
	if (imap == 0UL)
		return;
 
	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
		unsigned long ver;
 
		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
		if ((ver >> 32) == 0x003e0016) {
			/* We set it to our JBUS ID. */
			__asm__ __volatile__("ldxa [%%g0] %1, %0"
					     : "=r" (tid)
					     : "i" (ASI_JBUS_CONFIG));
			tid = ((tid & (0x1fUL<<17)) << 9);
			tid &= IMAP_TID_JBUS;
		} else {
			/* We set it to our Safari AID. */
			__asm__ __volatile__("ldxa [%%g0] %1, %0"
					     : "=r" (tid)
					     : "i" (ASI_SAFARI_CONFIG));
			tid = ((tid & (0x3ffUL<<17)) << 9);
			tid &= IMAP_AID_SAFARI;
		}
	} else if (this_is_starfire == 0) {
		/* We set it to our UPA MID. */
		__asm__ __volatile__("ldxa [%%g0] %1, %0"
				     : "=r" (tid)
				     : "i" (ASI_UPA_CONFIG));
		tid = ((tid & UPA_CONFIG_MID) << 9);
		tid &= IMAP_TID_UPA;
	} else {
		tid = (starfire_translate(imap, current->processor) << 26);
		tid &= IMAP_TID_UPA;
	}
 
	/* NOTE NOTE NOTE, IGN and INO are read-only, IGN is a product
	 * of this SYSIO's preconfigured IGN in the SYSIO Control
	 * Register, the hardware just mirrors that value here.
	 * However for Graphics and UPA Slave devices the full
	 * IMAP_INR field can be set by the programmer here.
	 *
	 * Things like FFB can now be handled via the new IRQ mechanism.
	 */
	upa_writel(tid | IMAP_VALID, imap);
}
 
/* This now gets passed true ino's as well. */
void disable_irq(unsigned int irq)
{
	struct ino_bucket *bucket = __bucket(irq);
	unsigned long imap;
 
	imap = bucket->imap;
	if (imap != 0UL) {
		u32 tmp;
 
		/* NOTE: We do not want to futz with the IRQ clear registers
		 *       and move the state to IDLE, the SCSI code does call
		 *       disable_irq() to assure atomicity in the queue cmd
		 *       SCSI adapter driver code.  Thus we'd lose interrupts.
		 */
		tmp = upa_readl(imap);
		tmp &= ~IMAP_VALID;
		upa_writel(tmp, imap);
	}
}
 
/* The timer is the one "weird" interrupt which is generated by
 * the CPU %tick register and not by some normal vectored interrupt
 * source.  To handle this special case, we use this dummy INO bucket.
 */
static struct ino_bucket pil0_dummy_bucket = {
	0,	/* irq_chain */
	0,	/* pil */
	0,	/* pending */
	0,	/* flags */
	0,	/* __unused */
	NULL,	/* irq_info */
	0UL,	/* iclr */
	0UL,	/* imap */
};
 
unsigned int build_irq(int pil, int inofixup, unsigned long iclr, unsigned long imap)
{
	struct ino_bucket *bucket;
	int ino;
 
	if(pil == 0) {
		if(iclr != 0UL || imap != 0UL) {
			prom_printf("Invalid dummy bucket for PIL0 (%lx:%lx)\n",
				    iclr, imap);
			prom_halt();
		}
		return __irq(&pil0_dummy_bucket);
	}
 
	/* RULE: Both must be specified in all other cases. */
	if (iclr == 0UL || imap == 0UL) {
		prom_printf("Invalid build_irq %d %d %016lx %016lx\n",
			    pil, inofixup, iclr, imap);
		prom_halt();
	}
 
	ino = (upa_readl(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
	if(ino > NUM_IVECS) {
		prom_printf("Invalid INO %04x (%d:%d:%016lx:%016lx)\n",
			    ino, pil, inofixup, iclr, imap);
		prom_halt();
	}
 
	/* Ok, looks good, set it up.  Don't touch the irq_chain or
	 * the pending flag.
	 */
	bucket = &ivector_table[ino];
	if ((bucket->flags & IBF_ACTIVE) ||
	    (bucket->irq_info != NULL)) {
		/* This is a gross fatal error if it happens here. */
		prom_printf("IRQ: Trying to reinit INO bucket, fatal error.\n");
		prom_printf("IRQ: Request INO %04x (%d:%d:%016lx:%016lx)\n",
			    ino, pil, inofixup, iclr, imap);
		prom_printf("IRQ: Existing (%d:%016lx:%016lx)\n",
			    bucket->pil, bucket->iclr, bucket->imap);
		prom_printf("IRQ: Cannot continue, halting...\n");
		prom_halt();
	}
	bucket->imap  = imap;
	bucket->iclr  = iclr;
	bucket->pil   = pil;
	bucket->flags = 0;
 
	bucket->irq_info = NULL;
 
	return __irq(bucket);
}
 
static void atomic_bucket_insert(struct ino_bucket *bucket)
{
	unsigned long pstate;
	unsigned int *ent;
 
