OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [drivers/] [block/] [cpqarray.c] - Rev 1780

Go to most recent revision | Compare with Previous | Blame | View Log

/*
 *    Disk Array driver for Compaq SMART2 Controllers
 *    Copyright 1998 Compaq Computer Corporation
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *    Questions/Comments/Bugfixes to Cpqarray-discuss@lists.sourceforge.net
 *
 */
#include <linux/config.h>	/* CONFIG_PROC_FS */
#include <linux/module.h>
#include <linux/version.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/major.h>
#include <linux/fs.h>
#include <linux/blkpg.h>
#include <linux/timer.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/hdreg.h>
#include <linux/spinlock.h>
#include <asm/uaccess.h>
#include <asm/io.h>
 
 
#define SMART2_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
 
#define DRIVER_NAME "Compaq SMART2 Driver (v 2.4.28)"
#define DRIVER_VERSION SMART2_DRIVER_VERSION(2,4,28)
 
/* Embedded module documentation macros - see modules.h */
/* Original author Chris Frantz - Compaq Computer Corporation */
MODULE_AUTHOR("Compaq Computer Corporation");
MODULE_DESCRIPTION("Driver for Compaq Smart2 Array Controllers version 2.4.28");
MODULE_LICENSE("GPL");
 
#define MAJOR_NR COMPAQ_SMART2_MAJOR
#include <linux/blk.h>
#include <linux/blkdev.h>
#include <linux/genhd.h>
 
#include "cpqarray.h"
#include "ida_cmd.h"
#include "smart1,2.h"
#include "ida_ioctl.h"
 
#define READ_AHEAD	128
#define NR_CMDS		128 /* This could probably go as high as ~400 */
 
#define MAX_CTLR	8
 
#define CPQARRAY_DMA_MASK	0xFFFFFFFF	/* 32 bit DMA */
 
static ctlr_info_t *hba[MAX_CTLR] = 
	{ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL };
 
static int eisa[8];
 
#define NR_PRODUCTS (sizeof(products)/sizeof(struct board_type))
 
/*  board_id = Subsystem Device ID & Vendor ID
 *  product = Marketing Name for the board
 *  access = Address of the struct of function pointers 
 */
static struct board_type products[] = {
	{ 0x0040110E, "IDA",			&smart1_access },
	{ 0x0140110E, "IDA-2",			&smart1_access },
	{ 0x1040110E, "IAES",			&smart1_access },
	{ 0x2040110E, "SMART",			&smart1_access },
	{ 0x3040110E, "SMART-2/E",		&smart2e_access },
	{ 0x40300E11, "SMART-2/P",		&smart2_access },
	{ 0x40310E11, "SMART-2SL",		&smart2_access },
	{ 0x40320E11, "Smart Array 3200",	&smart2_access },
	{ 0x40330E11, "Smart Array 3100ES",	&smart2_access },
	{ 0x40340E11, "Smart Array 221",	&smart2_access },
	{ 0x40400E11, "Integrated Array",	&smart4_access },
	{ 0x40480E11, "Compaq Raid LC2",        &smart4_access },
	{ 0x40500E11, "Smart Array 4200",	&smart4_access },
	{ 0x40510E11, "Smart Array 4250ES",	&smart4_access },
	{ 0x40580E11, "Smart Array 431",	&smart4_access },
};
 
