URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [sparc64/] [kernel/] [time.c] - Rev 1765
Compare with Previous | Blame | View Log
/* $Id: time.c,v 1.1.1.1 2004-04-15 01:34:39 phoenix Exp $ * time.c: UltraSparc timer and TOD clock support. * * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) * * Based largely on code which is: * * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu) */ #include <linux/config.h> #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/param.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/timex.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/mc146818rtc.h> #include <linux/delay.h> #include <linux/timer.h> #include <asm/oplib.h> #include <asm/mostek.h> #include <asm/timer.h> #include <asm/irq.h> #include <asm/io.h> #include <asm/sbus.h> #include <asm/fhc.h> #include <asm/pbm.h> #include <asm/ebus.h> #include <asm/isa.h> #include <asm/starfire.h> #include <asm/smp.h> extern rwlock_t xtime_lock; extern unsigned long wall_jiffies; spinlock_t mostek_lock = SPIN_LOCK_UNLOCKED; spinlock_t rtc_lock = SPIN_LOCK_UNLOCKED; unsigned long mstk48t02_regs = 0UL; #ifdef CONFIG_PCI unsigned long ds1287_regs = 0UL; #endif static unsigned long mstk48t08_regs = 0UL; static unsigned long mstk48t59_regs = 0UL; static int set_rtc_mmss(unsigned long); struct sparc64_tick_ops *tick_ops; #define TICK_PRIV_BIT (1UL << 63) static void tick_disable_protection(void) { /* Set things up so user can access tick register for profiling * purposes. Also workaround BB_ERRATA_1 by doing a dummy * read back of %tick after writing it. */ __asm__ __volatile__( " ba,pt %%xcc, 1f\n" " nop\n" " .align 64\n" "1: rd %%tick, %%g2\n" " add %%g2, 6, %%g2\n" " andn %%g2, %0, %%g2\n" " wrpr %%g2, 0, %%tick\n" " rdpr %%tick, %%g0" : /* no outputs */ : "r" (TICK_PRIV_BIT) : "g2"); } static void tick_init_tick(unsigned long offset) { tick_disable_protection(); __asm__ __volatile__( " rd %%tick, %%g1\n" " andn %%g1, %1, %%g1\n" " ba,pt %%xcc, 1f\n" " add %%g1, %0, %%g1\n" " .align 64\n" "1: wr %%g1, 0x0, %%tick_cmpr\n" " rd %%tick_cmpr, %%g0" : /* no outputs */ : "r" (offset), "r" (TICK_PRIV_BIT) : "g1"); } static unsigned long tick_get_tick(void) { unsigned long ret; __asm__ __volatile__("rd %%tick, %0\n\t" "mov %0, %0" : "=r" (ret)); return ret & ~TICK_PRIV_BIT; } static unsigned long tick_get_compare(void) { unsigned long ret; __asm__ __volatile__("rd %%tick_cmpr, %0\n\t" "mov %0, %0" : "=r" (ret)); return ret; } static unsigned long tick_add_compare(unsigned long adj) { unsigned long new_compare; /* Workaround for Spitfire Errata (#54 I think??), I discovered * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch * number 103640. * * On Blackbird writes to %tick_cmpr can fail, the * workaround seems to be to execute the wr instruction * at the start of an I-cache line, and perform a dummy * read back from %tick_cmpr right after writing to it. -DaveM */ __asm__ __volatile__("rd %%tick_cmpr, %0\n\t" "ba,pt %%xcc, 1f\n\t" " add %0, %1, %0\n\t" ".align 64\n" "1:\n\t" "wr %0, 0, %%tick_cmpr\n\t" "rd %%tick_cmpr, %%g0" : "=&r" (new_compare) : "r" (adj)); return new_compare; } static unsigned long tick_add_tick(unsigned long adj, unsigned long offset) { unsigned long new_tick, tmp; /* Also need to handle Blackbird bug here too. */ __asm__ __volatile__("rd %%tick, %0\n\t" "add %0, %2, %0\n\t" "wrpr %0, 0, %%tick\n\t" "andn %0, %4, %1\n\t" "ba,pt %%xcc, 1f\n\t" " add %1, %3, %1\n\t" ".align 64\n" "1:\n\t" "wr %1, 0, %%tick_cmpr\n\t" "rd %%tick_cmpr, %%g0" : "=&r" (new_tick), "=&r" (tmp) : "r" (adj), "r" (offset), "r" (TICK_PRIV_BIT)); return new_tick; } static struct sparc64_tick_ops tick_operations = { .init_tick = tick_init_tick, .get_tick = tick_get_tick, .get_compare = tick_get_compare, .add_tick = tick_add_tick, .add_compare = tick_add_compare, .softint_mask = 1UL << 0, }; static void stick_init_tick(unsigned long offset) { tick_disable_protection(); /* Let the user get at STICK too. */ __asm__ __volatile__( " rd %%asr24, %%g2\n" " andn %%g2, %0, %%g2\n" " wr %%g2, 0, %%asr24" : /* no outputs */ : "r" (TICK_PRIV_BIT) : "g1", "g2"); __asm__ __volatile__( " rd %%asr24, %%g1\n" " andn %%g1, %1, %%g1\n" " add %%g1, %0, %%g1\n" " wr %%g1, 0x0, %%asr25" : /* no outputs */ : "r" (offset), "r" (TICK_PRIV_BIT) : "g1"); } static unsigned long stick_get_tick(void) { unsigned long ret; __asm__ __volatile__("rd %%asr24, %0" : "=r" (ret)); return ret & ~TICK_PRIV_BIT; } static unsigned long stick_get_compare(void) { unsigned long ret; __asm__ __volatile__("rd %%asr25, %0" : "=r" (ret)); return ret; } static unsigned long stick_add_tick(unsigned long adj, unsigned long offset) { unsigned long new_tick, tmp; __asm__ __volatile__("rd %%asr24, %0\n\t" "add %0, %2, %0\n\t" "wr %0, 0, %%asr24\n\t" "andn %0, %4, %1\n\t" "add %1, %3, %1\n\t" "wr %1, 0, %%asr25" : "=&r" (new_tick), "=&r" (tmp) : "r" (adj), "r" (offset), "r" (TICK_PRIV_BIT)); return new_tick; } static unsigned long stick_add_compare(unsigned long adj) { unsigned long new_compare; __asm__ __volatile__("rd %%asr25, %0\n\t" "add %0, %1, %0\n\t" "wr %0, 0, %%asr25" : "=&r" (new_compare) : "r" (adj)); return new_compare; } static struct sparc64_tick_ops stick_operations = { .init_tick = stick_init_tick, .get_tick = stick_get_tick, .get_compare = stick_get_compare, .add_tick = stick_add_tick, .add_compare = stick_add_compare, .softint_mask = 1UL << 16, }; /* On Hummingbird the STICK/STICK_CMPR register is implemented * in I/O space. There are two 64-bit registers each, the * first holds the low 32-bits of the value and the second holds * the high 32-bits. * * Since STICK is constantly updating, we have to access it carefully. * * The sequence we use to read is: * 1) read low * 2) read high * 3) read low again, if it rolled over increment high by 1 * * Writing STICK safely is also tricky: * 1) write low to zero * 2) write high * 3) write low */ #define HBIRD_STICKCMP_ADDR 0x1fe0000f060UL #define HBIRD_STICK_ADDR 0x1fe0000f070UL static unsigned long __hbird_read_stick(void) { unsigned long ret, tmp1, tmp2, tmp3; unsigned long addr = HBIRD_STICK_ADDR; __asm__ __volatile__("ldxa [%1] %5, %2\n\t" "add %1, 0x8, %1\n\t" "ldxa [%1] %5, %3\n\t" "sub %1, 0x8, %1\n\t" "ldxa [%1] %5, %4\n\t" "cmp %4, %2\n\t" "blu,a,pn %%xcc, 1f\n\t" " add %3, 1, %3\n" "1:\n\t" "sllx %3, 32, %3\n\t" "or %3, %4, %0\n\t" : "=&r" (ret), "=&r" (addr), "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3) : "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr)); return ret; } static unsigned long __hbird_read_compare(void) { unsigned long low, high; unsigned long addr = HBIRD_STICKCMP_ADDR; __asm__ __volatile__("ldxa [%2] %3, %0\n\t" "add %2, 0x8, %2\n\t" "ldxa [%2] %3, %1" : "=&r" (low), "=&r" (high), "=&r" (addr) : "i" (ASI_PHYS_BYPASS_EC_E), "2" (addr)); return (high << 32UL) | low; } static void __hbird_write_stick(unsigned long val) { unsigned long low = (val & 0xffffffffUL); unsigned long high = (val >> 32UL); unsigned long addr = HBIRD_STICK_ADDR; __asm__ __volatile__("stxa %%g0, [%0] %4\n\t" "add %0, 0x8, %0\n\t" "stxa %3, [%0] %4\n\t" "sub %0, 0x8, %0\n\t" "stxa %2, [%0] %4" : "=&r" (addr) : "0" (addr), "r" (low), "r" (high), "i" (ASI_PHYS_BYPASS_EC_E)); } static void __hbird_write_compare(unsigned long val) { unsigned long low = (val & 0xffffffffUL); unsigned long high = (val >> 32UL); unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL; __asm__ __volatile__("stxa %3, [%0] %4\n\t" "sub %0, 0x8, %0\n\t" "stxa %2, [%0] %4" : "=&r" (addr) : "0" (addr), "r" (low), "r" (high), "i" (ASI_PHYS_BYPASS_EC_E)); } static void hbtick_init_tick(unsigned long offset) { unsigned long val; tick_disable_protection(); /* XXX This seems to be necessary to 'jumpstart' Hummingbird * XXX into actually sending STICK interrupts. I think because * XXX of how we store %tick_cmpr in head.S this somehow resets the * XXX {TICK + STICK} interrupt mux. -DaveM */ __hbird_write_stick(__hbird_read_stick()); val = __hbird_read_stick() & ~TICK_PRIV_BIT; __hbird_write_compare(val + offset); } static unsigned long hbtick_get_tick(void) { return __hbird_read_stick() & ~TICK_PRIV_BIT; } static unsigned long hbtick_get_compare(void) { return __hbird_read_compare(); } static unsigned long hbtick_add_tick(unsigned long adj, unsigned long offset) { unsigned long val; val = __hbird_read_stick() + adj; __hbird_write_stick(val); val &= ~TICK_PRIV_BIT; __hbird_write_compare(val + offset); return val; } static unsigned long hbtick_add_compare(unsigned long adj) { unsigned long val = __hbird_read_compare() + adj; val &= ~TICK_PRIV_BIT; __hbird_write_compare(val); return val; } static struct sparc64_tick_ops hbtick_operations = { .init_tick = hbtick_init_tick, .get_tick = hbtick_get_tick, .get_compare = hbtick_get_compare, .add_tick = hbtick_add_tick, .add_compare = hbtick_add_compare, .softint_mask = 1UL << 0, }; /* timer_interrupt() needs to keep up the real-time clock, * as well as call the "do_timer()" routine every clocktick * * NOTE: On SUN5 systems the ticker interrupt comes in using 2 * interrupts, one at level14 and one with softint bit 0. */ unsigned long timer_tick_offset; unsigned long timer_tick_compare; unsigned long timer_ticks_per_usec_quotient; static __inline__ void timer_check_rtc(void) { /* last time the cmos clock got updated */ static long last_rtc_update; /* Determine when to update the Mostek clock. */ if ((time_status & STA_UNSYNC) == 0 && xtime.tv_sec > last_rtc_update + 660 && xtime.tv_usec >= 500000 - ((unsigned) tick) / 2 && xtime.tv_usec <= 500000 + ((unsigned) tick) / 2) { if (set_rtc_mmss(xtime.tv_sec) == 0) last_rtc_update = xtime.tv_sec; else last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */ } } void sparc64_do_profile(unsigned long pc, unsigned long o7) { if (prof_buffer && current->pid) { extern int _stext; extern int rwlock_impl_begin, rwlock_impl_end; extern int atomic_impl_begin, atomic_impl_end; extern int __memcpy_begin, __memcpy_end; extern int __bzero_begin, __bzero_end; extern int __bitops_begin, __bitops_end; if ((pc >= (unsigned long) &atomic_impl_begin && pc < (unsigned long) &atomic_impl_end) || (pc >= (unsigned long) &rwlock_impl_begin && pc < (unsigned long) &rwlock_impl_end) || (pc >= (unsigned long) &__memcpy_begin && pc < (unsigned long) &__memcpy_end) || (pc >= (unsigned long) &__bzero_begin && pc < (unsigned long) &__bzero_end) || (pc >= (unsigned long) &__bitops_begin && pc < (unsigned long) &__bitops_end)) pc = o7; pc -= (unsigned long) &_stext; pc >>= prof_shift; if(pc >= prof_len) pc = prof_len - 1; atomic_inc((atomic_t *)&prof_buffer[pc]); } } static void timer_interrupt(int irq, void *dev_id, struct pt_regs * regs) { unsigned long ticks, pstate; write_lock(&xtime_lock); do { #ifndef CONFIG_SMP if ((regs->tstate & TSTATE_PRIV) != 0) sparc64_do_profile(regs->tpc, regs->u_regs[UREG_RETPC]); #endif do_timer(regs); /* Guarentee that the following sequences execute * uninterrupted. */ __asm__ __volatile__("rdpr %%pstate, %0\n\t" "wrpr %0, %1, %%pstate" : "=r" (pstate) : "i" (PSTATE_IE)); timer_tick_compare = tick_ops->add_compare(timer_tick_offset); ticks = tick_ops->get_tick(); /* Restore PSTATE_IE. */ __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : /* no outputs */ : "r" (pstate)); } while (time_after_eq(ticks, timer_tick_compare)); timer_check_rtc(); write_unlock(&xtime_lock); } #ifdef CONFIG_SMP void timer_tick_interrupt(struct pt_regs *regs) { write_lock(&xtime_lock); do_timer(regs); /* * Only keep timer_tick_offset uptodate, but don't set TICK_CMPR. */ timer_tick_compare = tick_ops->get_compare() + timer_tick_offset; timer_check_rtc(); write_unlock(&xtime_lock); } #endif /* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */ static void __init kick_start_clock(void) { unsigned long regs = mstk48t02_regs; u8 sec, tmp; int i, count; prom_printf("CLOCK: Clock was stopped. Kick start "); spin_lock_irq(&mostek_lock); /* Turn on the kick start bit to start the oscillator. */ tmp = mostek_read(regs + MOSTEK_CREG); tmp |= MSTK_CREG_WRITE; mostek_write(regs + MOSTEK_CREG, tmp); tmp = mostek_read(regs + MOSTEK_SEC); tmp &= ~MSTK_STOP; mostek_write(regs + MOSTEK_SEC, tmp); tmp = mostek_read(regs + MOSTEK_HOUR); tmp |= MSTK_KICK_START; mostek_write(regs + MOSTEK_HOUR, tmp); tmp = mostek_read(regs + MOSTEK_CREG); tmp &= ~MSTK_CREG_WRITE; mostek_write(regs + MOSTEK_CREG, tmp); spin_unlock_irq(&mostek_lock); /* Delay to allow the clock oscillator to start. */ sec = MSTK_REG_SEC(regs); for (i = 0; i < 3; i++) { while (sec == MSTK_REG_SEC(regs)) for (count = 0; count < 100000; count++) /* nothing */ ; prom_printf("."); sec = MSTK_REG_SEC(regs); } prom_printf("\n"); spin_lock_irq(&mostek_lock); /* Turn off kick start and set a "valid" time and date. */ tmp = mostek_read(regs + MOSTEK_CREG); tmp |= MSTK_CREG_WRITE; mostek_write(regs + MOSTEK_CREG, tmp); tmp = mostek_read(regs + MOSTEK_HOUR); tmp &= ~MSTK_KICK_START; mostek_write(regs + MOSTEK_HOUR, tmp); MSTK_SET_REG_SEC(regs,0); MSTK_SET_REG_MIN(regs,0); MSTK_SET_REG_HOUR(regs,0); MSTK_SET_REG_DOW(regs,5); MSTK_SET_REG_DOM(regs,1); MSTK_SET_REG_MONTH(regs,8); MSTK_SET_REG_YEAR(regs,1996 - MSTK_YEAR_ZERO); tmp = mostek_read(regs + MOSTEK_CREG); tmp &= ~MSTK_CREG_WRITE; mostek_write(regs + MOSTEK_CREG, tmp); spin_unlock_irq(&mostek_lock); /* Ensure the kick start bit is off. If it isn't, turn it off. */ while (mostek_read(regs + MOSTEK_HOUR) & MSTK_KICK_START) { prom_printf("CLOCK: Kick start still on!