OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [crypto/] [tcrypt.c] - Rev 1765

Compare with Previous | Blame | View Log

/* 
 * Quick & dirty crypto testing module.
 *
 * This will only exist until we have a better testing mechanism
 * (e.g. a char device).
 *
 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
 * Copyright (c) 2002 Jean-Francois Dive <jef@linuxbe.org>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option) 
 * any later version.
 *
 * 14 - 09 - 2003 
 *	Rewritten by Kartikey Mahendra Bhatt
 */
 
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <asm/scatterlist.h>
#include <linux/string.h>
#include <linux/crypto.h>
#include <linux/highmem.h>
#include "tcrypt.h"
 
#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
 
/*
 * Need to kmalloc() memory for testing kmap().
 */
#define TVMEMSIZE	4096
#define XBUFSIZE	32768
 
/*
 * Indexes into the xbuf to simulate cross-page access.
 */
#define IDX1		37
#define IDX2		32400
#define IDX3		1
#define IDX4		8193
#define IDX5		22222
#define IDX6		17101
#define IDX7		27333
#define IDX8		3000
 
/*
* Used by test_cipher()
*/
#define ENCRYPT 1
#define DECRYPT 0
#define MODE_ECB 1
#define MODE_CBC 0
 
static unsigned int IDX[8] = { IDX1, IDX2, IDX3, IDX4, IDX5, IDX6, IDX7, IDX8 };
 
static int mode;
static char *xbuf;
static char *tvmem;
 
static char *check[] = {
	"des", "md5", "des3_ede", "rot13", "sha1", "sha256", "blowfish",
	"twofish", "serpent", "sha384", "sha512", "md4", "aes", "cast6", 
	"arc4", "deflate", NULL
};
 
static void
hexdump(unsigned char *buf, unsigned int len)
{
	while (len--)
		printk("%02x", *buf++);
 
	printk("\n");
}
 
static void 
test_hash (char * algo, struct hash_testvec * template, unsigned int tcount)
{
	char *p; 
        unsigned int i, j, k, temp;
        struct scatterlist sg[8];
        char result[64];
        struct crypto_tfm *tfm;
        struct hash_testvec *hash_tv;
        unsigned int tsize;
 
        printk("\ntesting %s\n", algo);
 
	tsize = sizeof (struct hash_testvec);
	tsize *= tcount;
 
	if (tsize > TVMEMSIZE) {
		printk("template (%u) too big for tvmem (%u)\n", tsize, TVMEMSIZE);
		return;
	}
 
	memcpy(tvmem, template, tsize);
	hash_tv = (void *) tvmem;
	tfm = crypto_alloc_tfm(algo, 0);
	if (tfm == NULL) {
		printk("failed to load transform for %s\n", algo);
		return;
	}
 
	for (i = 0; i < tcount; i++) {
		printk ("test %u:\n", i + 1);
		memset (result, 0, 64);
 
		p = hash_tv[i].plaintext;
		sg[0].page = virt_to_page (p);
		sg[0].offset = offset_in_page (p);
		sg[0].length = hash_tv[i].psize;
 
		crypto_digest_init (tfm);
		crypto_digest_update (tfm, sg, 1);
		crypto_digest_final (tfm, result);
 
		hexdump (result, crypto_tfm_alg_digestsize (tfm));
		printk("%s\n",
			memcmp(result, hash_tv[i].digest,
				crypto_tfm_alg_digestsize(tfm)) ? "fail" :
			"pass");
	}
 
	printk ("testing %s across pages\n", algo);
 
	/* setup the dummy buffer first */
        memset(xbuf, 0, XBUFSIZE);
 
	j = 0;
	for (i = 0; i < tcount; i++) {
		if (hash_tv[i].np) {
			j++;
			printk ("test %u:\n", j);
			memset (result, 0, 64);
 
			temp = 0;
			for (k = 0; k < hash_tv[i].np; k++) {
				memcpy (&xbuf[IDX[k]], hash_tv[i].plaintext + temp, 
						hash_tv[i].tap[k]);	
				temp += hash_tv[i].tap[k];
				p = &xbuf[IDX[k]];
				sg[k].page = virt_to_page (p);
				sg[k].offset = offset_in_page (p);
				sg[k].length = hash_tv[i].tap[k];
			}
 
			crypto_digest_digest (tfm, sg, hash_tv[i].np, result);
 