/* define the PCI info for the PCI cards this driver can control */
const struct pci_device_id cpqarray_pci_device_id[] = 
{
	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_COMPAQ_42XX, 
		0x0E11, 0x4058, 0, 0, 0},	/* SA431 */
	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_COMPAQ_42XX, 
                0x0E11, 0x4051, 0, 0, 0},	/* SA4250ES */
	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_COMPAQ_42XX, 
                0x0E11, 0x4050, 0, 0, 0},	/* SA4200 */
	{ PCI_VENDOR_ID_NCR, PCI_DEVICE_ID_NCR_53C1510,
		0x0E11, 0x4048, 0, 0, 0},	/* LC2 */
	{ PCI_VENDOR_ID_NCR, PCI_DEVICE_ID_NCR_53C1510,
                0x0E11, 0x4040, 0, 0, 0}, 	/* Integrated Array */
	{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_SMART2P, 
		0x0E11, 0x4034, 0, 0, 0},	/* SA 221 */ 
	{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_SMART2P, 
                0x0E11, 0x4033, 0, 0, 0},       /* SA 3100ES*/
	{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_SMART2P, 
                0x0E11, 0x4032, 0, 0, 0},       /* SA 3200*/
	{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_SMART2P, 
                0x0E11, 0x4031, 0, 0, 0},       /* SA 2SL*/
	{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_SMART2P, 
                0x0E11, 0x4030, 0, 0, 0},       /* SA 2P */
	{ 0 }
};
 
MODULE_DEVICE_TABLE(pci, cpqarray_pci_device_id);
 
static struct proc_dir_entry *proc_array;
 
/* Debug... */
#define DBG(s)	do { s } while(0)
/* Debug (general info)... */
#define DBGINFO(s) do { } while(0)
/* Debug Paranoid... */
#define DBGP(s)  do { } while(0)
/* Debug Extra Paranoid... */
#define DBGPX(s) do { } while(0)
 
int cpqarray_init(void);
static int cpqarray_pci_init(ctlr_info_t *c, struct pci_dev *pdev);
static void *remap_pci_mem(ulong base, ulong size);
static int cpqarray_eisa_detect(void);
static int pollcomplete(int ctlr);
static void getgeometry(int ctlr);
static void start_fwbk(int ctlr);
 
static cmdlist_t * cmd_alloc(ctlr_info_t *h, int get_from_pool);
static void cmd_free(ctlr_info_t *h, cmdlist_t *c, int got_from_pool);
 
static void free_hba(int i);
static int alloc_cpqarray_hba(void);
 
static int sendcmd(
	__u8	cmd,
	int	ctlr,
	void	*buff,
	size_t	size,
	unsigned int blk,
	unsigned int blkcnt,
	unsigned int log_unit );
 
static int ida_open(struct inode *inode, struct file *filep);
static int ida_release(struct inode *inode, struct file *filep);
static int ida_ioctl(struct inode *inode, struct file *filep, unsigned int cmd, unsigned long arg);
static int ida_ctlr_ioctl(int ctlr, int dsk, ida_ioctl_t *io);
static int ida_ctlr_big_ioctl( int ctlr, int dsk, ida_big_ioctl_t *io);
 
static void do_ida_request(request_queue_t *q);
static void start_io(ctlr_info_t *h);
 
static inline void addQ(cmdlist_t **Qptr, cmdlist_t *c);
static inline cmdlist_t *removeQ(cmdlist_t **Qptr, cmdlist_t *c);
static inline void complete_buffers(struct buffer_head *bh, int ok);
static inline void complete_command(cmdlist_t *cmd, int timeout);
 
static void do_ida_intr(int irq, void *dev_id, struct pt_regs * regs);
static void ida_timer(unsigned long tdata);
static int frevalidate_logvol(kdev_t dev);
static int revalidate_logvol(kdev_t dev, int maxusage);
static int revalidate_allvol(kdev_t dev);
 
static int deregister_disk(int ctlr, int logvol);
static int register_new_disk(int cltr,int logvol);
static int cpqarray_register_ctlr(int ctlr, int type);
 
