URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [sparc64/] [kernel/] [pci_iommu.c] - Rev 1275
Go to most recent revision | Compare with Previous | Blame | View Log
/* $Id: pci_iommu.c,v 1.1.1.1 2004-04-15 01:34:05 phoenix Exp $ * pci_iommu.c: UltraSparc PCI controller IOM/STC support. * * Copyright (C) 1999 David S. Miller (davem@redhat.com) * Copyright (C) 1999, 2000 Jakub Jelinek (jakub@redhat.com) */ #include <linux/kernel.h> #include <linux/sched.h> #include <linux/mm.h> #include <asm/pbm.h> #include "iommu_common.h" #define PCI_STC_CTXMATCH_ADDR(STC, CTX) \ ((STC)->strbuf_ctxmatch_base + ((CTX) << 3)) /* Accessing IOMMU and Streaming Buffer registers. * REG parameter is a physical address. All registers * are 64-bits in size. */ #define pci_iommu_read(__reg) \ ({ u64 __ret; \ __asm__ __volatile__("ldxa [%1] %2, %0" \ : "=r" (__ret) \ : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \ : "memory"); \ __ret; \ }) #define pci_iommu_write(__reg, __val) \ __asm__ __volatile__("stxa %0, [%1] %2" \ : /* no outputs */ \ : "r" (__val), "r" (__reg), \ "i" (ASI_PHYS_BYPASS_EC_E)) /* Must be invoked under the IOMMU lock. */ static void __iommu_flushall(struct pci_iommu *iommu) { unsigned long tag; int entry; tag = iommu->iommu_flush + (0xa580UL - 0x0210UL); for (entry = 0; entry < 16; entry++) { pci_iommu_write(tag, 0); tag += 8; } /* Ensure completion of previous PIO writes. */ (void) pci_iommu_read(iommu->write_complete_reg); /* Now update everyone's flush point. */ for (entry = 0; entry < PBM_NCLUSTERS; entry++) { iommu->alloc_info[entry].flush = iommu->alloc_info[entry].next; } } static iopte_t *alloc_streaming_cluster(struct pci_iommu *iommu, unsigned long npages) { iopte_t *iopte, *limit, *first; unsigned long cnum, ent, flush_point; cnum = 0; while ((1UL << cnum) < npages) cnum++; iopte = (iommu->page_table + (cnum << (iommu->page_table_sz_bits - PBM_LOGCLUSTERS))); if (cnum == 0) limit = (iommu->page_table + iommu->lowest_consistent_map); else limit = (iopte + (1 << (iommu->page_table_sz_bits - PBM_LOGCLUSTERS))); iopte += ((ent = iommu->alloc_info[cnum].next) << cnum); flush_point = iommu->alloc_info[cnum].flush; first = iopte; for (;;) { if (iopte_val(*iopte) == 0UL) { if ((iopte + (1 << cnum)) >= limit) ent = 0; else ent = ent + 1; iommu->alloc_info[cnum].next = ent; if (ent == flush_point) __iommu_flushall(iommu); break; } iopte += (1 << cnum); ent++; if (iopte >= limit) { iopte = (iommu->page_table + (cnum << (iommu->page_table_sz_bits - PBM_LOGCLUSTERS))); ent = 0; } if (ent == flush_point) __iommu_flushall(iommu); if (iopte == first) goto bad; } /* I've got your streaming cluster right here buddy boy... */ return iopte; bad: printk(KERN_EMERG "pci_iommu: alloc_streaming_cluster of npages(%ld) failed!\n", npages); return NULL; } static void free_streaming_cluster(struct pci_iommu *iommu, dma_addr_t base, unsigned long npages, unsigned long ctx) { unsigned long cnum, ent; cnum = 0; while ((1UL << cnum) < npages) cnum++; ent = (base << (32 - IO_PAGE_SHIFT + PBM_LOGCLUSTERS - iommu->page_table_sz_bits)) >> (32 + PBM_LOGCLUSTERS + cnum - iommu->page_table_sz_bits); /* If the global flush might not have caught this entry, * adjust the flush point such that we will flush before * ever trying to reuse it. */ #define between(X,Y,Z) (((Z) - (Y)) >= ((X) - (Y))) if (between(ent, iommu->alloc_info[cnum].next, iommu->alloc_info[cnum].flush)) iommu->alloc_info[cnum].flush = ent; #undef between } /* We allocate consistent mappings from the end of cluster zero. */ static iopte_t *alloc_consistent_cluster(struct pci_iommu *iommu, unsigned long npages) { iopte_t *iopte; iopte = iommu->page_table + (1 << (iommu->page_table_sz_bits - PBM_LOGCLUSTERS)); while (iopte > iommu->page_table) { iopte--; if (!