OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [sparc64/] [kernel/] [pci_common.c] - Rev 1765

Compare with Previous | Blame | View Log

/* $Id: pci_common.c,v 1.1.1.1 2004-04-15 01:34:34 phoenix Exp $
 * pci_common.c: PCI controller common support.
 *
 * Copyright (C) 1999 David S. Miller (davem@redhat.com)
 */
 
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/init.h>
 
#include <asm/pbm.h>
 
/* Fix self device of BUS and hook it into BUS->self.
 * The pci_scan_bus does not do this for the host bridge.
 */
void __init pci_fixup_host_bridge_self(struct pci_bus *pbus)
{
	struct list_head *walk = &pbus->devices;
 
	walk = walk->next;
	while (walk != &pbus->devices) {
		struct pci_dev *pdev = pci_dev_b(walk);
 
		if (pdev->class >> 8 == PCI_CLASS_BRIDGE_HOST) {
			pbus->self = pdev;
			return;
		}
 
		walk = walk->next;
	}
 
	prom_printf("PCI: Critical error, cannot find host bridge PDEV.\n");
	prom_halt();
}
 
/* Find the OBP PROM device tree node for a PCI device.
 * Return zero if not found.
 */
static int __init find_device_prom_node(struct pci_pbm_info *pbm,
					struct pci_dev *pdev,
					int bus_prom_node,
					struct linux_prom_pci_registers *pregs,
					int *nregs)
{
	int node;
 
	/*
	 * Return the PBM's PROM node in case we are it's PCI device,
	 * as the PBM's reg property is different to standard PCI reg
	 * properties. We would delete this device entry otherwise,
	 * which confuses XFree86's device probing...
	 */
	if ((pdev->bus->number == pbm->pci_bus->number) && (pdev->devfn == 0) &&
	    (pdev->vendor == PCI_VENDOR_ID_SUN) &&
	    (pdev->device == PCI_DEVICE_ID_SUN_PBM ||
	     pdev->device == PCI_DEVICE_ID_SUN_SCHIZO ||
	     pdev->device == PCI_DEVICE_ID_SUN_TOMATILLO ||
	     pdev->device == PCI_DEVICE_ID_SUN_SABRE ||
	     pdev->device == PCI_DEVICE_ID_SUN_HUMMINGBIRD)) {
		*nregs = 0;
		return bus_prom_node;
	}
 
	node = prom_getchild(bus_prom_node);
	while (node != 0) {
		int err = prom_getproperty(node, "reg",
					   (char *)pregs,
					   sizeof(*pregs) * PROMREG_MAX);
		if (err == 0 || err == -1)
			goto do_next_sibling;
		if (((pregs[0].phys_hi >> 8) & 0xff) == pdev->devfn) {
			*nregs = err / sizeof(*pregs);
			return node;
		}
 
	do_next_sibling:
		node = prom_getsibling(node);
	}
	return 0;
}
 
/* Remove a PCI device from the device trees, then
 * free it up.  Note that this must run before
 * the device's resources are registered because we
 * do not handle unregistering them here.
 */
static void pci_device_delete(struct pci_dev *pdev)
{
	list_del(&pdev->global_list);
	list_del(&pdev->bus_list);
 
	/* Ok, all references are gone, free it up. */
	kfree(pdev);
}
 
/* Older versions of OBP on PCI systems encode 64-bit MEM
 * space assignments incorrectly, this fixes them up.  We also
 * take the opportunity here to hide other kinds of bogus
 * assignments.
 */
static void __init fixup_obp_assignments(struct pci_dev *pdev,
					 struct pcidev_cookie *pcp)
{
	int i;
 
	if (pdev->vendor == PCI_VENDOR_ID_AL &&
	    (pdev->device == PCI_DEVICE_ID_AL_M7101 ||
	     pdev->device == PCI_DEVICE_ID_AL_M1533)) {
		int i;
 
		/* Zap all of the normal resources, they are
		 * meaningless and generate bogus resource collision
		 * messages.  This is OpenBoot's ill-fated attempt to
		 * represent the implicit resources that these devices
		 * have.
		 */
		pcp->num_prom_assignments = 0;
		for (i = 0; i < 6; i++) {
			pdev->resource[i].start =
				pdev->resource[i].end =
				pdev->resource[i].flags = 0;
		}
		pdev->resource[PCI_ROM_RESOURCE].start =
			pdev->resource[PCI_ROM_RESOURCE].end =
			pdev->resource[PCI_ROM_RESOURCE].flags = 0;
		return;
	}
 
	for (i = 0; i < pcp->num_prom_assignments; i++) {
		struct linux_prom_pci_registers *ap;
		int space;
 
		ap = &pcp->prom_assignments[i];
		space = ap->phys_hi >> 24;
		if ((space & 0x3) == 2 &&
		    (space & 0x4) != 0) {
			ap->phys_hi &= ~(0x7 << 24);
			ap->phys_hi |= 0x3 << 24;
		}
	}
}
 