#ifdef CONFIG_PROC_FS
static void ida_procinit(int i);
static int ida_proc_get_info(char *buffer, char **start, off_t offset, int length, int *eof, void *data);
#else
static void ida_procinit(int i) {}
static int ida_proc_get_info(char *buffer, char **start, off_t offset,
			     int length, int *eof, void *data) { return 0;}
#endif
 
static void ida_geninit(int ctlr)
{
	int i,j;
	drv_info_t *drv;
 
	for(i=0; i<NWD; i++) {
		drv = &hba[ctlr]->drv[i];
		if (!drv->nr_blks)
			continue;
		hba[ctlr]->hd[i<<NWD_SHIFT].nr_sects =
			hba[ctlr]->sizes[i<<NWD_SHIFT] = drv->nr_blks;
 
		for(j=0; j<IDA_MAX_PART; j++) {
			hba[ctlr]->blocksizes[(i<<NWD_SHIFT)+j] = 1024;
			hba[ctlr]->hardsizes[(i<<NWD_SHIFT)+j] = drv->blk_size;
		}
	}
	hba[ctlr]->gendisk.nr_real = hba[ctlr]->highest_lun +1;
 
}
 
static struct block_device_operations ida_fops  = {
	owner:		THIS_MODULE,
	open:		ida_open,
	release:	ida_release,
	ioctl:		ida_ioctl,
	revalidate:	frevalidate_logvol,
};
 
 
#ifdef CONFIG_PROC_FS
 
/*
 * Get us a file in /proc/array that says something about each controller.
 * Create /proc/array if it doesn't exist yet.
 */
static void __init ida_procinit(int i)
{
	if (proc_array == NULL) {
		proc_array = proc_mkdir("cpqarray", proc_root_driver);
		if (!proc_array) return;
	}
 
	create_proc_read_entry(hba[i]->devname, 0, proc_array,
			       ida_proc_get_info, hba[i]);
}
 
/*
 * Report information about this controller.
 */
static int ida_proc_get_info(char *buffer, char **start, off_t offset, int length, int *eof, void *data)
{
	off_t pos = 0;
	off_t len = 0;
	int size, i, ctlr;
	ctlr_info_t *h = (ctlr_info_t*)data;
	drv_info_t *drv;
#ifdef CPQ_PROC_PRINT_QUEUES
	cmdlist_t *c;
#endif
 
	ctlr = h->ctlr;
	size = sprintf(buffer, "%s:  Compaq %s Controller\n"
		"       Board ID: 0x%08lx\n"
		"       Firmware Revision: %c%c%c%c\n"
		"       Controller Sig: 0x%08lx\n"
		"       Memory Address: 0x%08lx\n"
		"       I/O Port: 0x%04x\n"
		"       IRQ: %d\n"
		"       Logical drives: %d\n"
		"       Highest Logical ID: %d\n"
		"       Physical drives: %d\n\n"
		"       Current Q depth: %d\n"
		"       Max Q depth since init: %d\n\n",
		h->devname, 
		h->product_name,
		(unsigned long)h->board_id,
		h->firm_rev[0], h->firm_rev[1], h->firm_rev[2], h->firm_rev[3],
		(unsigned long)h->ctlr_sig, (unsigned long)h->vaddr,
		(unsigned int) h->io_mem_addr, (unsigned int)h->intr,
		h->log_drives, h->highest_lun, h->phys_drives,
		h->Qdepth, h->maxQsinceinit);
 
	pos += size; len += size;
 
	size = sprintf(buffer+len, "Logical Drive Info:\n");
	pos += size; len += size;
 
	for(i=0; i<=h->highest_lun; i++) {
		drv = &h->drv[i];
		if(drv->nr_blks != 0) {
		    	size = sprintf(buffer+len, "ida/c%dd%d: blksz=%d nr_blks=%d\n",
				ctlr, i, drv->blk_size, drv->nr_blks);
			pos += size; len += size;
		}
	}
 
#ifdef CPQ_PROC_PRINT_QUEUES
	size = sprintf(buffer+len, "\nCurrent Queues:\n");
	pos += size; len += size;
 
	c = h->reqQ;
	size = sprintf(buffer+len, "reqQ = %p", c); pos += size; len += size;
	if (c) 
		c=c->next;
	while(c && c != h->reqQ) {
		size = sprintf(buffer+len, "->%p", c);
		pos += size; len += size;
		c=c->next;
	}
 
	c = h->cmpQ;
	size = sprintf(buffer+len, "\ncmpQ = %p", c); pos += size; len += size;
	if (c) 
		c=c->next;
	while(c && c != h->cmpQ) {
		size = sprintf(buffer+len, "->%p", c);
		pos += size; len += size;
		c=c->next;
	}
 
	size = sprintf(buffer+len, "\n"); pos += size; len += size;
#endif
	size = sprintf(buffer+len, "nr_allocs = %d\nnr_frees = %d\n",
			h->nr_allocs, h->nr_frees);
	pos += size; len += size;
 