			hexdump (result, crypto_tfm_alg_digestsize (tfm));
			printk("%s\n",
				memcmp(result, hash_tv[i].digest,
					crypto_tfm_alg_digestsize(tfm)) ? "fail" :
				"pass");
		}
	}
 
	crypto_free_tfm (tfm);
}
 
 
#ifdef CONFIG_CRYPTO_HMAC
 
static void
test_hmac(char *algo, struct hmac_testvec * template, unsigned int tcount)
{
	char *p;
	unsigned int i, j, k, temp;
	struct scatterlist sg[8];
	char result[64];
	struct crypto_tfm *tfm;
	struct hmac_testvec *hmac_tv;
	unsigned int tsize, klen;
 
	tfm = crypto_alloc_tfm(algo, 0);
	if (tfm == NULL) {
		printk("failed to load transform for %s\n", algo);
		return;
	}
 
	printk("\ntesting hmac_%s\n", algo);
 
	tsize = sizeof (struct hmac_testvec);
	tsize *= tcount;
	if (tsize > TVMEMSIZE) {
		printk("template (%u) too big for tvmem (%u)\n", tsize,
		       TVMEMSIZE);
		goto out;
	}
 
	memcpy(tvmem, template, tsize);
	hmac_tv = (void *) tvmem;
 
	for (i = 0; i < tcount; i++) {
		printk("test %u:\n", i + 1);
		memset(result, 0, sizeof (result));
 
		p = hmac_tv[i].plaintext;
		klen = hmac_tv[i].ksize;
		sg[0].page = virt_to_page(p);
		sg[0].offset = offset_in_page(p);
		sg[0].length = hmac_tv[i].psize;
 
		crypto_hmac(tfm, hmac_tv[i].key, &klen, sg, 1, result);
 
		hexdump(result, crypto_tfm_alg_digestsize(tfm));
		printk("%s\n",
		       memcmp(result, hmac_tv[i].digest,
			      crypto_tfm_alg_digestsize(tfm)) ? "fail" :
		       "pass");
	}
 
	printk("\ntesting hmac_%s across pages\n", algo);
 
	memset(xbuf, 0, XBUFSIZE);
 
	j = 0;
	for (i = 0; i < tcount; i++) {
		if (hmac_tv[i].np) {
			j++;
			printk ("test %u:\n",j);
			memset (result, 0, 64);
 
			temp = 0;
			klen = hmac_tv[i].ksize;
			for (k = 0; k < hmac_tv[i].np; k++) {
				memcpy (&xbuf[IDX[k]], hmac_tv[i].plaintext + temp, 
						hmac_tv[i].tap[k]);	
				temp += hmac_tv[i].tap[k];
				p = &xbuf[IDX[k]];
				sg[k].page = virt_to_page (p);
				sg[k].offset = offset_in_page (p);
				sg[k].length = hmac_tv[i].tap[k];
			}
 
			crypto_hmac(tfm, hmac_tv[i].key, &klen, sg, hmac_tv[i].np, 
					result);
			hexdump(result, crypto_tfm_alg_digestsize(tfm));
 
			printk("%s\n",
				memcmp(result, hmac_tv[i].digest,
					crypto_tfm_alg_digestsize(tfm)) ? "fail" : 
				"pass");
		}
	}
out:
	crypto_free_tfm(tfm);
}
 
#endif	/* CONFIG_CRYPTO_HMAC */
 
void
test_cipher(char * algo, int mode, int enc, struct cipher_testvec * template, unsigned int tcount)
{
	unsigned int ret, i, j, k, temp;
	unsigned int tsize;
	char *p, *q;
	struct crypto_tfm *tfm;
	char *key;
	struct cipher_testvec *cipher_tv;
	struct scatterlist sg[8];
	char e[11], m[4];
 
	if (enc == ENCRYPT)
	        strncpy(e, "encryption", 11);
	else
        	strncpy(e, "decryption", 11);
	if (mode == MODE_ECB)
        	strncpy(m, "ECB", 4);
	else
        	strncpy(m, "CBC", 4);
 
	printk("\ntesting %s %s %s \n", algo, m, e);
 
	tsize = sizeof (struct cipher_testvec);	
	tsize *= tcount;
 
	if (tsize > TVMEMSIZE) {
		printk("template (%u) too big for tvmem (%u)\n", tsize,
		       TVMEMSIZE);
		return;
	}
 
	memcpy(tvmem, template, tsize);
	cipher_tv = (void *) tvmem;
 