	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
	__asm__ __volatile__("wrpr %0, %1, %%pstate"
			     : : "r" (pstate), "i" (PSTATE_IE));
	ent = irq_work(smp_processor_id(), bucket->pil);
	bucket->irq_chain = *ent;
	*ent = __irq(bucket);
	__asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate));
}
 
int request_irq(unsigned int irq, void (*handler)(int, void *, struct pt_regs *),
		unsigned long irqflags, const char *name, void *dev_id)
{
	struct irqaction *action, *tmp = NULL;
	struct ino_bucket *bucket = __bucket(irq);
	unsigned long flags;
	int pending = 0;
 
	if ((bucket != &pil0_dummy_bucket) &&
	    (bucket < &ivector_table[0] ||
	     bucket >= &ivector_table[NUM_IVECS])) {
		unsigned int *caller;
 
		__asm__ __volatile__("mov %%i7, %0" : "=r" (caller));
		printk(KERN_CRIT "request_irq: Old style IRQ registry attempt "
		       "from %p, irq %08x.\n", caller, irq);
		return -EINVAL;
	}	
	if(!handler)
	    return -EINVAL;
 
	if ((bucket != &pil0_dummy_bucket) && (irqflags & SA_SAMPLE_RANDOM)) {
		/*
	 	 * This function might sleep, we want to call it first,
	 	 * outside of the atomic block. In SA_STATIC_ALLOC case,
		 * random driver's kmalloc will fail, but it is safe.
		 * If already initialized, random driver will not reinit.
	 	 * Yes, this might clear the entropy pool if the wrong
	 	 * driver is attempted to be loaded, without actually
	 	 * installing a new handler, but is this really a problem,
	 	 * only the sysadmin is able to do this.
	 	 */
		rand_initialize_irq(irq);
	}
 
	save_and_cli(flags);
 
	action = *(bucket->pil + irq_action);
	if(action) {
		if((action->flags & SA_SHIRQ) && (irqflags & SA_SHIRQ))
			for (tmp = action; tmp->next; tmp = tmp->next)
				;
		else {
			restore_flags(flags);
			return -EBUSY;
		}
		action = NULL;		/* Or else! */
	}
 
	/* If this is flagged as statically allocated then we use our
	 * private struct which is never freed.
	 */
	if(irqflags & SA_STATIC_ALLOC) {
	    if(static_irq_count < MAX_STATIC_ALLOC)
		action = &static_irqaction[static_irq_count++];
	    else
		printk("Request for IRQ%d (%s) SA_STATIC_ALLOC failed "
		       "using kmalloc\n", irq, name);
	}	
	if(action == NULL)
	    action = (struct irqaction *)kmalloc(sizeof(struct irqaction),
						 GFP_ATOMIC);
 
	if(!action) { 
		restore_flags(flags);
		return -ENOMEM;
	}
 
	if (bucket == &pil0_dummy_bucket) {
		bucket->irq_info = action;
		bucket->flags |= IBF_ACTIVE;
	} else {
		if((bucket->flags & IBF_ACTIVE) != 0) {
			void *orig = bucket->irq_info;
			void **vector = NULL;
 
			if((bucket->flags & IBF_PCI) == 0) {
				printk("IRQ: Trying to share non-PCI bucket.\n");
				goto free_and_ebusy;
			}
			if((bucket->flags & IBF_MULTI) == 0) {
				vector = kmalloc(sizeof(void *) * 4, GFP_ATOMIC);
				if(vector == NULL)
					goto free_and_enomem;
 
				/* We might have slept. */
				if ((bucket->flags & IBF_MULTI) != 0) {
					int ent;
 
					kfree(vector);
					vector = (void **)bucket->irq_info;
					for(ent = 0; ent < 4; ent++) {
						if (vector[ent] == NULL) {
							vector[ent] = action;
							break;
						}
					}
					if (ent == 4)
						goto free_and_ebusy;
				} else {
					vector[0] = orig;
					vector[1] = action;
					vector[2] = NULL;
					vector[3] = NULL;
					bucket->irq_info = vector;
					bucket->flags |= IBF_MULTI;
				}
			} else {
				int ent;
 
				vector = (void **)orig;
				for(ent = 0; ent < 4; ent++) {
					if(vector[ent] == NULL) {
						vector[ent] = action;
						break;
					}
				}
				if (ent == 4)
					goto free_and_ebusy;
			}
		} else {
			bucket->irq_info = action;
			bucket->flags |= IBF_ACTIVE;
		}
		pending = bucket->pending;
		if(pending)
			bucket->pending = 0;
	}
 
	action->handler = handler;
	action->flags = irqflags;
	action->name = name;
	action->next = NULL;
	action->dev_id = dev_id;
	put_ino_in_irqaction(action, irq);
	put_smpaff_in_irqaction(action, 0);
 
	if(tmp)
		tmp->next = action;
	else
		*(bucket->pil + irq_action) = action;
 
	enable_irq(irq);
 