	*eof = 1;
	*start = buffer+offset;
	len -= offset;
	if (len>length)
		len = length;
	return len;
}
#endif /* CONFIG_PROC_FS */
 
 
MODULE_PARM(eisa, "1-8i");
EXPORT_NO_SYMBOLS;
 
/* This is a bit of a hack... */
int __init init_cpqarray_module(void)
{
	if (cpqarray_init() == 0) /* all the block dev numbers already used */
		return -ENODEV;	  /* or no controllers were found */
	return 0;
}
 
static void release_io_mem(ctlr_info_t *c)
{
	/* if IO mem was not protected do nothing */
	if( c->io_mem_addr == 0)
		return;
	release_region(c->io_mem_addr, c->io_mem_length);
	c->io_mem_addr = 0;
	c->io_mem_length = 0;
}
 
static void __devexit cpqarray_remove_one (struct pci_dev *pdev)
{
	int i;
	ctlr_info_t *tmp_ptr;
	char buff[4]; 
 
	tmp_ptr = pci_get_drvdata(pdev);
	if (tmp_ptr == NULL)
	{
		printk( KERN_ERR "cpqarray: Unable to remove device \n");
		return;
	}
	i = tmp_ptr->ctlr;
	if (hba[i] == NULL) 
	{
		printk(KERN_ERR "cpqarray: device appears to "
			"already be removed \n");
		return;
	}
 
	/* sendcmd will turn off interrupt, and send the flush... 
	 * To write all data in the battery backed cache to disks    */
	memset(buff, 0 , 4);
	if( sendcmd(FLUSH_CACHE, i, buff, 4, 0, 0, 0)) {
		printk(KERN_WARNING "Unable to flush cache on controller %d\n",
			 i);	
	}
	free_irq(hba[i]->intr, hba[i]);
	pci_set_drvdata(pdev, NULL);
	/* remove it from the disk list */
	del_gendisk(&(hba[i]->gendisk));
 
	iounmap(hba[i]->vaddr);
	unregister_blkdev(MAJOR_NR+i, hba[i]->devname);
	del_timer(&hba[i]->timer);
	blk_cleanup_queue(BLK_DEFAULT_QUEUE(MAJOR_NR + i));
	remove_proc_entry(hba[i]->devname, proc_array);
	pci_free_consistent(hba[i]->pci_dev, 
			NR_CMDS * sizeof(cmdlist_t), (hba[i]->cmd_pool), 
			hba[i]->cmd_pool_dhandle);
	kfree(hba[i]->cmd_pool_bits);
	release_io_mem(hba[i]);
	free_hba(i);
}
 
/* removing an instance that was not removed automatically.. 
 * must be an eisa card. 
 */
static void __devexit cpqarray_remove_one_eisa (int i)
{
	char buff[4]; 
 
	if (hba[i] == NULL) {
		printk(KERN_ERR "cpqarray: device appears to "
			"already be removed \n");
		return;
	}
 
	/* sendcmd will turn off interrupt, and send the flush... 
	 * To write all data in the battery backed cache to disks    
	 * no data returned, but don't want to send NULL to sendcmd */	
	if( sendcmd(FLUSH_CACHE, i, buff, 4, 0, 0, 0)) {
		printk(KERN_WARNING "Unable to flush cache on controller %d\n",
			 i);	
	}
	free_irq(hba[i]->intr, hba[i]);
	/* remove it from the disk list */
	del_gendisk(&(hba[i]->gendisk));
 