/* Fill in the PCI device cookie sysdata for the given
 * PCI device.  This cookie is the means by which one
 * can get to OBP and PCI controller specific information
 * for a PCI device.
 */
static void __init pdev_cookie_fillin(struct pci_pbm_info *pbm,
				      struct pci_dev *pdev,
				      int bus_prom_node)
{
	struct linux_prom_pci_registers pregs[PROMREG_MAX];
	struct pcidev_cookie *pcp;
	int device_prom_node, nregs, err;
 
	device_prom_node = find_device_prom_node(pbm, pdev, bus_prom_node,
						 pregs, &nregs);
	if (device_prom_node == 0) {
		/* If it is not in the OBP device tree then
		 * there must be a damn good reason for it.
		 *
		 * So what we do is delete the device from the
		 * PCI device tree completely.  This scenerio
		 * is seen, for example, on CP1500 for the
		 * second EBUS/HappyMeal pair if the external
		 * connector for it is not present.
		 */
		pci_device_delete(pdev);
		return;
	}
 
	pcp = kmalloc(sizeof(*pcp), GFP_ATOMIC);
	if (pcp == NULL) {
		prom_printf("PCI_COOKIE: Fatal malloc error, aborting...\n");
		prom_halt();
	}
	pcp->pbm = pbm;
	pcp->prom_node = device_prom_node;
	memcpy(pcp->prom_regs, pregs, sizeof(pcp->prom_regs));
	pcp->num_prom_regs = nregs;
	err = prom_getproperty(device_prom_node, "name",
			       pcp->prom_name, sizeof(pcp->prom_name));
	if (err > 0)
		pcp->prom_name[err] = 0;
	else
		pcp->prom_name[0] = 0;
 
	err = prom_getproperty(device_prom_node,
			       "assigned-addresses",
			       (char *)pcp->prom_assignments,
			       sizeof(pcp->prom_assignments));
	if (err == 0 || err == -1)
		pcp->num_prom_assignments = 0;
	else
		pcp->num_prom_assignments =
			(err / sizeof(pcp->prom_assignments[0]));
 
	if (strcmp(pcp->prom_name, "ebus") == 0) {
		struct linux_prom_ebus_ranges erng[PROM_PCIRNG_MAX];
		int iter;
 
		/* EBUS is special... */
		err = prom_getproperty(device_prom_node, "ranges",
				       (char *)&erng[0], sizeof(erng));
		if (err == 0 || err == -1) {
			prom_printf("EBUS: Fatal error, no range property\n");
			prom_halt();
		}
		err = (err / sizeof(erng[0]));
		for(iter = 0; iter < err; iter++) {
			struct linux_prom_ebus_ranges *ep = &erng[iter];
			struct linux_prom_pci_registers *ap;
 
			ap = &pcp->prom_assignments[iter];
 
			ap->phys_hi = ep->parent_phys_hi;
			ap->phys_mid = ep->parent_phys_mid;
			ap->phys_lo = ep->parent_phys_lo;
			ap->size_hi = 0;
			ap->size_lo = ep->size;
		}
		pcp->num_prom_assignments = err;
	}
 
	fixup_obp_assignments(pdev, pcp);
 
	pdev->sysdata = pcp;
}
 
void __init pci_fill_in_pbm_cookies(struct pci_bus *pbus,
				    struct pci_pbm_info *pbm,
				    int prom_node)
{
	struct list_head *walk = &pbus->devices;
 
	/* This loop is coded like this because the cookie
	 * fillin routine can delete devices from the tree.
	 */
	walk = walk->next;
	while (walk != &pbus->devices) {
		struct pci_dev *pdev = pci_dev_b(walk);
		struct list_head *walk_next = walk->next;
 
		pdev_cookie_fillin(pbm, pdev, prom_node);
 
		walk = walk_next;
	}
 
	walk = &pbus->children;
	walk = walk->next;
	while (walk != &pbus->children) {
		struct pci_bus *this_pbus = pci_bus_b(walk);
		struct pcidev_cookie *pcp = this_pbus->self->sysdata;
		struct list_head *walk_next = walk->next;
 
		pci_fill_in_pbm_cookies(this_pbus, pbm, pcp->prom_node);
 
		walk = walk_next;
	}
}
 
static void __init bad_assignment(struct pci_dev *pdev,
				  struct linux_prom_pci_registers *ap,
				  struct resource *res,
				  int do_prom_halt)
{
	prom_printf("PCI: Bogus PROM assignment. BUS[%02x] DEVFN[%x]\n",
		    pdev->bus->number, pdev->devfn);
	if (ap)
		prom_printf("PCI: phys[%08x:%08x:%08x] size[%08x:%08x]\n",
			    ap->phys_hi, ap->phys_mid, ap->phys_lo,
			    ap->size_hi, ap->size_lo);
	if (res)
		prom_printf("PCI: RES[%016lx-->%016lx:(%lx)]\n",
			    res->start, res->end, res->flags);
	prom_printf("Please email this information to davem@redhat.com\n");
	if (do_prom_halt)
		prom_halt();
}
 