(iopte_val(*iopte) & IOPTE_VALID)) { unsigned long tmp = npages; while (--tmp) { iopte--; if (iopte_val(*iopte) & IOPTE_VALID) break; } if (tmp == 0) { u32 entry = (iopte - iommu->page_table); if (entry < iommu->lowest_consistent_map) iommu->lowest_consistent_map = entry; return iopte; } } } return NULL; } #define IOPTE_CONSISTENT(CTX) \ (IOPTE_VALID | IOPTE_CACHE | \ (((CTX) << 47) & IOPTE_CONTEXT)) #define IOPTE_STREAMING(CTX) \ (IOPTE_CONSISTENT(CTX) | IOPTE_STBUF) #define IOPTE_INVALID 0UL /* Allocate and map kernel buffer of size SIZE using consistent mode * DMA for PCI device PDEV. Return non-NULL cpu-side address if * successful and set *DMA_ADDRP to the PCI side dma address. */ void *pci_alloc_consistent(struct pci_dev *pdev, size_t size, dma_addr_t *dma_addrp) { struct pcidev_cookie *pcp; struct pci_iommu *iommu; iopte_t *iopte; unsigned long flags, order, first_page, ctx; void *ret; int npages; size = IO_PAGE_ALIGN(size); order = get_order(size); if (order >= 10) return NULL; first_page = __get_free_pages(GFP_ATOMIC, order); if (first_page == 0UL) return NULL; memset((char *)first_page, 0, PAGE_SIZE << order); pcp = pdev->sysdata; iommu = pcp->pbm->iommu; spin_lock_irqsave(&iommu->lock, flags); iopte = alloc_consistent_cluster(iommu, size >> IO_PAGE_SHIFT); if (iopte == NULL) { spin_unlock_irqrestore(&iommu->lock, flags); free_pages(first_page, order); return NULL; } *dma_addrp = (iommu->page_table_map_base + ((iopte - iommu->page_table) << IO_PAGE_SHIFT)); ret = (void *) first_page; npages = size >> IO_PAGE_SHIFT; ctx = 0; if (iommu->iommu_ctxflush) ctx = iommu->iommu_cur_ctx++; first_page = __pa(first_page); while (npages--) { iopte_val(*iopte) = (IOPTE_CONSISTENT(ctx) | IOPTE_WRITE | (first_page & IOPTE_PAGE)); iopte++; first_page += IO_PAGE_SIZE; } { int i; u32 daddr = *dma_addrp; npages = size >> IO_PAGE_SHIFT; for (i = 0; i < npages; i++) { pci_iommu_write(iommu->iommu_flush, daddr); daddr += IO_PAGE_SIZE; } } spin_unlock_irqrestore(&iommu->lock, flags); return ret; } /* Free and unmap a consistent DMA translation. */ void pci_free_consistent(struct pci_dev *pdev, size_t size, void *cpu, dma_addr_t dvma) { struct pcidev_cookie *pcp; struct pci_iommu *iommu; iopte_t *iopte; unsigned long flags, order, npages, i, ctx; npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT; pcp = pdev->sysdata; iommu = pcp->pbm->iommu; iopte = iommu->page_table + ((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT); spin_lock_irqsave(&iommu->lock, flags); if ((iopte - iommu->page_table) == iommu->lowest_consistent_map) { iopte_t *walk = iopte + npages; iopte_t *limit; limit = (iommu->page_table + (1 << (iommu->page_table_sz_bits - PBM_LOGCLUSTERS))); while (walk < limit) { if (iopte_val(*walk) != IOPTE_INVALID) break; walk++; } iommu->lowest_consistent_map = (walk - iommu->page_table); } /* Data for consistent mappings cannot enter the streaming * buffers, so we only need to update the TSB. We flush * the IOMMU here as well to prevent conflicts with the * streaming mapping deferred tlb flush scheme. */ ctx = 0; if (iommu->iommu_ctxflush) ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL; for (i = 0; i < npages; i++, iopte++) iopte_val(*iopte) = IOPTE_INVALID; if (iommu->iommu_ctxflush) { pci_iommu_write(iommu->iommu_ctxflush, ctx); } else { for (i = 0; i < npages; i++) { u32 daddr = dvma + (i << IO_PAGE_SHIFT); pci_iommu_write(iommu->iommu_flush, daddr); } } spin_unlock_irqrestore(&iommu->lock, flags); order = get_order(size); if (order < 10) free_pages((unsigned long)cpu, order); } /* Map a single buffer at PTR of SZ bytes for PCI DMA * in streaming mode. */ dma_addr_t pci_map_single(struct pci_dev *pdev, void *ptr, size_t sz, int direction) { struct pcidev_cookie *pcp; struct pci_iommu *iommu; struct pci_strbuf *strbuf; iopte_t *base; unsigned long flags, npages, oaddr; unsigned long i, base_paddr, ctx; u32 bus_addr, ret; unsigned long iopte_protection; pcp = pdev->sysdata; iommu = pcp->pbm->iommu; strbuf = &pcp->pbm->stc; if (direction == PCI_DMA_NONE) BUG(); oaddr = (unsigned long)ptr; npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK); npages >>= IO_PAGE_SHIFT; spin_lock_irqsave(&iommu->lock, flags); base = alloc_streaming_cluster(iommu, npages); if (base == NULL) goto bad; bus_addr = (iommu->page_table_map_base + ((base - iommu->page_table) << IO_PAGE_SHIFT)); ret = bus_addr | (oaddr & ~IO_PAGE_MASK); base_paddr = __pa(oaddr & IO_PAGE_MASK); ctx = 0; if (iommu->iommu_ctxflush) ctx = iommu->iommu_cur_ctx++; if (strbuf->strbuf_enabled) iopte_protection = IOPTE_STREAMING(ctx); else iopte_protection = IOPTE_CONSISTENT(ctx); if (direction != PCI_DMA_TODEVICE) iopte_protection |= IOPTE_WRITE; for (i = 0; i < npages; i++, base++, base_paddr += IO_PAGE_SIZE) iopte_val(*base) = iopte_protection | base_paddr; spin_unlock_irqrestore(&iommu->lock, flags); return ret; bad: spin_unlock_irqrestore(&iommu->lock, flags); BUG(); return 0; } /* Unmap a single streaming mode DMA translation. */ void pci_unmap_single(struct pci_dev *pdev, dma_addr_t bus_addr, size_t sz, int direction) { struct pcidev_cookie *pcp; struct pci_iommu *iommu; struct pci_strbuf *strbuf; iopte_t *base; unsigned long flags, npages, i, ctx; if (direction == PCI_DMA_NONE) BUG(); pcp = pdev->sysdata; iommu = pcp->pbm->iommu; strbuf = &pcp->pbm->stc; npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK); npages >>= IO_PAGE_SHIFT; base = iommu->page_table + ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT); #ifdef DEBUG_PCI_IOMMU if (iopte_val(*base) == IOPTE_INVALID) printk("pci_unmap_single called on non-mapped region %08x,%08x from %016lx\n", bus_addr, sz, __builtin_return_address(0)); #endif bus_addr &= IO_PAGE_MASK; spin_lock_irqsave(&iommu->lock, flags); /* Record the context, if any. */ ctx = 0; if (iommu->iommu_ctxflush) ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL; /* Step 1: Kick data out of streaming buffers if necessary. */ if (strbuf->strbuf_enabled) { u32 vaddr = bus_addr; PCI_STC_FLUSHFLAG_INIT(strbuf); if (strbuf->strbuf_ctxflush && iommu->iommu_ctxflush) { unsigned long matchreg, flushreg; flushreg = strbuf->strbuf_ctxflush; matchreg = PCI_STC_CTXMATCH_ADDR(strbuf, ctx); do { pci_iommu_write(flushreg, ctx); } while(((long)pci_iommu_read(matchreg)) < 0L); } else { for (i = 0; i < npages; i++, vaddr += IO_PAGE_SIZE) pci_iommu_write(strbuf->strbuf_pflush, vaddr); } pci_iommu_write(strbuf->strbuf_fsync, strbuf->strbuf_flushflag_pa); (void) pci_iommu_read(iommu->write_complete_reg); while (!PCI_STC_FLUSHFLAG_SET(strbuf)) membar("#LoadLoad"); } /* Step 2: Clear