	if (mode) 
		tfm = crypto_alloc_tfm (algo, 0);
	else 
		tfm = crypto_alloc_tfm (algo, CRYPTO_TFM_MODE_CBC);
 
	if (tfm == NULL) {
		printk("failed to load transform for %s %s\n", algo, m);
		return;
	}
 
	j = 0;
	for (i = 0; i < tcount; i++) {
		if (!(cipher_tv[i].np)) {
			j++;	
			printk("test %u (%d bit key):\n",
			j, cipher_tv[i].klen * 8);
 
			tfm->crt_flags = 0;
			if (cipher_tv[i].wk) 
				tfm->crt_flags |= CRYPTO_TFM_REQ_WEAK_KEY;
			key = cipher_tv[i].key;
 
			ret = crypto_cipher_setkey(tfm, key, cipher_tv[i].klen);
			if (ret) {
				printk("setkey() failed flags=%x\n", tfm->crt_flags);
 
				if (!cipher_tv[i].fail)
					goto out;
			}	
 
			p = cipher_tv[i].input;
			sg[0].page = virt_to_page(p);
			sg[0].offset = offset_in_page(p);
			sg[0].length = cipher_tv[i].ilen;
 
			if (!mode) {
				crypto_cipher_set_iv(tfm, cipher_tv[i].iv,
					crypto_tfm_alg_ivsize (tfm));
			}
 
			if (enc)
				ret = crypto_cipher_encrypt(tfm, sg, sg, cipher_tv[i].ilen);
			else
				ret = crypto_cipher_decrypt(tfm, sg, sg, cipher_tv[i].ilen);
 
 
			if (ret) {
				printk("%s () failed flags=%x\n", e, tfm->crt_flags);
				goto out;
			}	
 
			q = kmap(sg[0].page) + sg[0].offset;
			hexdump(q, cipher_tv[i].rlen);
 
			printk("%s\n", 
				memcmp(q, cipher_tv[i].result, cipher_tv[i].rlen) ? "fail" : 
			"pass");
		}
	}
 
	printk("\ntesting %s %s %s across pages (chunking) \n", algo, m, e);
	memset(xbuf, 0, XBUFSIZE);
 
	j = 0;
	for (i = 0; i < tcount; i++) {
		if (cipher_tv[i].np) {
			j++;				
			printk("test %u (%d bit key):\n",
			j, cipher_tv[i].klen * 8);
 
			tfm->crt_flags = 0;			
			if (cipher_tv[i].wk) 
				tfm->crt_flags |= CRYPTO_TFM_REQ_WEAK_KEY;
			key = cipher_tv[i].key;
 
			ret = crypto_cipher_setkey(tfm, key, cipher_tv[i].klen);		
			if (ret) {
				printk("setkey() failed flags=%x\n", tfm->crt_flags);
 
				if (!cipher_tv[i].fail)
					goto out;
			}
 
			temp = 0;
			for (k = 0; k < cipher_tv[i].np; k++) {
				memcpy (&xbuf[IDX[k]], cipher_tv[i].input + temp, 
						cipher_tv[i].tap[k]);	
				temp += cipher_tv[i].tap[k];
				p = &xbuf[IDX[k]];
				sg[k].page = virt_to_page (p);
				sg[k].offset = offset_in_page (p);
				sg[k].length = cipher_tv[i].tap[k];
			}
 
			if (!mode) {
				crypto_cipher_set_iv(tfm, cipher_tv[i].iv,
						crypto_tfm_alg_ivsize (tfm));
			}
 
			if (enc)
				ret = crypto_cipher_encrypt(tfm, sg, sg, cipher_tv[i].ilen);
			else
				ret = crypto_cipher_decrypt(tfm, sg, sg, cipher_tv[i].ilen);
 
			if (ret) {
				printk("%s () failed flags=%x\n", e, tfm->crt_flags);
				goto out;
			}
 
			temp = 0;
			for (k = 0; k < cipher_tv[i].np; k++) {
				printk("page %u\n", k);
				q = kmap(sg[k].page) + sg[k].offset;
				hexdump(q, cipher_tv[i].tap[k]);
				printk("%s\n", 
					memcmp(q, cipher_tv[i].result + temp, 
						cipher_tv[i].tap[k]) ? "fail" : 
					"pass");
				temp += cipher_tv[i].tap[k];
			}
		}
	}
 
out:
	crypto_free_tfm(tfm);
}
 
static void
test_deflate(void)
{
	unsigned int i;
	char result[COMP_BUF_SIZE];
	struct crypto_tfm *tfm;
	struct comp_testvec *tv;
	unsigned int tsize;
 