	iounmap(hba[i]->vaddr);
	unregister_blkdev(MAJOR_NR+i, hba[i]->devname);
	del_timer(&hba[i]->timer);
	blk_cleanup_queue(BLK_DEFAULT_QUEUE(MAJOR_NR + i));
	remove_proc_entry(hba[i]->devname, proc_array);
	pci_free_consistent(hba[i]->pci_dev, 
			NR_CMDS * sizeof(cmdlist_t), (hba[i]->cmd_pool), 
			hba[i]->cmd_pool_dhandle);
	kfree(hba[i]->cmd_pool_bits);
	release_io_mem(hba[i]);
	free_hba(i);
}
static inline int cpq_new_segment(request_queue_t *q, struct request *rq,
				  int max_segments)
{
	if (rq->nr_segments < SG_MAX) {
		rq->nr_segments++;
		return 1;
	}
	return 0;
}
 
static int cpq_back_merge_fn(request_queue_t *q, struct request *rq,
			     struct buffer_head *bh, int max_segments)
{
	if (blk_seg_merge_ok(rq->bhtail, bh))
		return 1;
	return cpq_new_segment(q, rq, max_segments);
}
 
static int cpq_front_merge_fn(request_queue_t *q, struct request *rq,
			     struct buffer_head *bh, int max_segments)
{
	if (blk_seg_merge_ok(bh, rq->bh))
		return 1;
	return cpq_new_segment(q, rq, max_segments);
}
 
static int cpq_merge_requests_fn(request_queue_t *q, struct request *rq,
				 struct request *nxt, int max_segments)
{
	int total_segments = rq->nr_segments + nxt->nr_segments;
 
	if (blk_seg_merge_ok(rq->bhtail, nxt->bh))
		total_segments--;
 
	if (total_segments > SG_MAX)
		return 0;
 
	rq->nr_segments = total_segments;
	return 1;
}
 
static int cpqarray_register_ctlr(int ctlr, int type)
{
	request_queue_t *q;
	int j;
 
	/*
	 * register block devices
	 * Find disks and fill in structs
	 * Get an interrupt, set the Q depth and get into /proc
	 */
 
	/* If this successful it should insure that we are the only */
	/* instance of the driver for this card */
	if (register_blkdev(MAJOR_NR+ctlr, hba[ctlr]->devname, &ida_fops)) {
		printk(KERN_ERR "cpqarray: Unable to get major number %d\n", MAJOR_NR+ctlr);
		goto err_out;
	}
 
	hba[ctlr]->access.set_intr_mask(hba[ctlr], 0);
	if (request_irq(hba[ctlr]->intr, do_ida_intr,
		SA_INTERRUPT|SA_SHIRQ|SA_SAMPLE_RANDOM,
		hba[ctlr]->devname, hba[ctlr])) {
		printk(KERN_ERR "cpqarray: Unable to get irq %d for %s\n",
			hba[ctlr]->intr, hba[ctlr]->devname);
		unregister_blkdev(MAJOR_NR+ctlr, hba[ctlr]->devname);
		goto err_out;
	}
	hba[ctlr]->cmd_pool = (cmdlist_t *)pci_alloc_consistent(
		hba[ctlr]->pci_dev, NR_CMDS * sizeof(cmdlist_t),
		&(hba[ctlr]->cmd_pool_dhandle));
	hba[ctlr]->cmd_pool_bits = (__u32*)kmalloc(
		((NR_CMDS+31)/32)*sizeof(__u32), GFP_KERNEL);
 
	if (hba[ctlr]->cmd_pool_bits == NULL || hba[ctlr]->cmd_pool == NULL) {
		if (hba[ctlr]->cmd_pool_bits)
			kfree(hba[ctlr]->cmd_pool_bits);
		if (hba[ctlr]->cmd_pool)
			pci_free_consistent(hba[ctlr]->pci_dev,
				NR_CMDS * sizeof(cmdlist_t),
				hba[ctlr]->cmd_pool,
				hba[ctlr]->cmd_pool_dhandle);
 