	/* We ate the IVEC already, this makes sure it does not get lost. */
	if(pending) {
		atomic_bucket_insert(bucket);
		set_softint(1 << bucket->pil);
	}
	restore_flags(flags);
	if ((bucket != &pil0_dummy_bucket) && (!(irqflags & SA_STATIC_ALLOC)))
		register_irq_proc(__irq_ino(irq));
 
#ifdef CONFIG_SMP
	distribute_irqs();
#endif
	return 0;
 
free_and_ebusy:
	kfree(action);
	restore_flags(flags);
	return -EBUSY;
 
free_and_enomem:
	kfree(action);
	restore_flags(flags);
	return -ENOMEM;
}
 
void free_irq(unsigned int irq, void *dev_id)
{
	struct irqaction *action;
	struct irqaction *tmp = NULL;
	unsigned long flags;
	struct ino_bucket *bucket = __bucket(irq), *bp;
 
	if ((bucket != &pil0_dummy_bucket) &&
	    (bucket < &ivector_table[0] ||
	     bucket >= &ivector_table[NUM_IVECS])) {
		unsigned int *caller;
 
		__asm__ __volatile__("mov %%i7, %0" : "=r" (caller));
		printk(KERN_CRIT "free_irq: Old style IRQ removal attempt "
		       "from %p, irq %08x.\n", caller, irq);
		return;
	}
 
	action = *(bucket->pil + irq_action);
	if(!action->handler) {
		printk("Freeing free IRQ %d\n", bucket->pil);
		return;
	}
	if(dev_id) {
		for( ; action; action = action->next) {
			if(action->dev_id == dev_id)
				break;
			tmp = action;
		}
		if(!action) {
			printk("Trying to free free shared IRQ %d\n", bucket->pil);
			return;
		}
	} else if(action->flags & SA_SHIRQ) {
		printk("Trying to free shared IRQ %d with NULL device ID\n", bucket->pil);
		return;
	}
 
	if(action->flags & SA_STATIC_ALLOC) {
		printk("Attempt to free statically allocated IRQ %d (%s)\n",
		       bucket->pil, action->name);
		return;
	}
 
	save_and_cli(flags);
	if(action && tmp)
		tmp->next = action->next;
	else
		*(bucket->pil + irq_action) = action->next;
 
	if (bucket != &pil0_dummy_bucket) {
		unsigned long imap = bucket->imap;
		void **vector, *orig;
		int ent;
 
		orig = bucket->irq_info;
		vector = (void **)orig;
 
		if ((bucket->flags & IBF_MULTI) != 0) {
			int other = 0;
			void *orphan = NULL;
			for(ent = 0; ent < 4; ent++) {
				if(vector[ent] == action)
					vector[ent] = NULL;
				else if(vector[ent] != NULL) {
					orphan = vector[ent];
					other++;
				}
			}
 
			/* Only free when no other shared irq
			 * uses this bucket.
			 */
			if(other) {
				if (other == 1) {
					/* Convert back to non-shared bucket. */
					bucket->irq_info = orphan;
					bucket->flags &= ~(IBF_MULTI);
					kfree(vector);
				}
				goto out;
			}
		} else {
			bucket->irq_info = NULL;
		}
 
		/* This unique interrupt source is now inactive. */
		bucket->flags &= ~IBF_ACTIVE;
 
		/* See if any other buckets share this bucket's IMAP
		 * and are still active.
		 */
		for(ent = 0; ent < NUM_IVECS; ent++) {
			bp = &ivector_table[ent];
			if(bp != bucket		&&
			   bp->imap == imap	&&
			   (bp->flags & IBF_ACTIVE) != 0)
				break;
		}
 