static struct resource *
__init get_root_resource(struct linux_prom_pci_registers *ap,
			 struct pci_pbm_info *pbm)
{
	int space = (ap->phys_hi >> 24) & 3;
 
	switch (space) {
	case 0:
		/* Configuration space, silently ignore it. */
		return NULL;
 
	case 1:
		/* 16-bit IO space */
		return &pbm->io_space;
 
	case 2:
		/* 32-bit MEM space */
		return &pbm->mem_space;
 
	case 3:
		/* 64-bit MEM space, these are allocated out of
		 * the 32-bit mem_space range for the PBM, ie.
		 * we just zero out the upper 32-bits.
		 */
		return &pbm->mem_space;
 
	default:
		printk("PCI: What is resource space %x? "
		       "Tell davem@redhat.com about it!\n", space);
		return NULL;
	};
}
 
static struct resource *
__init get_device_resource(struct linux_prom_pci_registers *ap,
			   struct pci_dev *pdev)
{
	struct resource *res;
	int breg = (ap->phys_hi & 0xff);
 
	switch (breg) {
	case  PCI_ROM_ADDRESS:
		/* Unfortunately I have seen several cases where
		 * buggy FCODE uses a space value of '1' (I/O space)
		 * in the register property for the ROM address
		 * so disable this sanity check for now.
		 */
#if 0
	{
		int space = (ap->phys_hi >> 24) & 3;
 
		/* It had better be MEM space. */
		if (space != 2)
			bad_assignment(pdev, ap, NULL, 0);
	}
#endif
		res = &pdev->resource[PCI_ROM_RESOURCE];
		break;
 
	case PCI_BASE_ADDRESS_0:
	case PCI_BASE_ADDRESS_1:
	case PCI_BASE_ADDRESS_2:
	case PCI_BASE_ADDRESS_3:
	case PCI_BASE_ADDRESS_4:
	case PCI_BASE_ADDRESS_5:
		res = &pdev->resource[(breg - PCI_BASE_ADDRESS_0) / 4];
		break;
 
	default:
		bad_assignment(pdev, ap, NULL, 0);
		res = NULL;
		break;
	};
 
	return res;
}
 
static int __init pdev_resource_collisions_expected(struct pci_dev *pdev)
{
	if (pdev->vendor != PCI_VENDOR_ID_SUN)
		return 0;
 
	if (pdev->device == PCI_DEVICE_ID_SUN_RIO_EBUS ||
	    pdev->device == PCI_DEVICE_ID_SUN_RIO_1394 ||
	    pdev->device == PCI_DEVICE_ID_SUN_RIO_USB)
		return 1;
 
	return 0;
}
 
static void __init pdev_record_assignments(struct pci_pbm_info *pbm,
					   struct pci_dev *pdev)
{
	struct pcidev_cookie *pcp = pdev->sysdata;
	int i;
 
	for (i = 0; i < pcp->num_prom_assignments; i++) {
		struct linux_prom_pci_registers *ap;
		struct resource *root, *res;
 
		/* The format of this property is specified in
		 * the PCI Bus Binding to IEEE1275-1994.
		 */
		ap = &pcp->prom_assignments[i];
		root = get_root_resource(ap, pbm);
		res = get_device_resource(ap, pdev);
		if (root == NULL || res == NULL ||
		    res->flags == 0)
			continue;
 
		/* Ok we know which resource this PROM assignment is
		 * for, sanity check it.
		 */
		if ((res->start & 0xffffffffUL) != ap->phys_lo)
			bad_assignment(pdev, ap, res, 1);
 
		/* If it is a 64-bit MEM space assignment, verify that
		 * the resource is too and that the upper 32-bits match.
		 */
		if (((ap->phys_hi >> 24) & 3) == 3) {
			if (((res->flags & IORESOURCE_MEM) == 0) ||
			    ((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK)
			     != PCI_BASE_ADDRESS_MEM_TYPE_64))
				bad_assignment(pdev, ap, res, 1);
			if ((res->start >> 32) != ap->phys_mid)
				bad_assignment(pdev, ap, res, 1);
 
			/* PBM cannot generate cpu initiated PIOs
			 * to the full 64-bit space.  Therefore the
			 * upper 32-bits better be zero.  If it is
			 * not, just skip it and we will assign it
			 * properly ourselves.
			 */
			if ((res->start >> 32) != 0UL) {
				printk(KERN_ERR "PCI: OBP assigns out of range MEM address "
				       "%016lx for region %ld on device %s\n",
				       res->start, (res - &pdev->resource[0]), pdev->name);
				continue;
			}
		}
 