	printk("\ntesting deflate compression\n");
 
	tsize = sizeof (deflate_comp_tv_template);
	if (tsize > TVMEMSIZE) {
		printk("template (%u) too big for tvmem (%u)\n", tsize,
		       TVMEMSIZE);
		return;
	}
 
	memcpy(tvmem, deflate_comp_tv_template, tsize);
	tv = (void *) tvmem;
 
	tfm = crypto_alloc_tfm("deflate", 0);
	if (tfm == NULL) {
		printk("failed to load transform for deflate\n");
		return;
	}
 
	for (i = 0; i < DEFLATE_COMP_TEST_VECTORS; i++) {
		int ilen, ret, dlen = COMP_BUF_SIZE;
 
		printk("test %u:\n", i + 1);
		memset(result, 0, sizeof (result));
 
		ilen = tv[i].inlen;
		ret = crypto_comp_compress(tfm, tv[i].input,
		                           ilen, result, &dlen);
		if (ret) {
			printk("fail: ret=%d\n", ret);
			continue;
		}
		hexdump(result, dlen);
		printk("%s (ratio %d:%d)\n",
		       memcmp(result, tv[i].output, dlen) ? "fail" : "pass",
		       ilen, dlen);
	}
 
	printk("\ntesting deflate decompression\n");
 
	tsize = sizeof (deflate_decomp_tv_template);
	if (tsize > TVMEMSIZE) {
		printk("template (%u) too big for tvmem (%u)\n", tsize,
		       TVMEMSIZE);
		goto out;
	}
 
	memcpy(tvmem, deflate_decomp_tv_template, tsize);
	tv = (void *) tvmem;
 
	for (i = 0; i < DEFLATE_DECOMP_TEST_VECTORS; i++) {
		int ilen, ret, dlen = COMP_BUF_SIZE;
 
		printk("test %u:\n", i + 1);
		memset(result, 0, sizeof (result));
 
		ilen = tv[i].inlen;
		ret = crypto_comp_decompress(tfm, tv[i].input,
		                             ilen, result, &dlen);
		if (ret) {
			printk("fail: ret=%d\n", ret);
			continue;
		}
		hexdump(result, dlen);
		printk("%s (ratio %d:%d)\n",
		       memcmp(result, tv[i].output, dlen) ? "fail" : "pass",
		       ilen, dlen);
	}
out:
	crypto_free_tfm(tfm);
}
 
static void
test_available(void)
{
	char **name = check;
 
	while (*name) {
		printk("alg %s ", *name);
		printk((crypto_alg_available(*name, 0)) ?
			"found\n" : "not found\n");
		name++;
	}	
}
 
static void
do_test(void)
{
	switch (mode) {
 
	case 0:
		test_hash("md5", md5_tv_template, MD5_TEST_VECTORS);
 
		test_hash("sha1", sha1_tv_template, SHA1_TEST_VECTORS);
 
		//DES
		test_cipher ("des", MODE_ECB, ENCRYPT, des_enc_tv_template, DES_ENC_TEST_VECTORS);
                test_cipher ("des", MODE_ECB, DECRYPT, des_dec_tv_template, DES_DEC_TEST_VECTORS);
                test_cipher ("des", MODE_CBC, ENCRYPT, des_cbc_enc_tv_template, DES_CBC_ENC_TEST_VECTORS);
                test_cipher ("des", MODE_CBC, DECRYPT, des_cbc_dec_tv_template, DES_CBC_DEC_TEST_VECTORS);
 
		//DES3_EDE
		test_cipher ("des3_ede", MODE_ECB, ENCRYPT, des3_ede_enc_tv_template, DES3_EDE_ENC_TEST_VECTORS);
                test_cipher ("des3_ede", MODE_ECB, DECRYPT, des3_ede_dec_tv_template, DES3_EDE_DEC_TEST_VECTORS);
 
		test_hash("md4", md4_tv_template, MD4_TEST_VECTORS);
 
		test_hash("sha256", sha256_tv_template, SHA256_TEST_VECTORS);
 
		//BLOWFISH
		test_cipher ("blowfish", MODE_ECB, ENCRYPT, bf_enc_tv_template, BF_ENC_TEST_VECTORS);
		test_cipher ("blowfish", MODE_ECB, DECRYPT, bf_dec_tv_template, BF_DEC_TEST_VECTORS);
		test_cipher ("blowfish", MODE_CBC, ENCRYPT, bf_cbc_enc_tv_template, BF_CBC_ENC_TEST_VECTORS);
		test_cipher ("blowfish", MODE_CBC, DECRYPT, bf_cbc_dec_tv_template, BF_CBC_DEC_TEST_VECTORS);
 