		/* Only disable when no other sub-irq levels of
		 * the same IMAP are active.
		 */
		if (ent == NUM_IVECS)
			disable_irq(irq);
	}
 
out:
	kfree(action);
	restore_flags(flags);
}
 
#ifdef CONFIG_SMP
 
/* Who has the global irq brlock */
unsigned char global_irq_holder = NO_PROC_ID;
 
static void show(char * str)
{
	int cpu = smp_processor_id();
	int i;
 
	printk("\n%s, CPU %d:\n", str, cpu);
	printk("irq:  %d [ ", irqs_running());
	for (i = 0; i < smp_num_cpus; i++)
		printk("%u ", __brlock_array[i][BR_GLOBALIRQ_LOCK]);
	printk("]\nbh:   %d [ ",
	       (spin_is_locked(&global_bh_lock) ? 1 : 0));
	for (i = 0; i < smp_num_cpus; i++)
		printk("%u ", local_bh_count(i));
	printk("]\n");
}
 
#define MAXCOUNT 100000000
 
#if 0
#define SYNC_OTHER_ULTRAS(x)	udelay(x+1)
#else
#define SYNC_OTHER_ULTRAS(x)	membar("#Sync");
#endif
 
void synchronize_irq(void)
{
	if (irqs_running()) {
		cli();
		sti();
	}
}
 
static inline void get_irqlock(int cpu)
{
	int count;
 
	if ((unsigned char)cpu == global_irq_holder)
		return;
 
	count = MAXCOUNT;
again:
	br_write_lock(BR_GLOBALIRQ_LOCK);
	for (;;) {
		spinlock_t *lock;
 
		if (!irqs_running() &&
		    (local_bh_count(smp_processor_id()) || !spin_is_locked(&global_bh_lock)))
			break;
 
		br_write_unlock(BR_GLOBALIRQ_LOCK);
		lock = &__br_write_locks[BR_GLOBALIRQ_LOCK].lock;
		while (irqs_running() ||
		       spin_is_locked(lock) ||
		       (!local_bh_count(smp_processor_id()) && spin_is_locked(&global_bh_lock))) {
			if (!--count) {
				show("get_irqlock");
				count = (~0 >> 1);
			}
			__sti();
			SYNC_OTHER_ULTRAS(cpu);
			__cli();
		}
		goto again;
	}
 
	global_irq_holder = cpu;
}
 
void __global_cli(void)
{
	unsigned long flags;
 
	__save_flags(flags);
	if(flags == 0) {
		int cpu = smp_processor_id();
		__cli();
		if (! local_irq_count(cpu))
			get_irqlock(cpu);
	}
}
 
void __global_sti(void)
{
	int cpu = smp_processor_id();
 
	if (! local_irq_count(cpu))
		release_irqlock(cpu);
	__sti();
}
 
unsigned long __global_save_flags(void)
{
	unsigned long flags, local_enabled, retval;
 
	__save_flags(flags);
	local_enabled = ((flags == 0) ? 1 : 0);
	retval = 2 + local_enabled;
	if (! local_irq_count(smp_processor_id())) {
		if (local_enabled)
			retval = 1;
		if (global_irq_holder == (unsigned char) smp_processor_id())
			retval = 0;
	}
	return retval;
}
 
void __global_restore_flags(unsigned long flags)
{
	switch (flags) {
	case 0:
		__global_cli();
		break;
	case 1:
		__global_sti();
		break;
	case 2:
		__cli();
		break;
	case 3:
		__sti();
		break;
	default:
	{
		unsigned long pc;
		__asm__ __volatile__("mov %%i7, %0" : "=r" (pc));
		printk("global_restore_flags: Bogon flags(%016lx) caller %016lx\n",
		       flags, pc);
	}
	}
}
 
#endif /* CONFIG_SMP */
 
void catch_disabled_ivec(struct pt_regs *regs)
{
	int cpu = smp_processor_id();
	struct ino_bucket *bucket = __bucket(*irq_work(cpu, 0));
 
	/* We can actually see this on Ultra/PCI PCI cards, which are bridges
	 * to other devices.  Here a single IMAP enabled potentially multiple
	 * unique interrupt sources (which each do have a unique ICLR register.
	 *
	 * So what we do is just register that the IVEC arrived, when registered
	 * for real the request_irq() code will check the bit and signal
	 * a local CPU interrupt for it.
	 */
#if 0
	printk("IVEC: Spurious interrupt vector (%x) received at (%016lx)\n",
	       bucket - &ivector_table[0], regs->tpc);
#endif
	*irq_work(cpu, 0) = 0;
	bucket->pending = 1;
}
 