		/* Adjust the resource into the physical address space
		 * of this PBM.
		 */
		pbm->parent->resource_adjust(pdev, res, root);
 
		if (request_resource(root, res) < 0) {
			/* OK, there is some conflict.  But this is fine
			 * since we'll reassign it in the fixup pass.
			 *
			 * We notify the user that OBP made an error if it
			 * is a case we don't expect.
			 */
			if (!pdev_resource_collisions_expected(pdev)) {
				printk(KERN_ERR "PCI: Address space collision on region %ld "
				       "[%016lx:%016lx] of device %s\n",
				       (res - &pdev->resource[0]),
				       res->start, res->end,
				       pdev->name);
			}
		}
	}
}
 
void __init pci_record_assignments(struct pci_pbm_info *pbm,
				   struct pci_bus *pbus)
{
	struct list_head *walk = &pbus->devices;
 
	for (walk = walk->next; walk != &pbus->devices; walk = walk->next)
		pdev_record_assignments(pbm, pci_dev_b(walk));
 
	walk = &pbus->children;
	for (walk = walk->next; walk != &pbus->children; walk = walk->next)
		pci_record_assignments(pbm, pci_bus_b(walk));
}
 
/* Return non-zero if PDEV has implicit I/O resources even
 * though it may not have an I/O base address register
 * active.
 */
static int __init has_implicit_io(struct pci_dev *pdev)
{
	int class = pdev->class >> 8;
 
	if (class == PCI_CLASS_NOT_DEFINED ||
	    class == PCI_CLASS_NOT_DEFINED_VGA ||
	    class == PCI_CLASS_STORAGE_IDE ||
	    (pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
		return 1;
 
	return 0;
}
 
static void __init pdev_assign_unassigned(struct pci_pbm_info *pbm,
					  struct pci_dev *pdev)
{
	u32 reg;
	u16 cmd;
	int i, io_seen, mem_seen;
 
	io_seen = mem_seen = 0;
	for (i = 0; i < PCI_NUM_RESOURCES; i++) {
		struct resource *root, *res;
		unsigned long size, min, max, align;
 
		res = &pdev->resource[i];
 
		if (res->flags & IORESOURCE_IO)
			io_seen++;
		else if (res->flags & IORESOURCE_MEM)
			mem_seen++;
 
		/* If it is already assigned or the resource does
		 * not exist, there is nothing to do.
		 */
		if (res->parent != NULL || res->flags == 0UL)
			continue;
 
		/* Determine the root we allocate from. */
		if (res->flags & IORESOURCE_IO) {
			root = &pbm->io_space;
			min = root->start + 0x400UL;
			max = root->end;
		} else {
			root = &pbm->mem_space;
			min = root->start;
			max = min + 0x80000000UL;
		}
 
		size = res->end - res->start;
		align = size + 1;
		if (allocate_resource(root, res, size + 1, min, max, align, NULL, NULL) < 0) {
			/* uh oh */
			prom_printf("PCI: Failed to allocate resource %d for %s\n",
				    i, pdev->name);
			prom_halt();
		}
 
		/* Update PCI config space. */
		pbm->parent->base_address_update(pdev, i);
	}
 
	/* Special case, disable the ROM.  Several devices
	 * act funny (ie. do not respond to memory space writes)
	 * when it is left enabled.  A good example are Qlogic,ISP
	 * adapters.
	 */
	pci_read_config_dword(pdev, PCI_ROM_ADDRESS, &reg);
	reg &= ~PCI_ROM_ADDRESS_ENABLE;
	pci_write_config_dword(pdev, PCI_ROM_ADDRESS, reg);
 
	/* If we saw I/O or MEM resources, enable appropriate
	 * bits in PCI command register.
	 */
	if (io_seen || mem_seen) {
		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
		if (io_seen || has_implicit_io(pdev))
			cmd |= PCI_COMMAND_IO;
		if (mem_seen)
			cmd |= PCI_COMMAND_MEMORY;
		pci_write_config_word(pdev, PCI_COMMAND, cmd);
	}
 