		free_irq(hba[ctlr]->intr, hba[ctlr]);
		unregister_blkdev(MAJOR_NR+ctlr, hba[ctlr]->devname);
		printk( KERN_ERR "cpqarray: out of memory");
		goto err_out;
	}
	memset(hba[ctlr]->cmd_pool, 0, NR_CMDS * sizeof(cmdlist_t));
	memset(hba[ctlr]->cmd_pool_bits, 0, ((NR_CMDS+31)/32)*sizeof(__u32));
	printk(KERN_INFO "cpqarray: Finding drives on %s", hba[ctlr]->devname);
	getgeometry(ctlr);
	start_fwbk(ctlr);
 
	hba[ctlr]->access.set_intr_mask(hba[ctlr], FIFO_NOT_EMPTY);
 
	ida_procinit(ctlr);
 
	q = BLK_DEFAULT_QUEUE(MAJOR_NR + ctlr);
	q->queuedata = hba[ctlr];
	blk_init_queue(q, do_ida_request);
	if (type)
		blk_queue_bounce_limit(q, hba[ctlr]->pci_dev->dma_mask);
	blk_queue_headactive(q, 0);
	blksize_size[MAJOR_NR+ctlr] = hba[ctlr]->blocksizes;
	hardsect_size[MAJOR_NR+ctlr] = hba[ctlr]->hardsizes;
	read_ahead[MAJOR_NR+ctlr] = READ_AHEAD;
 
	q->back_merge_fn = cpq_back_merge_fn;
	q->front_merge_fn = cpq_front_merge_fn;
	q->merge_requests_fn = cpq_merge_requests_fn;
 
	hba[ctlr]->gendisk.major = MAJOR_NR + ctlr;
	hba[ctlr]->gendisk.major_name = "ida";
	hba[ctlr]->gendisk.minor_shift = NWD_SHIFT;
	hba[ctlr]->gendisk.max_p = IDA_MAX_PART;
	hba[ctlr]->gendisk.part = hba[ctlr]->hd;
	hba[ctlr]->gendisk.sizes = hba[ctlr]->sizes;
	hba[ctlr]->gendisk.nr_real = hba[ctlr]->highest_lun+1;
	hba[ctlr]->gendisk.fops = &ida_fops;
 
	/* Get on the disk list */
	add_gendisk(&(hba[ctlr]->gendisk));
 
	init_timer(&hba[ctlr]->timer);
	hba[ctlr]->timer.expires = jiffies + IDA_TIMER;
	hba[ctlr]->timer.data = (unsigned long)hba[ctlr];
	hba[ctlr]->timer.function = ida_timer;
	add_timer(&hba[ctlr]->timer);
 
	ida_geninit(ctlr);
	for(j=0; j<NWD; j++)
		register_disk(&(hba[ctlr]->gendisk), MKDEV(MAJOR_NR+ctlr,j<<4),
			IDA_MAX_PART, &ida_fops, hba[ctlr]->drv[j].nr_blks);
	return(ctlr);
 
err_out:
	release_io_mem(hba[ctlr]);
	free_hba(ctlr);
	return (-1);
}
 
 
static int __init cpqarray_init_one( struct pci_dev *pdev,
	const struct pci_device_id *ent)
{
        int i,j;
 
 
	printk(KERN_DEBUG "cpqarray: Device 0x%x has been found at"
		" bus %d dev %d func %d\n",
		pdev->device, pdev->bus->number, PCI_SLOT(pdev->devfn),
			PCI_FUNC(pdev->devfn));
	i = alloc_cpqarray_hba();
	if( i < 0 ) 
		return (-1);
	memset(hba[i], 0, sizeof(ctlr_info_t));
	/* fill in default block size */
	for(j=0;j<256;j++)
                hba[i]->hardsizes[j] = hba[i]->drv[j].blk_size;
 
	sprintf(hba[i]->devname, "ida%d", i);
        hba[i]->ctlr = i;
	/* Initialize the pdev driver private data */
	pci_set_drvdata(pdev, hba[i]);
 
	if (cpqarray_pci_init(hba[i], pdev) != 0) {
		release_io_mem(hba[i]);
		free_hba(i);
		return (-1);
	}
 
	return (cpqarray_register_ctlr(i, 1));
}
static struct pci_driver cpqarray_pci_driver = {
        name:   "cpqarray",
        probe:  cpqarray_init_one,
        remove:  __devexit_p(cpqarray_remove_one),
        id_table:  cpqarray_pci_device_id,
};
 