/* Tune this... */
#define FORWARD_VOLUME		12
 
#ifdef CONFIG_SMP
 
static inline void redirect_intr(int cpu, struct ino_bucket *bp)
{
	/* Ok, here is what is going on:
	 * 1) Retargeting IRQs on Starfire is very
	 *    expensive so just forget about it on them.
	 * 2) Moving around very high priority interrupts
	 *    is a losing game.
	 * 3) If the current cpu is idle, interrupts are
	 *    useful work, so keep them here.  But do not
	 *    pass to our neighbour if he is not very idle.
	 * 4) If sysadmin explicitly asks for directed intrs,
	 *    Just Do It.
	 */
	struct irqaction *ap = bp->irq_info;
	unsigned long cpu_mask = get_smpaff_in_irqaction(ap);
	unsigned int buddy, ticks;
 
	if (cpu_mask == 0)
		cpu_mask = ~0UL;
 
	if (this_is_starfire != 0 ||
	    bp->pil >= 10 || current->pid == 0)
		goto out;
 
	/* 'cpu' is the MID (ie. UPAID), calculate the MID
	 * of our buddy.
	 */
	buddy = cpu_number_map(cpu) + 1;
	if (buddy >= NR_CPUS ||
	    cpu_logical_map(buddy) == -1)
		buddy = 0;
 
	ticks = 0;
	while ((cpu_mask & (1UL << buddy)) == 0) {
		buddy++;
		if (buddy >= NR_CPUS ||
		    cpu_logical_map(buddy) == -1)
			buddy = cpu_logical_map(0);
		if (++ticks > NR_CPUS) {
			put_smpaff_in_irqaction(ap, 0);
			goto out;
		}
	}
 
	if (buddy == cpu_number_map(cpu))
		goto out;
 
	buddy = cpu_logical_map(buddy);
 
	/* Voo-doo programming. */
	if (cpu_data[buddy].idle_volume < FORWARD_VOLUME)
		goto out;
 
	/* This just so happens to be correct on Cheetah
	 * at the moment.
	 */
	buddy <<= 26;
 
	/* Push it to our buddy. */
	upa_writel(buddy | IMAP_VALID, bp->imap);
 
out:
	return;
}
 
#endif
 
void handler_irq(int irq, struct pt_regs *regs)
{
	struct ino_bucket *bp, *nbp;
	int cpu = smp_processor_id();
 
#ifndef CONFIG_SMP
	/*
	 * Check for TICK_INT on level 14 softint.
	 */
	{
		unsigned long clr_mask = 1 << irq;
		unsigned long tick_mask = tick_ops->softint_mask;
 
		if ((irq == 14) && (get_softint() & tick_mask)) {
			irq = 0;
			clr_mask = tick_mask;
		}
		clear_softint(clr_mask);
	}
#else
	int should_forward = 1;
 
	clear_softint(1 << irq);
#endif
 
	irq_enter(cpu, irq);
	kstat.irqs[cpu][irq]++;
 
#ifdef CONFIG_PCI
	if (irq == 9)
		kbd_pt_regs = regs;
#endif
 
	/* Sliiiick... */
#ifndef CONFIG_SMP
	bp = ((irq != 0) ?
	      __bucket(xchg32(irq_work(cpu, irq), 0)) :
	      &pil0_dummy_bucket);
#else
	bp = __bucket(xchg32(irq_work(cpu, irq), 0));
#endif
	for ( ; bp != NULL; bp = nbp) {
		unsigned char flags = bp->flags;
		unsigned char random = 0;
 
		nbp = __bucket(bp->irq_chain);
		bp->irq_chain = 0;
 
		if ((flags & IBF_ACTIVE) != 0) {
#ifdef CONFIG_PCI
			if ((flags & IBF_DMA_SYNC) != 0) {
				upa_readl(dma_sync_reg_table[bp->synctab_ent]);
				upa_readq(pci_dma_wsync);
			}
#endif
			if ((flags & IBF_MULTI) == 0) {
				struct irqaction *ap = bp->irq_info;
				ap->handler(__irq(bp), ap->dev_id, regs);
				random |= ap->flags & SA_SAMPLE_RANDOM;
			} else {
				void **vector = (void **)bp->irq_info;
				int ent;
				for (ent = 0; ent < 4; ent++) {
					struct irqaction *ap = vector[ent];
					if (ap != NULL) {
						ap->handler(__irq(bp), ap->dev_id, regs);
						random |= ap->flags & SA_SAMPLE_RANDOM;
					}
				}
			}
			/* Only the dummy bucket lacks IMAP/ICLR. */
			if (bp->pil != 0) {
#ifdef CONFIG_SMP
				if (should_forward) {
					redirect_intr(cpu, bp);
					should_forward = 0;
				}
#endif
				upa_writel(ICLR_IDLE, bp->iclr);
				/* Test and add entropy */
				if (random)
					add_interrupt_randomness(irq);
			}
		} else
			bp->pending = 1;
	}
	irq_exit(cpu, irq);
}
 