	/* If this is a PCI bridge or an IDE controller,
	 * enable bus mastering.  In the former case also
	 * set the cache line size correctly.
	 */
	if (((pdev->class >> 8) == PCI_CLASS_BRIDGE_PCI) ||
	    (((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) &&
	     ((pdev->class & 0x80) != 0))) {
		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
		cmd |= PCI_COMMAND_MASTER;
		pci_write_config_word(pdev, PCI_COMMAND, cmd);
 
		if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_PCI)
			pci_write_config_byte(pdev,
					      PCI_CACHE_LINE_SIZE,
					      (64 / sizeof(u32)));
	}
}
 
void __init pci_assign_unassigned(struct pci_pbm_info *pbm,
				  struct pci_bus *pbus)
{
	struct list_head *walk = &pbus->devices;
 
	for (walk = walk->next; walk != &pbus->devices; walk = walk->next)
		pdev_assign_unassigned(pbm, pci_dev_b(walk));
 
	walk = &pbus->children;
	for (walk = walk->next; walk != &pbus->children; walk = walk->next)
		pci_assign_unassigned(pbm, pci_bus_b(walk));
}
 
static int __init pci_intmap_match(struct pci_dev *pdev, unsigned int *interrupt)
{
	struct linux_prom_pci_intmap bridge_local_intmap[PROM_PCIIMAP_MAX], *intmap;
	struct linux_prom_pci_intmask bridge_local_intmask, *intmask;
	struct pcidev_cookie *dev_pcp = pdev->sysdata;
	struct pci_pbm_info *pbm = dev_pcp->pbm;
	struct linux_prom_pci_registers *pregs = dev_pcp->prom_regs;
	unsigned int hi, mid, lo, irq;
	int i, num_intmap, map_slot;
 
	intmap = &pbm->pbm_intmap[0];
	intmask = &pbm->pbm_intmask;
	num_intmap = pbm->num_pbm_intmap;
	map_slot = 0;
 
	/* If we are underneath a PCI bridge, use PROM register
	 * property of the parent bridge which is closest to
	 * the PBM.
	 *
	 * However if that parent bridge has interrupt map/mask
	 * properties of it's own we use the PROM register property
	 * of the next child device on the path to PDEV.
	 *
	 * In detail the two cases are (note that the 'X' below is the
	 * 'next child on the path to PDEV' mentioned above):
	 *
	 * 1) PBM --> PCI bus lacking int{map,mask} --> X ... PDEV
	 *
	 *    Here we use regs of 'PCI bus' device.
	 *
	 * 2) PBM --> PCI bus with int{map,mask} --> X ... PDEV
	 *
	 *    Here we use regs of 'X'.  Note that X can be PDEV.
	 */
	if (pdev->bus->number != pbm->pci_first_busno) {
		struct pcidev_cookie *bus_pcp, *regs_pcp;
		struct pci_dev *bus_dev, *regs_dev;
		int plen;
 
		bus_dev = pdev->bus->self;
		regs_dev = pdev;
 
		while (bus_dev->bus &&
		       bus_dev->bus->number != pbm->pci_first_busno) {
			regs_dev = bus_dev;
			bus_dev = bus_dev->bus->self;
		}
 
		regs_pcp = regs_dev->sysdata;
		pregs = regs_pcp->prom_regs;
 
		bus_pcp = bus_dev->sysdata;
 
		/* But if the PCI bridge has it's own interrupt map
		 * and mask properties, use that and the regs of the
		 * PCI entity at the next level down on the path to the
		 * device.
		 */
		plen = prom_getproperty(bus_pcp->prom_node, "interrupt-map",
					(char *) &bridge_local_intmap[0],
					sizeof(bridge_local_intmap));
		if (plen != -1) {
			intmap = &bridge_local_intmap[0];
			num_intmap = plen / sizeof(struct linux_prom_pci_intmap);
			plen = prom_getproperty(bus_pcp->prom_node,
						"interrupt-map-mask",
						(char *) &bridge_local_intmask,
						sizeof(bridge_local_intmask));
			if (plen == -1) {
				printk("pci_intmap_match: Warning! Bridge has intmap "
				       "but no intmask.\n");
				printk("pci_intmap_match: Trying to recover.\n");
				return 0;
			}
 
			if (pdev->bus->self != bus_dev)
				map_slot = 1;
		} else {
			pregs = bus_pcp->prom_regs;
			map_slot = 1;
		}
	}
 
	if (map_slot) {
		*interrupt = ((*interrupt
			       - 1
			       + PCI_SLOT(pdev->devfn)) & 0x3) + 1;
	}
 
	hi   = pregs->phys_hi & intmask->phys_hi;
	mid  = pregs->phys_mid & intmask->phys_mid;
	lo   = pregs->phys_lo & intmask->phys_lo;
	irq  = *interrupt & intmask->interrupt;
 
	for (i = 0; i < num_intmap; i++) {
		if (intmap[i].phys_hi  == hi	&&
		    intmap[i].phys_mid == mid	&&
		    intmap[i].phys_lo  == lo	&&
		    intmap[i].interrupt == irq) {
			*interrupt = intmap[i].cinterrupt;
			printk("PCI-IRQ: Routing bus[%2x] slot[%2x] map[%d] to INO[%02x]\n",
			       pdev->bus->number, PCI_SLOT(pdev->devfn),
			       map_slot, *interrupt);
			return 1;
		}
	}
 