/*
 *  This is it.  Find all the controllers and register them.  I really hate
 *  stealing all these major device numbers.
 *  returns the number of block devices registered.
 */
int __init cpqarray_init(void)
{
	int num_cntlrs_reg = 0;
	int i;
 
	/* detect controllers */
	printk(DRIVER_NAME "\n");
	pci_module_init(&cpqarray_pci_driver);
	cpqarray_eisa_detect();
 
	for(i=0; i< MAX_CTLR; i++) {
		if (hba[i] != NULL)
			num_cntlrs_reg++;
	}
	return(num_cntlrs_reg);
}
/* Function to find the first free pointer into our hba[] array */
/* Returns -1 if no free entries are left.  */
static int alloc_cpqarray_hba(void)
{
	int i;
	for(i=0; i< MAX_CTLR; i++) {
		if (hba[i] == NULL) {
			hba[i] = kmalloc(sizeof(ctlr_info_t), GFP_KERNEL);
			if(hba[i]==NULL) {
				printk(KERN_ERR "cpqarray: out of memory.\n");
				return (-1);
			}
			return (i);
		}
	}
	printk(KERN_WARNING "cpqarray: This driver supports a maximum"
		" of 8 controllers.\n");
	return(-1);
}
 
static void free_hba(int i)
{
	kfree(hba[i]);
	hba[i]=NULL;
}
 
/*
 * Find the IO address of the controller, its IRQ and so forth.  Fill
 * in some basic stuff into the ctlr_info_t structure.
 */
static int cpqarray_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
{
	ushort vendor_id, device_id, command;
	unchar cache_line_size, latency_timer;
	unchar irq, revision;
	unsigned long addr[6];
	__u32 board_id;
 
	int i;
 
	pci_read_config_word(pdev, PCI_COMMAND, &command);
	/* check to see if controller has been disabled */
	if(!(command & 0x02)) {
		printk(KERN_WARNING "cpqarray: controller appears to be disabled\n");
		return(-1);
	}
 
	c->pci_dev = pdev;
	vendor_id = pdev->vendor;
	device_id = pdev->device;
	irq = pdev->irq;
 
	for(i=0; i<6; i++)
		addr[i] = pci_resource_start(pdev, i);
 
	if (pci_enable_device(pdev)) {
		printk(KERN_ERR "cpqarray: Unable to Enable PCI device\n");
		return -1;
	}
	if (pci_set_dma_mask(pdev, CPQARRAY_DMA_MASK) != 0) {
		printk(KERN_ERR "cpqarray: Unable to set DMA mask\n");
		return -1;
	}
 
	pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision);
	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_line_size);
	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency_timer);
 
	pci_read_config_dword(pdev, 0x2c, &board_id);
 
DBGINFO(
	printk("vendor_id = %x\n", vendor_id);
	printk("device_id = %x\n", device_id);
	printk("command = %x\n", command);
	for(i=0; i<6; i++)
		printk("addr[%d] = %lx\n", i, addr[i]);
	printk("revision = %x\n", revision);
	printk("irq = %x\n", irq);
	printk("cache_line_size = %x\n", cache_line_size);
	printk("latency_timer = %x\n", latency_timer);
	printk("board_id = %x\n", board_id);
);
 