		//TWOFISH
		test_cipher ("twofish", MODE_ECB, ENCRYPT, tf_enc_tv_template, TF_ENC_TEST_VECTORS);
		test_cipher ("twofish", MODE_ECB, DECRYPT, tf_dec_tv_template, TF_DEC_TEST_VECTORS);
		test_cipher ("twofish", MODE_CBC, ENCRYPT, tf_cbc_enc_tv_template, TF_CBC_ENC_TEST_VECTORS);
		test_cipher ("twofish", MODE_CBC, DECRYPT, tf_cbc_dec_tv_template, TF_CBC_DEC_TEST_VECTORS);
 
		//SERPENT
		test_cipher ("serpent", MODE_ECB, ENCRYPT, serpent_enc_tv_template, SERPENT_ENC_TEST_VECTORS);
		test_cipher ("serpent", MODE_ECB, DECRYPT, serpent_dec_tv_template, SERPENT_DEC_TEST_VECTORS);
 
		//AES
		test_cipher ("aes", MODE_ECB, ENCRYPT, aes_enc_tv_template, AES_ENC_TEST_VECTORS);
		test_cipher ("aes", MODE_ECB, DECRYPT, aes_dec_tv_template, AES_DEC_TEST_VECTORS);
 
		//CAST5
		test_cipher ("cast5", MODE_ECB, ENCRYPT, cast5_enc_tv_template, CAST5_ENC_TEST_VECTORS);
		test_cipher ("cast5", MODE_ECB, DECRYPT, cast5_dec_tv_template, CAST5_DEC_TEST_VECTORS);
 
		//CAST6
		test_cipher ("cast6", MODE_ECB, ENCRYPT, cast6_enc_tv_template, CAST6_ENC_TEST_VECTORS);
		test_cipher ("cast6", MODE_ECB, DECRYPT, cast6_dec_tv_template, CAST6_DEC_TEST_VECTORS);
 
		//ARC4
		test_cipher ("arc4", MODE_ECB, ENCRYPT, arc4_enc_tv_template, ARC4_ENC_TEST_VECTORS);
		test_cipher ("arc4", MODE_ECB, DECRYPT, arc4_dec_tv_template, ARC4_DEC_TEST_VECTORS);
 
		test_hash("sha384", sha384_tv_template, SHA384_TEST_VECTORS);
		test_hash("sha512", sha512_tv_template, SHA512_TEST_VECTORS);
		test_deflate();		
#ifdef CONFIG_CRYPTO_HMAC
		test_hmac("md5", hmac_md5_tv_template, HMAC_MD5_TEST_VECTORS);
		test_hmac("sha1", hmac_sha1_tv_template, HMAC_SHA1_TEST_VECTORS);		
		test_hmac("sha256", hmac_sha256_tv_template, HMAC_SHA256_TEST_VECTORS);
#endif		
		break;
 
	case 1:
		test_hash("md5", md5_tv_template, MD5_TEST_VECTORS);
		break;
 
	case 2:
		test_hash("sha1", sha1_tv_template, SHA1_TEST_VECTORS);
		break;
 
	case 3:
		test_cipher ("des", MODE_ECB, ENCRYPT, des_enc_tv_template, DES_ENC_TEST_VECTORS);
		test_cipher ("des", MODE_ECB, DECRYPT, des_dec_tv_template, DES_DEC_TEST_VECTORS);
		test_cipher ("des", MODE_CBC, ENCRYPT, des_cbc_enc_tv_template, DES_CBC_ENC_TEST_VECTORS);
		test_cipher ("des", MODE_CBC, DECRYPT, des_cbc_dec_tv_template, DES_CBC_DEC_TEST_VECTORS);
		break;
 
	case 4:
		test_cipher ("des3_ede", MODE_ECB, ENCRYPT, des3_ede_enc_tv_template, DES3_EDE_ENC_TEST_VECTORS);
                test_cipher ("des3_ede", MODE_ECB, DECRYPT, des3_ede_dec_tv_template, DES3_EDE_DEC_TEST_VECTORS);
		break;
 
	case 5:
		test_hash("md4", md4_tv_template, MD4_TEST_VECTORS);
		break;
 