	/* We will run this code even if pbm->num_pbm_intmap is zero, just so
	 * we can apply the slot mapping to the PROM interrupt property value.
	 * So do not spit out these warnings in that case.
	 */
	if (num_intmap != 0) {
		/* Print it both to OBP console and kernel one so that if bootup
		 * hangs here the user has the information to report.
		 */
		prom_printf("pci_intmap_match: bus %02x, devfn %02x: ",
			    pdev->bus->number, pdev->devfn);
		prom_printf("IRQ [%08x.%08x.%08x.%08x] not found in interrupt-map\n",
			    pregs->phys_hi, pregs->phys_mid, pregs->phys_lo, *interrupt);
		prom_printf("Please email this information to davem@redhat.com\n");
 
		printk("pci_intmap_match: bus %02x, devfn %02x: ",
		       pdev->bus->number, pdev->devfn);
		printk("IRQ [%08x.%08x.%08x.%08x] not found in interrupt-map\n",
		       pregs->phys_hi, pregs->phys_mid, pregs->phys_lo, *interrupt);
		printk("Please email this information to davem@redhat.com\n");
	}
 
	return 0;
}
 
static void __init pdev_fixup_irq(struct pci_dev *pdev)
{
	struct pcidev_cookie *pcp = pdev->sysdata;
	struct pci_pbm_info *pbm = pcp->pbm;
	struct pci_controller_info *p = pbm->parent;
	unsigned int portid = pbm->portid;
	unsigned int prom_irq;
	int prom_node = pcp->prom_node;
	int err;
 
	/* If this is an empty EBUS device, sometimes OBP fails to
	 * give it a valid fully specified interrupts property.
	 * The EBUS hooked up to SunHME on PCI I/O boards of
	 * Ex000 systems is one such case.
	 *
	 * The interrupt is not important so just ignore it.
	 */
	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
	    pdev->device == PCI_DEVICE_ID_SUN_EBUS &&
	    !prom_getchild(prom_node)) {
		pdev->irq = 0;
		return;
	}
 
	err = prom_getproperty(prom_node, "interrupts",
			       (char *)&prom_irq, sizeof(prom_irq));
	if (err == 0 || err == -1) {
		pdev->irq = 0;
		return;
	}
 
	/* Fully specified already? */
	if (((prom_irq & PCI_IRQ_IGN) >> 6) == portid) {
		pdev->irq = p->irq_build(pbm, pdev, prom_irq);
		goto have_irq;
	}
 
	/* An onboard device? (bit 5 set) */
	if ((prom_irq & PCI_IRQ_INO) & 0x20) {
		pdev->irq = p->irq_build(pbm, pdev, (portid << 6 | prom_irq));
		goto have_irq;
	}
 
	/* Can we find a matching entry in the interrupt-map? */
	if (pci_intmap_match(pdev, &prom_irq)) {
		pdev->irq = p->irq_build(pbm, pdev, (portid << 6) | prom_irq);
		goto have_irq;
	}
 
	/* Ok, we have to do it the hard way. */
	{
		unsigned int bus, slot, line;
 
		bus = (pbm == &pbm->parent->pbm_B) ? (1 << 4) : 0;
 
		/* If we have a legal interrupt property, use it as
		 * the IRQ line.
		 */
		if (prom_irq > 0 && prom_irq < 5) {
			line = ((prom_irq - 1) & 3);
		} else {
			u8 pci_irq_line;
 
			/* Else just directly consult PCI config space. */
			pci_read_config_byte(pdev, PCI_INTERRUPT_PIN, &pci_irq_line);
			line = ((pci_irq_line - 1) & 3);
		}
 
		/* Now figure out the slot.
		 *
		 * Basically, device number zero on the top-level bus is
		 * always the PCI host controller.  Slot 0 is then device 1.
		 * PBM A supports two external slots (0 and 1), and PBM B
		 * supports 4 external slots (0, 1, 2, and 3).  On-board PCI
		 * devices are wired to device numbers outside of these
		 * ranges. -DaveM
 		 */
		if (pdev->bus->number == pbm->pci_first_busno) {
			slot = PCI_SLOT(pdev->devfn) - pbm->pci_first_slot;
		} else {
			struct pci_dev *bus_dev;
 