#ifdef CONFIG_BLK_DEV_FD
extern void floppy_interrupt(int irq, void *dev_cookie, struct pt_regs *regs);
 
void sparc_floppy_irq(int irq, void *dev_cookie, struct pt_regs *regs)
{
	struct irqaction *action = *(irq + irq_action);
	struct ino_bucket *bucket;
	int cpu = smp_processor_id();
 
	irq_enter(cpu, irq);
	kstat.irqs[cpu][irq]++;
 
	*(irq_work(cpu, irq)) = 0;
	bucket = get_ino_in_irqaction(action) + ivector_table;
 
	floppy_interrupt(irq, dev_cookie, regs);
	upa_writel(ICLR_IDLE, bucket->iclr);
 
	irq_exit(cpu, irq);
}
#endif
 
/* The following assumes that the branch lies before the place we
 * are branching to.  This is the case for a trap vector...
 * You have been warned.
 */
#define SPARC_BRANCH(dest_addr, inst_addr) \
          (0x10800000 | ((((dest_addr)-(inst_addr))>>2)&0x3fffff))
 
#define SPARC_NOP (0x01000000)
 
static void install_fast_irq(unsigned int cpu_irq,
			     void (*handler)(int, void *, struct pt_regs *))
{
	extern unsigned long sparc64_ttable_tl0;
	unsigned long ttent = (unsigned long) &sparc64_ttable_tl0;
	unsigned int *insns;
 
	ttent += 0x820;
	ttent += (cpu_irq - 1) << 5;
	insns = (unsigned int *) ttent;
	insns[0] = SPARC_BRANCH(((unsigned long) handler),
				((unsigned long)&insns[0]));
	insns[1] = SPARC_NOP;
	__asm__ __volatile__("membar #StoreStore; flush %0" : : "r" (ttent));
}
 
int request_fast_irq(unsigned int irq,
		     void (*handler)(int, void *, struct pt_regs *),
		     unsigned long irqflags, const char *name, void *dev_id)
{
	struct irqaction *action;
	struct ino_bucket *bucket = __bucket(irq);
	unsigned long flags;
 
	/* No pil0 dummy buckets allowed here. */
	if (bucket < &ivector_table[0] ||
	    bucket >= &ivector_table[NUM_IVECS]) {
		unsigned int *caller;
 
		__asm__ __volatile__("mov %%i7, %0" : "=r" (caller));
		printk(KERN_CRIT "request_fast_irq: Old style IRQ registry attempt "
		       "from %p, irq %08x.\n", caller, irq);
		return -EINVAL;
	}	
 
	if(!handler)
		return -EINVAL;
 
	if ((bucket->pil == 0) || (bucket->pil == 14)) {
		printk("request_fast_irq: Trying to register shared IRQ 0 or 14.\n");
		return -EBUSY;
	}
 
	action = *(bucket->pil + irq_action);
	if(action) {
		if(action->flags & SA_SHIRQ)
			panic("Trying to register fast irq when already shared.\n");
		if(irqflags & SA_SHIRQ)
			panic("Trying to register fast irq as shared.\n");
		printk("request_fast_irq: Trying to register yet already owned.\n");
		return -EBUSY;
	}
 
	/*
	 * We do not check for SA_SAMPLE_RANDOM in this path. Neither do we
	 * support smp intr affinity in this path.
	 */
	save_and_cli(flags);
	if(irqflags & SA_STATIC_ALLOC) {
		if(static_irq_count < MAX_STATIC_ALLOC)
			action = &static_irqaction[static_irq_count++];
		else
			printk("Request for IRQ%d (%s) SA_STATIC_ALLOC failed "
			       "using kmalloc\n", bucket->pil, name);
	}
	if(action == NULL)
		action = (struct irqaction *)kmalloc(sizeof(struct irqaction),
						     GFP_ATOMIC);
	if(!action) {
		restore_flags(flags);
		return -ENOMEM;
	}
	install_fast_irq(bucket->pil, handler);
 
	bucket->irq_info = action;
	bucket->flags |= IBF_ACTIVE;
 
	action->handler = handler;
	action->flags = irqflags;
	action->dev_id = NULL;
	action->name = name;
	action->next = NULL;
	put_ino_in_irqaction(action, irq);
	put_smpaff_in_irqaction(action, 0);
 
	*(bucket->pil + irq_action) = action;
	enable_irq(irq);
 
	restore_flags(flags);
 
#ifdef CONFIG_SMP
	distribute_irqs();
#endif
	return 0;
}
 
/* We really don't need these at all on the Sparc.  We only have
 * stubs here because they are exported to modules.
 */
unsigned long probe_irq_on(void)
{
	return 0;
}
 
int probe_irq_off(unsigned long mask)
{
	return 0;
}
 
#ifdef CONFIG_SMP
static int retarget_one_irq(struct irqaction *p, int goal_cpu)
{
	struct ino_bucket *bucket = get_ino_in_irqaction(p) + ivector_table;
	unsigned long imap = bucket->imap;
	unsigned int tid;
 