\n"); spin_lock_irq(&mostek_lock); tmp = mostek_read(regs + MOSTEK_CREG); tmp |= MSTK_CREG_WRITE; mostek_write(regs + MOSTEK_CREG, tmp); tmp = mostek_read(regs + MOSTEK_HOUR); tmp &= ~MSTK_KICK_START; mostek_write(regs + MOSTEK_HOUR, tmp); tmp = mostek_read(regs + MOSTEK_CREG); tmp &= ~MSTK_CREG_WRITE; mostek_write(regs + MOSTEK_CREG, tmp); spin_unlock_irq(&mostek_lock); } prom_printf("CLOCK: Kick start procedure successful.\n"); } /* Return nonzero if the clock chip battery is low. */ static int __init has_low_battery(void) { unsigned long regs = mstk48t02_regs; u8 data1, data2; spin_lock_irq(&mostek_lock); data1 = mostek_read(regs + MOSTEK_EEPROM); /* Read some data. */ mostek_write(regs + MOSTEK_EEPROM, ~data1); /* Write back the complement. */ data2 = mostek_read(regs + MOSTEK_EEPROM); /* Read back the complement. */ mostek_write(regs + MOSTEK_EEPROM, data1); /* Restore original value. */ spin_unlock_irq(&mostek_lock); return (data1 == data2); /* Was the write blocked? */ } #ifndef BCD_TO_BIN #define BCD_TO_BIN(val) (((val)&15) + ((val)>>4)*10) #endif #ifndef BIN_TO_BCD #define BIN_TO_BCD(val) ((((val)/10)<<4) + (val)%10) #endif /* Probe for the real time clock chip. */ static void __init set_system_time(void) { unsigned int year, mon, day, hour, min, sec; unsigned long mregs = mstk48t02_regs; #ifdef CONFIG_PCI unsigned long dregs = ds1287_regs; #else unsigned long dregs = 0UL; #endif u8 tmp; if (!mregs && !dregs) { prom_printf("Something wrong, clock regs not mapped yet.\n"); prom_halt(); } if (mregs) { spin_lock_irq(&mostek_lock); /* Traditional Mostek chip. */ tmp = mostek_read(mregs + MOSTEK_CREG); tmp |= MSTK_CREG_READ; mostek_write(mregs + MOSTEK_CREG, tmp); sec = MSTK_REG_SEC(mregs); min = MSTK_REG_MIN(mregs); hour = MSTK_REG_HOUR(mregs); day = MSTK_REG_DOM(mregs); mon = MSTK_REG_MONTH(mregs); year = MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs) ); } else { int i; /* Dallas 12887 RTC chip. */ /* Stolen from arch/i386/kernel/time.c, see there for * credits and descriptive comments. */ for (i = 0; i < 1000000; i++) { if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP) break; udelay(10); } for (i = 0; i < 1000000; i++) { if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)) break; udelay(10); } do { sec = CMOS_READ(RTC_SECONDS); min = CMOS_READ(RTC_MINUTES); hour = CMOS_READ(RTC_HOURS); day = CMOS_READ(RTC_DAY_OF_MONTH); mon = CMOS_READ(RTC_MONTH); year = CMOS_READ(RTC_YEAR); } while (sec != CMOS_READ(RTC_SECONDS)); if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { BCD_TO_BIN(sec); BCD_TO_BIN(min); BCD_TO_BIN(hour); BCD_TO_BIN(day); BCD_TO_BIN(mon); BCD_TO_BIN(year); } if ((year += 1900) < 1970) year += 100; } xtime.tv_sec = mktime(year, mon, day, hour, min, sec); xtime.tv_usec = 0; if (mregs) { tmp = mostek_read(mregs + MOSTEK_CREG); tmp &= ~MSTK_CREG_READ; mostek_write(mregs + MOSTEK_CREG, tmp); spin_unlock_irq(&mostek_lock); } } void __init clock_probe(void) { struct linux_prom_registers clk_reg[2]; char model[128]; int node, busnd = -1, err; unsigned long flags; struct linux_central *cbus; #ifdef CONFIG_PCI struct linux_ebus *ebus = NULL; struct isa_bridge *isa_br = NULL; #endif static int invoked; if (invoked) return; invoked = 1; if (this_is_starfire) { /* davem suggests we keep this within the 4M locked kernel image */ static char obp_gettod[256]; static u32 unix_tod; sprintf(obp_gettod, "h# %08x unix-gettod", (unsigned int) (long) &unix_tod); prom_feval(obp_gettod); xtime.tv_sec = unix_tod; xtime.tv_usec = 0; return; } __save_and_cli(flags); cbus = central_bus; if (cbus != NULL) busnd = central_bus->child->prom_node; /* Check FHC Central then EBUSs then ISA bridges then SBUSs. * That way we handle the presence of multiple properly. * * As a special case, machines with Central must provide the * timer chip there. */ #ifdef CONFIG_PCI if (ebus_chain != NULL) { ebus = ebus_chain; if (busnd == -1) busnd = ebus->prom_node; } if (isa_chain != NULL) { isa_br = isa_chain; if (busnd == -1) busnd = isa_br->prom_node; } #endif if (sbus_root != NULL && busnd == -1) busnd = sbus_root->prom_node; if (busnd == -1) { prom_printf("clock_probe: problem, cannot find bus to search.\n"); prom_halt(); } node = prom_getchild(busnd); while (1) { if (!node) model[0] = 0; else prom_getstring(node, "model", model, sizeof(model)); if (strcmp(model, "mk48t02") && strcmp(model, "mk48t08") && strcmp(model, "mk48t59") && strcmp(model, "m5819") && strcmp(model, "m5819p") && strcmp(model, "ds1287")) { if (cbus != NULL) { prom_printf("clock_probe: Central bus lacks timer chip.\n"); prom_halt(); } if (node != 0) node = prom_getsibling(node); #ifdef CONFIG_PCI while ((node == 0) && ebus != NULL) { ebus = ebus->next; if (ebus != NULL) { busnd = ebus->prom_node; node = prom_getchild(busnd); } } while ((node == 0) && isa_br != NULL) { isa_br = isa_br->next; if (isa_br != NULL) { busnd = isa_br->prom_node; node = prom_getchild(busnd); } } #endif if (node == 0) { prom_printf("clock_probe: Cannot find timer chip\n"); prom_halt(); } continue; } err = prom_getproperty(node, "reg", (char *)clk_reg, sizeof(clk_reg)); if(err == -1) { prom_printf("clock_probe: Cannot get Mostek reg property\n"); prom_halt(); } if (cbus != NULL) { apply_fhc_ranges(central_bus->child, clk_reg, 1); apply_central_ranges(central_bus, clk_reg, 1); } #ifdef CONFIG_PCI else if (ebus != NULL) { struct linux_ebus_device *edev; for_each_ebusdev(edev, ebus) if (edev->prom_node == node) break; if (edev == NULL) { if (isa_chain != NULL) goto try_isa_clock; prom_printf("%s: Mostek not probed by EBUS\n", __FUNCTION__); prom_halt(); } if (!strcmp(model, "ds1287") || !strcmp(model, "m5819") || !strcmp(model, "m5819p")) { ds1287_regs = edev->resource[0].start; } else { mstk48t59_regs = edev->resource[0].start; mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02; } break; } else if (isa_br != NULL) { struct isa_device *isadev; try_isa_clock: for_each_isadev(isadev, isa_br) if (isadev->prom_node == node) break; if (isadev == NULL) { prom_printf("%s: Mostek not probed by ISA\n"); prom_halt(); } if (!strcmp(model, "ds1287") || !strcmp(model, "m5819") || !strcmp(model, "m5819p")) { ds1287_regs = isadev->resource.start; } else { mstk48t59_regs = isadev->resource.start; mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02; } break; } #endif else { if (sbus_root->num_sbus_ranges) { int nranges = sbus_root->num_sbus_ranges; int rngc; for (rngc = 0; rngc < nranges; rngc++) if (clk_reg[0].which_io == sbus_root->sbus_ranges[rngc].ot_child_space) break; if (rngc == nranges) { prom_printf("clock_probe: Cannot find ranges for " "clock regs.