			/* Underneath a bridge, use slot number of parent
			 * bridge which is closest to the PBM.
			 */
			bus_dev = pdev->bus->self;
			while (bus_dev->bus &&
			       bus_dev->bus->number != pbm->pci_first_busno)
				bus_dev = bus_dev->bus->self;
 
			slot = PCI_SLOT(bus_dev->devfn) - pbm->pci_first_slot;
		}
		slot = slot << 2;
 
		pdev->irq = p->irq_build(pbm, pdev,
					 ((portid << 6) & PCI_IRQ_IGN) |
					 (bus | slot | line));
	}
 
have_irq:
	pci_write_config_byte(pdev, PCI_INTERRUPT_LINE,
			      pdev->irq & PCI_IRQ_INO);
}
 
void __init pci_fixup_irq(struct pci_pbm_info *pbm,
			  struct pci_bus *pbus)
{
	struct list_head *walk = &pbus->devices;
 
	for (walk = walk->next; walk != &pbus->devices; walk = walk->next)
		pdev_fixup_irq(pci_dev_b(walk));
 
	walk = &pbus->children;
	for (walk = walk->next; walk != &pbus->children; walk = walk->next)
		pci_fixup_irq(pbm, pci_bus_b(walk));
}
 
static void pdev_setup_busmastering(struct pci_dev *pdev, int is_66mhz)
{
	u16 cmd;
	u8 hdr_type, min_gnt, ltimer;
 
	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
	cmd |= PCI_COMMAND_MASTER;
	pci_write_config_word(pdev, PCI_COMMAND, cmd);
 
	/* Read it back, if the mastering bit did not
	 * get set, the device does not support bus
	 * mastering so we have nothing to do here.
	 */
	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
	if ((cmd & PCI_COMMAND_MASTER) == 0)
		return;
 
	/* Set correct cache line size, 64-byte on all
	 * Sparc64 PCI systems.  Note that the value is
	 * measured in 32-bit words.
	 */
	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
			      64 / sizeof(u32));
 
	pci_read_config_byte(pdev, PCI_HEADER_TYPE, &hdr_type);
	hdr_type &= ~0x80;
	if (hdr_type != PCI_HEADER_TYPE_NORMAL)
		return;
 
	/* If the latency timer is already programmed with a non-zero
	 * value, assume whoever set it (OBP or whoever) knows what
	 * they are doing.
	 */
	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ltimer);
	if (ltimer != 0)
		return;
 
	/* XXX Since I'm tipping off the min grant value to
	 * XXX choose a suitable latency timer value, I also
	 * XXX considered making use of the max latency value
	 * XXX as well.  Unfortunately I've seen too many bogusly
	 * XXX low settings for it to the point where it lacks
	 * XXX any usefulness.  In one case, an ethernet card
	 * XXX claimed a min grant of 10 and a max latency of 5.
	 * XXX Now, if I had two such cards on the same bus I
	 * XXX could not set the desired burst period (calculated
	 * XXX from min grant) without violating the max latency
	 * XXX bound.  Duh...
	 * XXX
	 * XXX I blame dumb PC bios implementors for stuff like
	 * XXX this, most of them don't even try to do something
	 * XXX sensible with latency timer values and just set some
	 * XXX default value (usually 32) into every device.
	 */
 
	pci_read_config_byte(pdev, PCI_MIN_GNT, &min_gnt);
 
	if (min_gnt == 0) {
		/* If no min_gnt setting then use a default
		 * value.
		 */
		if (is_66mhz)
			ltimer = 16;
		else
			ltimer = 32;
	} else {
		int shift_factor;
 
		if (is_66mhz)
			shift_factor = 2;
		else
			shift_factor = 3;
 
		/* Use a default value when the min_gnt value
		 * is erroneously high.
		 */
		if (((unsigned int) min_gnt << shift_factor) > 512 ||
		    ((min_gnt << shift_factor) & 0xff) == 0) {
			ltimer = 8 << shift_factor;
		} else {
			ltimer = min_gnt << shift_factor;
		}
	}
 
	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ltimer);
}
 
void pci_determine_66mhz_disposition(struct pci_pbm_info *pbm,
				     struct pci_bus *pbus)
{
	struct list_head *walk;
	int all_are_66mhz;
	u16 status;
 
	if (pbm->is_66mhz_capable == 0) {
		all_are_66mhz = 0;
		goto out;
	}
 
	walk = &pbus->devices;
	all_are_66mhz = 1;
	for (walk = walk->next; walk != &pbus->devices; walk = walk->next) {
		struct pci_dev *pdev = pci_dev_b(walk);
 
		pci_read_config_word(pdev, PCI_STATUS, &status);
		if (!(status & PCI_STATUS_66MHZ)) {
			all_are_66mhz = 0;
			break;
		}
	}
out:
	pbm->all_devs_66mhz = all_are_66mhz;
 
	printk("PCI%d(PBM%c): Bus running at %dMHz\n",
	       pbm->parent->index,
	       (pbm == &pbm->parent->pbm_A) ? 'A' : 'B',
	       (all_are_66mhz ? 66 : 33));
}
 
void pci_setup_busmastering(struct pci_pbm_info *pbm,
			    struct pci_bus *pbus)
{
	struct list_head *walk = &pbus->devices;
	int is_66mhz;
 
	is_66mhz = pbm->is_66mhz_capable && pbm->all_devs_66mhz;
 
	for (walk = walk->next; walk != &pbus->devices; walk = walk->next)
		pdev_setup_busmastering(pci_dev_b(walk), is_66mhz);
 
	walk = &pbus->children;
	for (walk = walk->next; walk != &pbus->children; walk = walk->next)
		pci_setup_busmastering(pbm, pci_bus_b(walk));
}
 
void pci_register_legacy_regions(struct resource *io_res,
				 struct resource *mem_res)
{
	struct resource *p;
 