	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
		tid = __cpu_logical_map[goal_cpu] << 26;
		tid &= IMAP_AID_SAFARI;
	} else if (this_is_starfire == 0) {
		tid = __cpu_logical_map[goal_cpu] << 26;
		tid &= IMAP_TID_UPA;
	} else {
		tid = (starfire_translate(imap, __cpu_logical_map[goal_cpu]) << 26);
		tid &= IMAP_TID_UPA;
	}
	upa_writel(tid | IMAP_VALID, imap);
 
	goal_cpu++;
	if(goal_cpu >= NR_CPUS ||
	   __cpu_logical_map[goal_cpu] == -1)
		goal_cpu = 0;
	return goal_cpu;
}
 
/* Called from request_irq. */
static void distribute_irqs(void)
{
	unsigned long flags;
	int cpu, level;
 
	save_and_cli(flags);
	cpu = 0;
 
	/*
	 * Skip the timer at [0], and very rare error/power intrs at [15].
	 * Also level [12], it causes problems on Ex000 systems.
	 */
	for(level = 1; level < NR_IRQS; level++) {
		struct irqaction *p = irq_action[level];
		if (level == 12) continue;
		while(p) {
			cpu = retarget_one_irq(p, cpu);
			p = p->next;
		}
	}
	restore_flags(flags);
}
#endif
 
 
struct sun5_timer *prom_timers;
static u64 prom_limit0, prom_limit1;
 
static void map_prom_timers(void)
{
	unsigned int addr[3];
	int tnode, err;
 
	/* PROM timer node hangs out in the top level of device siblings... */
	tnode = prom_finddevice("/counter-timer");
 
	/* Assume if node is not present, PROM uses different tick mechanism
	 * which we should not care about.
	 */
	if(tnode == 0 || tnode == -1) {
		prom_timers = (struct sun5_timer *) 0;
		return;
	}
 
	/* If PROM is really using this, it must be mapped by him. */
	err = prom_getproperty(tnode, "address", (char *)addr, sizeof(addr));
	if(err == -1) {
		prom_printf("PROM does not have timer mapped, trying to continue.\n");
		prom_timers = (struct sun5_timer *) 0;
		return;
	}
	prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
}
 
static void kill_prom_timer(void)
{
	if(!prom_timers)
		return;
 
	/* Save them away for later. */
	prom_limit0 = prom_timers->limit0;
	prom_limit1 = prom_timers->limit1;
 
	/* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
	 * We turn both off here just to be paranoid.
	 */
	prom_timers->limit0 = 0;
	prom_timers->limit1 = 0;
 
	/* Wheee, eat the interrupt packet too... */
	__asm__ __volatile__(
"	mov	0x40, %%g2\n"
"	ldxa	[%%g0] %0, %%g1\n"
"	ldxa	[%%g2] %1, %%g1\n"
"	stxa	%%g0, [%%g0] %0\n"
"	membar	#Sync\n"
	: /* no outputs */
	: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
	: "g1", "g2");
}
 
void enable_prom_timer(void)
{
	if(!prom_timers)
		return;
 
	/* Set it to whatever was there before. */
	prom_timers->limit1 = prom_limit1;
	prom_timers->count1 = 0;
	prom_timers->limit0 = prom_limit0;
	prom_timers->count0 = 0;
}
 
void __init init_IRQ(void)
{
	static int called = 0;
 
	if (called == 0) {
		called = 1;
		map_prom_timers();
		kill_prom_timer();
		memset(&ivector_table[0], 0, sizeof(ivector_table));
#ifndef CONFIG_SMP
		memset(&__up_workvec[0], 0, sizeof(__up_workvec));
#endif
	}
 
	/* We need to clear any IRQ's pending in the soft interrupt
	 * registers, a spurious one could be left around from the
	 * PROM timer which we just disabled.
	 */
	clear_softint(get_softint());
 
	/* Now that ivector table is initialized, it is safe
	 * to receive IRQ vector traps.  We will normally take
	 * one or two right now, in case some device PROM used
	 * to boot us wants to speak to us.  We just ignore them.
	 */
	__asm__ __volatile__("rdpr	%%pstate, %%g1\n\t"
			     "or	%%g1, %0, %%g1\n\t"
			     "wrpr	%%g1, 0x0, %%pstate"
			     : /* No outputs */
			     : "i" (PSTATE_IE)
			     : "g1");
}
 
static struct proc_dir_entry * root_irq_dir;
static struct proc_dir_entry * irq_dir [NUM_IVECS];
 