\n"); prom_halt(); } clk_reg[0].which_io = sbus_root->sbus_ranges[rngc].ot_parent_space; clk_reg[0].phys_addr += sbus_root->sbus_ranges[rngc].ot_parent_base; } } if(model[5] == '0' && model[6] == '2') { mstk48t02_regs = (((u64)clk_reg[0].phys_addr) | (((u64)clk_reg[0].which_io)<<32UL)); } else if(model[5] == '0' && model[6] == '8') { mstk48t08_regs = (((u64)clk_reg[0].phys_addr) | (((u64)clk_reg[0].which_io)<<32UL)); mstk48t02_regs = mstk48t08_regs + MOSTEK_48T08_48T02; } else { mstk48t59_regs = (((u64)clk_reg[0].phys_addr) | (((u64)clk_reg[0].which_io)<<32UL)); mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02; } break; } if (mstk48t02_regs != 0UL) { /* Report a low battery voltage condition. */ if (has_low_battery()) prom_printf("NVRAM: Low battery voltage!\n"); /* Kick start the clock if it is completely stopped. */ if (mostek_read(mstk48t02_regs + MOSTEK_SEC) & MSTK_STOP) kick_start_clock(); } set_system_time(); __restore_flags(flags); } /* This is gets the master TICK_INT timer going. */ static unsigned long sparc64_init_timers(void (*cfunc)(int, void *, struct pt_regs *)) { unsigned long pstate, clock; int node, err; #ifdef CONFIG_SMP extern void smp_tick_init(void); #endif if (tlb_type == spitfire) { unsigned long ver, manuf, impl; __asm__ __volatile__ ("rdpr %%ver, %0" : "=&r" (ver)); manuf = ((ver >> 48) & 0xffff); impl = ((ver >> 32) & 0xffff); if (manuf == 0x17 && impl == 0x13) { /* Hummingbird, aka Ultra-IIe */ tick_ops = &hbtick_operations; node = prom_root_node; clock = prom_getint(node, "stick-frequency"); } else { tick_ops = &tick_operations; node = linux_cpus[0].prom_node; clock = prom_getint(node, "clock-frequency"); } } else { tick_ops = &stick_operations; node = prom_root_node; clock = prom_getint(node, "stick-frequency"); } timer_tick_offset = clock / HZ; #ifdef CONFIG_SMP smp_tick_init(); #endif /* Register IRQ handler. */ err = request_irq(build_irq(0, 0, 0UL, 0UL), cfunc, SA_STATIC_ALLOC, "timer", NULL); if(err) { prom_printf("Serious problem, cannot register TICK_INT\n"); prom_halt(); } /* Guarentee that the following sequences execute * uninterrupted. */ __asm__ __volatile__("rdpr %%pstate, %0\n\t" "wrpr %0, %1, %%pstate" : "=r" (pstate) : "i" (PSTATE_IE)); tick_ops->init_tick(timer_tick_offset); /* Restore PSTATE_IE. */ __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : /* no outputs */ : "r" (pstate)); sti(); return clock; } /* The quotient formula is taken from the IA64 port. */ void __init time_init(void) { unsigned long clock = sparc64_init_timers(timer_interrupt); timer_ticks_per_usec_quotient = (((1000000UL << 30) + (clock / 2)) / clock); } static __inline__ unsigned long do_gettimeoffset(void) { unsigned long ticks = tick_ops->get_tick(); ticks += timer_tick_offset; ticks -= timer_tick_compare; return (ticks * timer_ticks_per_usec_quotient) >> 30UL; } void do_settimeofday(struct timeval *tv) { if (this_is_starfire) return; write_lock_irq(&xtime_lock); tv->tv_usec -= do_gettimeoffset(); tv->tv_usec -= (jiffies - wall_jiffies) * (1000000 / HZ); while (tv->tv_usec < 0) { tv->tv_usec += 1000000; tv->tv_sec--; } xtime = *tv; time_adjust = 0; /* stop active adjtime() */ time_status |= STA_UNSYNC; time_maxerror = NTP_PHASE_LIMIT; time_esterror = NTP_PHASE_LIMIT; write_unlock_irq(&xtime_lock); } void do_gettimeofday(struct timeval *tv) { unsigned long flags; unsigned long usec, sec; read_lock_irqsave(&xtime_lock, flags); usec = do_gettimeoffset(); { unsigned long lost = jiffies - wall_jiffies; if (lost) usec += lost * (1000000 / HZ); } sec = xtime.tv_sec; usec += xtime.tv_usec; read_unlock_irqrestore(&xtime_lock, flags); while (usec >= 1000000) { usec -= 1000000; sec++; } tv->tv_sec = sec; tv->tv_usec = usec; } static int set_rtc_mmss(unsigned long nowtime) { int real_seconds, real_minutes, chip_minutes; unsigned long mregs = mstk48t02_regs; #ifdef CONFIG_PCI unsigned long dregs = ds1287_regs; #else unsigned long dregs = 0UL; #endif unsigned long flags; u8 tmp; /* * Not having a register set can lead to trouble. * Also starfire doesn't have a tod clock. */ if (!mregs && !dregs) return -1; if (mregs) { spin_lock_irqsave(&mostek_lock, flags); /* Read the current RTC minutes. */ tmp = mostek_read(mregs + MOSTEK_CREG); tmp |= MSTK_CREG_READ; mostek_write(mregs + MOSTEK_CREG, tmp); chip_minutes = MSTK_REG_MIN(mregs); tmp = mostek_read(mregs + MOSTEK_CREG); tmp &= ~MSTK_CREG_READ; mostek_write(mregs + MOSTEK_CREG, tmp); /* * since we're only adjusting minutes and seconds, * don't interfere with hour overflow. This avoids * messing with unknown time zones but requires your * RTC not to be off by more than 15 minutes */ real_seconds = nowtime % 60; real_minutes = nowtime / 60; if (((abs(real_minutes - chip_minutes) + 15)/30) & 1) real_minutes += 30; /* correct for half hour time zone */ real_minutes %= 60; if (abs(real_minutes - chip_minutes) < 30) { tmp = mostek_read(mregs + MOSTEK_CREG); tmp |= MSTK_CREG_WRITE; mostek_write(mregs + MOSTEK_CREG, tmp); MSTK_SET_REG_SEC(mregs,real_seconds); MSTK_SET_REG_MIN(mregs,real_minutes); tmp = mostek_read(mregs + MOSTEK_CREG); tmp &= ~MSTK_CREG_WRITE; mostek_write(mregs + MOSTEK_CREG, tmp); spin_unlock_irqrestore(&mostek_lock, flags); return 0; } else { spin_unlock_irqrestore(&mostek_lock, flags); return -1; } } else { int retval = 0; unsigned char save_control, save_freq_select; /* Stolen from arch/i386/kernel/time.c, see there for * credits and descriptive comments. */ spin_lock_irqsave(&rtc_lock, flags); save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */ CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */ CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); chip_minutes = CMOS_READ(RTC_MINUTES); if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) BCD_TO_BIN(chip_minutes); real_seconds = nowtime % 60; real_minutes = nowtime / 60; if (((abs(real_minutes - chip_minutes) + 15)/30) & 1) real_minutes += 30; real_minutes %= 60; if (abs(real_minutes - chip_minutes) < 30) { if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { BIN_TO_BCD(real_seconds); BIN_TO_BCD(real_minutes); } CMOS_WRITE(real_seconds,RTC_SECONDS); CMOS_WRITE(real_minutes,RTC_MINUTES); } else { printk(KERN_WARNING "set_rtc_mmss: can't update from %d to %d\n", chip_minutes, real_minutes); retval = -1; } CMOS_WRITE(save_control, RTC_CONTROL); CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); spin_unlock_irqrestore(&rtc_lock, flags); return retval; } }