	/* VGA Video RAM. */
	p = kmalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return;
 
	memset(p, 0, sizeof(*p));
	p->name = "Video RAM area";
	p->start = mem_res->start + 0xa0000UL;
	p->end = p->start + 0x1ffffUL;
	p->flags = IORESOURCE_BUSY;
	request_resource(mem_res, p);
 
	p = kmalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return;
 
	memset(p, 0, sizeof(*p));
	p->name = "System ROM";
	p->start = mem_res->start + 0xf0000UL;
	p->end = p->start + 0xffffUL;
	p->flags = IORESOURCE_BUSY;
	request_resource(mem_res, p);
 
	p = kmalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return;
 
	memset(p, 0, sizeof(*p));
	p->name = "Video ROM";
	p->start = mem_res->start + 0xc0000UL;
	p->end = p->start + 0x7fffUL;
	p->flags = IORESOURCE_BUSY;
	request_resource(mem_res, p);
}
 
/* Generic helper routines for PCI error reporting. */
void pci_scan_for_target_abort(struct pci_controller_info *p,
			       struct pci_pbm_info *pbm,
			       struct pci_bus *pbus)
{
	struct list_head *walk = &pbus->devices;
 
	for (walk = walk->next; walk != &pbus->devices; walk = walk->next) {
		struct pci_dev *pdev = pci_dev_b(walk);
		u16 status, error_bits;
 
		pci_read_config_word(pdev, PCI_STATUS, &status);
		error_bits =
			(status & (PCI_STATUS_SIG_TARGET_ABORT |
				   PCI_STATUS_REC_TARGET_ABORT));
		if (error_bits) {
			pci_write_config_word(pdev, PCI_STATUS, error_bits);
			printk("PCI%d(PBM%c): Device [%s] saw Target Abort [%016x]\n",
			       p->index, ((pbm == &p->pbm_A) ? 'A' : 'B'),
			       pdev->name, status);
		}
	}
 
	walk = &pbus->children;
	for (walk = walk->next; walk != &pbus->children; walk = walk->next)
		pci_scan_for_target_abort(p, pbm, pci_bus_b(walk));
}
 
void pci_scan_for_master_abort(struct pci_controller_info *p,
			       struct pci_pbm_info *pbm,
			       struct pci_bus *pbus)
{
	struct list_head *walk = &pbus->devices;
 
	for (walk = walk->next; walk != &pbus->devices; walk = walk->next) {
		struct pci_dev *pdev = pci_dev_b(walk);
		u16 status, error_bits;
 
		pci_read_config_word(pdev, PCI_STATUS, &status);
		error_bits =
			(status & (PCI_STATUS_REC_MASTER_ABORT));
		if (error_bits) {
			pci_write_config_word(pdev, PCI_STATUS, error_bits);
			printk("PCI%d(PBM%c): Device [%s] received Master Abort [%016x]\n",
			       p->index, ((pbm == &p->pbm_A) ? 'A' : 'B'),
			       pdev->name, status);
		}
	}
 
	walk = &pbus->children;
	for (walk = walk->next; walk != &pbus->children; walk = walk->next)
		pci_scan_for_master_abort(p, pbm, pci_bus_b(walk));
}
 
void pci_scan_for_parity_error(struct pci_controller_info *p,
			       struct pci_pbm_info *pbm,
			       struct pci_bus *pbus)
{
	struct list_head *walk = &pbus->devices;
 
	for (walk = walk->next; walk != &pbus->devices; walk = walk->next) {
		struct pci_dev *pdev = pci_dev_b(walk);
		u16 status, error_bits;
 
		pci_read_config_word(pdev, PCI_STATUS, &status);
		error_bits =
			(status & (PCI_STATUS_PARITY |
				   PCI_STATUS_DETECTED_PARITY));
		if (error_bits) {
			pci_write_config_word(pdev, PCI_STATUS, error_bits);
			printk("PCI%d(PBM%c): Device [%s] saw Parity Error [%016x]\n",
			       p->index, ((pbm == &p->pbm_A) ? 'A' : 'B'),
			       pdev->name, status);
		}
	}
 
	walk = &pbus->children;
	for (walk = walk->next; walk != &pbus->children; walk = walk->next)
		pci_scan_for_parity_error(p, pbm, pci_bus_b(walk));
}
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.