#ifdef CONFIG_SMP
 
#define HEX_DIGITS 16
 
static unsigned int parse_hex_value (const char *buffer,
		unsigned long count, unsigned long *ret)
{
	unsigned char hexnum [HEX_DIGITS];
	unsigned long value;
	int i;
 
	if (!count)
		return -EINVAL;
	if (count > HEX_DIGITS)
		count = HEX_DIGITS;
	if (copy_from_user(hexnum, buffer, count))
		return -EFAULT;
 
	/*
	 * Parse the first 8 characters as a hex string, any non-hex char
	 * is end-of-string. '00e1', 'e1', '00E1', 'E1' are all the same.
	 */
	value = 0;
 
	for (i = 0; i < count; i++) {
		unsigned int c = hexnum[i];
 
		switch (c) {
			case '0' ... '9': c -= '0'; break;
			case 'a' ... 'f': c -= 'a'-10; break;
			case 'A' ... 'F': c -= 'A'-10; break;
		default:
			goto out;
		}
		value = (value << 4) | c;
	}
out:
	*ret = value;
	return 0;
}
 
static unsigned long hw_to_logical(unsigned long mask)
{
	unsigned long new_mask = 0UL;
	int i;
 
	for (i = 0; i < NR_CPUS; i++) {
		if (mask & (1UL << i)) {
			int logical = cpu_number_map(i);
 
			new_mask |= (1UL << logical);
		}
	}
 
	return new_mask;
}
 
static unsigned long logical_to_hw(unsigned long mask)
{
	unsigned long new_mask = 0UL;
	int i;
 
	for (i = 0; i < NR_CPUS; i++) {
		if (mask & (1UL << i)) {
			int hw = cpu_logical_map(i);
 
			new_mask |= (1UL << hw);
		}
	}
 
	return new_mask;
}
 
static int irq_affinity_read_proc (char *page, char **start, off_t off,
			int count, int *eof, void *data)
{
	struct ino_bucket *bp = ivector_table + (long)data;
	struct irqaction *ap = bp->irq_info;
	unsigned long mask = get_smpaff_in_irqaction(ap);
 
	mask = logical_to_hw(mask);
 
	if (count < HEX_DIGITS+1)
		return -EINVAL;
	return sprintf (page, "%016lx\n", mask == 0 ? ~0UL : mask);
}
 
static inline void set_intr_affinity(int irq, unsigned long hw_aff)
{
	struct ino_bucket *bp = ivector_table + irq;
	unsigned long aff = hw_to_logical(hw_aff);
 
	/*
	 * Users specify affinity in terms of cpu ids, which is what
	 * is displayed via /proc/cpuinfo. As soon as we do this, 
	 * handler_irq() might see and take action.
	 */
	put_smpaff_in_irqaction((struct irqaction *)bp->irq_info, aff);
 
	/* Migration is simply done by the next cpu to service this
	 * interrupt.
	 */
}
 
static int irq_affinity_write_proc (struct file *file, const char *buffer,
					unsigned long count, void *data)
{
	int irq = (long) data, full_count = count, err;
	unsigned long new_value;
 
	err = parse_hex_value(buffer, count, &new_value);
 
	/*
	 * Do not allow disabling IRQs completely - it's a too easy
	 * way to make the system unusable accidentally :-) At least
	 * one online CPU still has to be targeted.
	 */
	new_value &= cpu_online_map;
	if (!new_value)
		return -EINVAL;
 
	set_intr_affinity(irq, new_value);
 
	return full_count;
}
 
#endif
 
#define MAX_NAMELEN 10
 
static void register_irq_proc (unsigned int irq)
{
	char name [MAX_NAMELEN];
 
	if (!root_irq_dir || irq_dir[irq])
		return;
 
	memset(name, 0, MAX_NAMELEN);
	sprintf(name, "%x", irq);
 
	/* create /proc/irq/1234 */
	irq_dir[irq] = proc_mkdir(name, root_irq_dir);
 
#ifdef CONFIG_SMP
	/* XXX SMP affinity not supported on starfire yet. */
	if (this_is_starfire == 0) {
		struct proc_dir_entry *entry;
 
		/* create /proc/irq/1234/smp_affinity */
		entry = create_proc_entry("smp_affinity", 0600, irq_dir[irq]);
 
		if (entry) {
			entry->nlink = 1;
			entry->data = (void *)(long)irq;
			entry->read_proc = irq_affinity_read_proc;
			entry->write_proc = irq_affinity_write_proc;
		}
	}
#endif
}
 
void init_irq_proc (void)
{
	/* create /proc/irq */
	root_irq_dir = proc_mkdir("irq", 0);
}
 
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.