out first TSB entry. */ iopte_val(*base) = IOPTE_INVALID; free_streaming_cluster(iommu, bus_addr - iommu->page_table_map_base, npages, ctx); spin_unlock_irqrestore(&iommu->lock, flags); } #define SG_ENT_PHYS_ADDRESS(SG) \ ((SG)->address ? \ __pa((SG)->address) : \ (__pa(page_address((SG)->page)) + (SG)->offset)) static inline void fill_sg(iopte_t *iopte, struct scatterlist *sg, int nused, int nelems, unsigned long iopte_protection) { struct scatterlist *dma_sg = sg; struct scatterlist *sg_end = sg + nelems; int i; for (i = 0; i < nused; i++) { unsigned long pteval = ~0UL; u32 dma_npages; dma_npages = ((dma_sg->dma_address & (IO_PAGE_SIZE - 1UL)) + dma_sg->dma_length + ((IO_PAGE_SIZE - 1UL))) >> IO_PAGE_SHIFT; do { unsigned long offset; signed int len; /* If we are here, we know we have at least one * more page to map. So walk forward until we * hit a page crossing, and begin creating new * mappings from that spot. */ for (;;) { unsigned long tmp; tmp = SG_ENT_PHYS_ADDRESS(sg); len = sg->length; if (((tmp ^ pteval) >> IO_PAGE_SHIFT) != 0UL) { pteval = tmp & IO_PAGE_MASK; offset = tmp & (IO_PAGE_SIZE - 1UL); break; } if (((tmp ^ (tmp + len - 1UL)) >> IO_PAGE_SHIFT) != 0UL) { pteval = (tmp + IO_PAGE_SIZE) & IO_PAGE_MASK; offset = 0UL; len -= (IO_PAGE_SIZE - (tmp & (IO_PAGE_SIZE - 1UL))); break; } sg++; } pteval = iopte_protection | (pteval & IOPTE_PAGE); while (len > 0) { *iopte++ = __iopte(pteval); pteval += IO_PAGE_SIZE; len -= (IO_PAGE_SIZE - offset); offset = 0; dma_npages--; } pteval = (pteval & IOPTE_PAGE) + len; sg++; /* Skip over any tail mappings we've fully mapped, * adjusting pteval along the way. Stop when we * detect a page crossing event. */ while (sg < sg_end && (pteval << (64 - IO_PAGE_SHIFT)) != 0UL && (pteval == SG_ENT_PHYS_ADDRESS(sg)) && ((pteval ^ (SG_ENT_PHYS_ADDRESS(sg) + sg->length - 1UL)) >> IO_PAGE_SHIFT) == 0UL) { pteval += sg->length; sg++; } if ((pteval << (64 - IO_PAGE_SHIFT)) == 0UL) pteval = ~0UL; } while (dma_npages != 0); dma_sg++; } } /* Map a set of buffers described by SGLIST with NELEMS array * elements in streaming mode for PCI DMA. * When making changes here, inspect the assembly output. I was having * hard time to kepp this routine out of using stack slots for holding variables. */ int pci_map_sg(struct pci_dev *pdev, struct scatterlist *sglist, int nelems, int direction) { struct pcidev_cookie *pcp; struct pci_iommu *iommu; struct pci_strbuf *strbuf; unsigned long flags, ctx, npages, iopte_protection; iopte_t *base; u32 dma_base; struct scatterlist *sgtmp; int used; /* Fast path single entry scatterlists. */ if (nelems == 1) { sglist->dma_address = pci_map_single(pdev, (sglist->address ? sglist->address : (page_address(sglist->page) + sglist->offset)), sglist->length, direction); sglist->dma_length = sglist->length; return 1; } pcp = pdev->sysdata; iommu = pcp->pbm->iommu; strbuf = &pcp->pbm->stc; if (direction == PCI_DMA_NONE) BUG(); /* Step 1: Prepare scatter list. */ npages = prepare_sg(sglist, nelems); /* Step 2: Allocate a cluster. */ spin_lock_irqsave(&iommu->lock, flags); base = alloc_streaming_cluster(iommu, npages); if (base == NULL) goto bad; dma_base = iommu->page_table_map_base + ((base - iommu->page_table) << IO_PAGE_SHIFT); /* Step 3: Normalize DMA addresses. */ used = nelems; sgtmp = sglist; while (used && sgtmp->dma_length) { sgtmp->dma_address += dma_base; sgtmp++; used--; } used = nelems - used; /* Step 4: Choose a context if necessary. */ ctx = 0; if (iommu->iommu_ctxflush) ctx = iommu->iommu_cur_ctx++; /* Step 5: Create the mappings. */ if (strbuf->strbuf_enabled) iopte_protection = IOPTE_STREAMING(ctx); else iopte_protection = IOPTE_CONSISTENT(ctx); if (direction != PCI_DMA_TODEVICE) iopte_protection |= IOPTE_WRITE; fill_sg (base, sglist, used, nelems, iopte_protection); #ifdef VERIFY_SG verify_sglist(sglist, nelems, base, npages); #endif spin_unlock_irqrestore(&iommu->lock, flags); return used; bad: spin_unlock_irqrestore(&iommu->lock, flags); BUG(); return 0; } /* Unmap a set of streaming mode DMA translations. */ void pci_unmap_sg(struct pci_dev *pdev, struct scatterlist *sglist, int nelems, int direction) { struct pcidev_cookie *pcp; struct pci_iommu *iommu; struct pci_strbuf *strbuf; iopte_t *base; unsigned long flags, ctx, i, npages; u32 bus_addr; if (direction == PCI_DMA_NONE) BUG(); pcp = pdev->sysdata; iommu = pcp->pbm->iommu; strbuf = &pcp->pbm->stc; bus_addr = sglist->dma_address & IO_PAGE_MASK; for (i = 1; i < nelems; i++) if (sglist[i].dma_length == 0) break; i--; npages = (IO_PAGE_ALIGN(sglist[i].dma_address + sglist[i].dma_length) - bus_addr) >> IO_PAGE_SHIFT; base = iommu->page_table + ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT); #ifdef DEBUG_PCI_IOMMU if (iopte_val(*base) == IOPTE_INVALID) printk("pci_unmap_sg called on non-mapped region %016lx,%d from %016lx\n", sglist->dma_address, nelems, __builtin_return_address(0)); #endif spin_lock_irqsave(&iommu->lock, flags); /* Record the context, if any. */ ctx = 0; if (iommu->iommu_ctxflush) ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL; /* Step 1: Kick data out of streaming buffers if necessary. */ if (strbuf->strbuf_enabled) { u32 vaddr = (u32) bus_addr; PCI_STC_FLUSHFLAG_INIT(strbuf); if (strbuf->strbuf_ctxflush && iommu->iommu_ctxflush) { unsigned long matchreg, flushreg; flushreg = strbuf->strbuf_ctxflush; matchreg = PCI_STC_CTXMATCH_ADDR(strbuf, ctx); do { pci_iommu_write(flushreg, ctx); } while(((long)pci_iommu_read(matchreg)) < 0L); } else { for (i = 0; i < npages; i++, vaddr += IO_PAGE_SIZE) pci_iommu_write(strbuf->strbuf_pflush, vaddr); } pci_iommu_write(strbuf->strbuf_fsync, strbuf->strbuf_flushflag_pa); (void) pci_iommu_read(iommu->write_complete_reg); while (!PCI_STC_FLUSHFLAG_SET(strbuf)) membar("#LoadLoad"); } /* Step 2: Clear out first TSB entry. */ iopte_val(*base) = IOPTE_INVALID; free_streaming_cluster(iommu, bus_addr - iommu->page_table_map_base, npages, ctx); spin_unlock_irqrestore(&iommu->lock, flags); } /* Make physical memory consistent for a single * streaming mode DMA translation after a transfer. */ void pci_dma_sync_single(struct pci_dev *pdev, dma_addr_t bus_addr, size_t sz, int direction) { struct pcidev_cookie *pcp; struct pci_iommu *iommu; struct pci_strbuf *strbuf; unsigned long flags, ctx, npages; pcp = pdev->sysdata; iommu = pcp->pbm->iommu; strbuf = &pcp->pbm->stc; if (!strbuf->strbuf_enabled) return; spin_lock_irqsave(&iommu->lock, flags); npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK); npages >>= IO_PAGE_SHIFT; bus_addr &= IO_PAGE_MASK; /* Step 1: Record the context, if any. */ ctx = 0; if (iommu->iommu_ctxflush && strbuf->strbuf_ctxflush) { iopte_t *iopte; iopte = iommu->page_table + ((bus_addr - iommu->page_table_map_base)>>IO_PAGE_SHIFT); ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL; } /* Step 2: Kick data out of streaming buffers. */ PCI_STC_FLUSHFLAG_INIT(strbuf); if (iommu->iommu_ctxflush && strbuf->strbuf_ctxflush) { unsigned long matchreg, flushreg; flushreg = strbuf->strbuf_ctxflush; matchreg = PCI_STC_CTXMATCH_ADDR(strbuf, ctx); do { pci_iommu_write(flushreg, ctx); } while(((long)pci_iommu_read(matchreg)) < 0L); } else { unsigned long i; for (i = 0; i < npages; i++, bus_addr += IO_PAGE_SIZE) pci_iommu_write(strbuf->strbuf_pflush, bus_addr); } /* Step 3: Perform flush synchronization sequence. */ pci_iommu_write(strbuf->strbuf_fsync, strbuf->strbuf_flushflag_pa); (void) pci_iommu_read(iommu->write_complete_reg); while (!PCI_STC_FLUSHFLAG_SET(strbuf)) membar("#LoadLoad"); spin_unlock_irqrestore(&iommu->lock, flags); } /* Make physical memory consistent for a set of streaming * mode DMA translations after a transfer. */ void pci_dma_sync_sg(struct pci_dev *pdev, struct scatterlist *sglist, int nelems, int direction) { struct pcidev_cookie *pcp; struct pci_iommu *iommu; struct pci_strbuf *strbuf; unsigned long flags, ctx; pcp = pdev->sysdata; iommu = pcp->pbm->iommu; strbuf = &pcp->pbm->stc; if (!strbuf->strbuf_enabled) return; spin_lock_irqsave(&iommu->lock, flags); /* Step 1: Record the context, if any. */ ctx = 0; if (iommu->iommu_ctxflush && strbuf->strbuf_ctxflush) { iopte_t *iopte; iopte = iommu->page_table + ((sglist[0].dma_address - iommu->page_table_map_base) >> IO_PAGE_SHIFT); ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL; } /* Step 2: Kick data out of streaming buffers. */ PCI_STC_FLUSHFLAG_INIT(strbuf); if (iommu->iommu_ctxflush && strbuf->strbuf_ctxflush) { unsigned long matchreg, flushreg; flushreg = strbuf->strbuf_ctxflush; matchreg = PCI_STC_CTXMATCH_ADDR(strbuf, ctx); do { pci_iommu_write(flushreg, ctx); } while (((long)pci_iommu_read(matchreg)) < 0L); } else { unsigned long i, npages; u32 bus_addr; bus_addr = sglist[0].dma_address & IO_PAGE_MASK; for(i = 1; i < nelems; i++) if (!sglist[i].dma_length) break; i--; npages = (IO_PAGE_ALIGN(sglist[i].dma_address + sglist[i].dma_length) - bus_addr) >> IO_PAGE_SHIFT; for (i = 0; i < npages; i++, bus_addr += IO_PAGE_SIZE) pci_iommu_write(strbuf->strbuf_pflush, bus_addr); } /* Step 3: Perform flush synchronization sequence. */ pci_iommu_write(strbuf->strbuf_fsync, strbuf->strbuf_flushflag_pa); (void) pci_iommu_read(iommu->write_complete_reg); while (!PCI_STC_FLUSHFLAG_SET(strbuf)) membar("#LoadLoad"); spin_unlock_irqrestore(&iommu->lock, flags); } static void ali_sound_dma_hack(struct pci_dev *pdev, int set_bit) { struct pci_dev *ali_isa_bridge; u8 val; /* ALI sound chips generate 31-bits of DMA, a special register * determines what bit 31 is emitted as. */ ali_isa_bridge = pci_find_device(PCI_VENDOR_ID_AL, PCI_DEVICE_ID_AL_M1533, NULL); pci_read_config_byte(ali_isa_bridge, 0x7e, &val); if (set_bit) val |= 0x01; else val &= ~0x01; pci_write_config_byte(ali_isa_bridge, 0x7e, val); } int pci_dma_supported(struct pci_dev *pdev, u64 device_mask) { struct pcidev_cookie *pcp = pdev->sysdata; u64 dma_addr_mask; if (pdev == NULL) { dma_addr_mask = 0xffffffff; } else { struct pci_iommu *iommu = pcp->pbm->iommu; dma_addr_mask = iommu->dma_addr_mask; if (pdev->vendor == PCI_VENDOR_ID_AL && pdev->device == PCI_DEVICE_ID_AL_M5451 && device_mask == 0x7fffffff) { ali_sound_dma_hack(pdev, (dma_addr_mask & 0x80000000) != 0); return 1; } } if (device_mask >= (1UL << 32UL)) return 0; return (device_mask & dma_addr_mask) == dma_addr_mask; }
Go to most recent revision | Compare with Previous | Blame | View Log