	case 6:
		test_hash("sha256", sha256_tv_template, SHA256_TEST_VECTORS);
		break;
 
	case 7:
		test_cipher ("blowfish", MODE_ECB, ENCRYPT, bf_enc_tv_template, BF_ENC_TEST_VECTORS);
		test_cipher ("blowfish", MODE_ECB, DECRYPT, bf_dec_tv_template, BF_DEC_TEST_VECTORS);
		test_cipher ("blowfish", MODE_CBC, ENCRYPT, bf_cbc_enc_tv_template, BF_CBC_ENC_TEST_VECTORS);
		test_cipher ("blowfish", MODE_CBC, DECRYPT, bf_cbc_dec_tv_template, BF_CBC_DEC_TEST_VECTORS);
		break;
 
	case 8:
		test_cipher ("twofish", MODE_ECB, ENCRYPT, tf_enc_tv_template, TF_ENC_TEST_VECTORS);
		test_cipher ("twofish", MODE_ECB, DECRYPT, tf_dec_tv_template, TF_DEC_TEST_VECTORS);
		test_cipher ("twofish", MODE_CBC, ENCRYPT, tf_cbc_enc_tv_template, TF_CBC_ENC_TEST_VECTORS);
		test_cipher ("twofish", MODE_CBC, DECRYPT, tf_cbc_dec_tv_template, TF_CBC_DEC_TEST_VECTORS);
		break;
 
	case 9:
		break;
 
	case 10:
		test_cipher ("aes", MODE_ECB, ENCRYPT, aes_enc_tv_template, AES_ENC_TEST_VECTORS);
		test_cipher ("aes", MODE_ECB, DECRYPT, aes_dec_tv_template, AES_DEC_TEST_VECTORS);	
		break;
 
	case 11:
		test_hash("sha384", sha384_tv_template, SHA384_TEST_VECTORS);
		break;
 
	case 12:
		test_hash("sha512", sha512_tv_template, SHA512_TEST_VECTORS);
		break;
 
	case 13:
		test_deflate();
		break;
 
	case 14:
		test_cipher ("cast5", MODE_ECB, ENCRYPT, cast5_enc_tv_template, CAST5_ENC_TEST_VECTORS);
		test_cipher ("cast5", MODE_ECB, DECRYPT, cast5_dec_tv_template, CAST5_DEC_TEST_VECTORS);
		break;
 
	case 15:
		test_cipher ("cast6", MODE_ECB, ENCRYPT, cast6_enc_tv_template, CAST6_ENC_TEST_VECTORS);
		test_cipher ("cast6", MODE_ECB, DECRYPT, cast6_dec_tv_template, CAST6_DEC_TEST_VECTORS);
		break;
 
	case 16:
		test_cipher ("arc4", MODE_ECB, ENCRYPT, arc4_enc_tv_template, ARC4_ENC_TEST_VECTORS);
		test_cipher ("arc4", MODE_ECB, DECRYPT, arc4_dec_tv_template, ARC4_DEC_TEST_VECTORS);
		break;
 
#ifdef CONFIG_CRYPTO_HMAC
	case 100:
		test_hmac("md5", hmac_md5_tv_template, HMAC_MD5_TEST_VECTORS);
		break;
 
	case 101:
		test_hmac("sha1", hmac_sha1_tv_template, HMAC_SHA1_TEST_VECTORS);		
		break;
 
	case 102:
		test_hmac("sha256", hmac_sha256_tv_template, HMAC_SHA256_TEST_VECTORS);
		break;
 
#endif
 
	case 1000:
		test_available();
		break;
 
	default:
		/* useful for debugging */
		printk("not testing anything\n");
		break;
	}
}
 
static int __init
init(void)
{
	tvmem = kmalloc(TVMEMSIZE, GFP_KERNEL);
	if (tvmem == NULL)
		return -ENOMEM;
 
	xbuf = kmalloc(XBUFSIZE, GFP_KERNEL);
	if (xbuf == NULL) {
		kfree(tvmem);
		return -ENOMEM;
	}
 
	do_test();
 
	kfree(xbuf);
	kfree(tvmem);
	return 0;
}
 
/*
 * If an init function is provided, an exit function must also be provided
 * to allow module unload.
 */
static void __exit fini(void) { }
 
module_init(init);
module_exit(fini);
 
MODULE_PARM(mode, "i");
 
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Quick & dirty crypto testing module");
MODULE_AUTHOR("James Morris <jmorris@intercode.com.au>");
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.