	c->intr = irq;
	for(i=0; i<6; i++) {
		if (pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE_IO) { 
			/* IO space */  
			c->io_mem_addr = addr[i];
			c->io_mem_length = pci_resource_end(pdev, i) 
				- pci_resource_start(pdev, i) +1; 
			// printk("IO Value found addr[%d] %lx %lx\n",
			//		i, c->io_mem_addr, c->io_mem_length);
			if(!request_region( c->io_mem_addr, c->io_mem_length,
				"cpqarray")) {
				printk( KERN_WARNING "cpqarray I/O memory range already in use addr %lx length = %ld\n", c->io_mem_addr, c->io_mem_length);
				c->io_mem_addr = 0;
				c->io_mem_length = 0;
			}
			break;
		}
	}	
	c->paddr = 0;
	for(i=0; i<6; i++)
		if (!(pci_resource_flags(pdev, i) & 
					PCI_BASE_ADDRESS_SPACE_IO)) {
			c->paddr = pci_resource_start (pdev, i);
			break;
		}
	if (!c->paddr)
		return -1;
	c->vaddr = remap_pci_mem(c->paddr, 128);
	if (!c->vaddr)
		return -1;
	c->board_id = board_id;
 
	for(i=0; i<NR_PRODUCTS; i++) {
		if (board_id == products[i].board_id) {
			c->product_name = products[i].product_name;
			c->access = *(products[i].access);
			break;
		}
	}
	if (i == NR_PRODUCTS) {
		printk(KERN_WARNING "cpqarray: Sorry, I don't know how"
			" to access the SMART Array controller %08lx\n", 
				(unsigned long)board_id);
		return -1;
	}
 
	return 0;
}
 
/*
 * Map (physical) PCI mem into (virtual) kernel space
 */
static void *remap_pci_mem(ulong base, ulong size)
{
        ulong page_base        = ((ulong) base) & PAGE_MASK;
        ulong page_offs        = ((ulong) base) - page_base;
        void *page_remapped    = ioremap(page_base, page_offs+size);
 
        return (page_remapped ? (page_remapped + page_offs) : NULL);
}
 
#ifndef MODULE
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,13)
/*
 * Config string is a comma seperated set of i/o addresses of EISA cards.
 */
static int cpqarray_setup(char *str)
{
	int i, ints[9];
 
	(void)get_options(str, ARRAY_SIZE(ints), ints);
 
	for(i=0; i<ints[0] && i<8; i++)
		eisa[i] = ints[i+1];
	return 1;
}
 
__setup("smart2=", cpqarray_setup);
 
#else
 
/*
 * Copy the contents of the ints[] array passed to us by init.
 */
void cpqarray_setup(char *str, int *ints)
{
	int i;
	for(i=0; i<ints[0] && i<8; i++)
		eisa[i] = ints[i+1];
}
#endif
#endif
 
/*
 * Find an EISA controller's signature.  Set up an hba if we find it.
 */
static int cpqarray_eisa_detect(void)
{
	int i=0, j;
	__u32 board_id;
	int intr;
	int ctlr;
	int num_ctlr = 0;
	while(i<8 && eisa[i]) {
		ctlr = alloc_cpqarray_hba();
		if (ctlr == -1 ) {
			break;
		}
		board_id = inl(eisa[i]+0xC80);
		for(j=0; j < NR_PRODUCTS; j++)
			if (board_id == products[j].board_id) 
				break;
 
		if (j == NR_PRODUCTS) {
			printk(KERN_WARNING "cpqarray: Sorry, I don't know how"
				" to access the SMART Array controller %08lx\n",				 (unsigned long)board_id);
			free_hba(ctlr);
			continue;
		}
		memset(hba[ctlr], 0, sizeof(ctlr_info_t));
		hba[ctlr]->io_mem_addr = eisa[i];
		hba[ctlr]->io_mem_length = 0x7FF;		
		if(!request_region( hba[ctlr]->io_mem_addr, 
					hba[ctlr]->io_mem_length, 
				"cpqarray")) {
			printk( KERN_WARNING "cpqarray: I/0 range already in use addr = %lx length=%ld\n",
			 hba[ctlr]->io_mem_addr, hba[ctlr]->io_mem_length);
			free_hba(ctlr);
			continue;	
		}
		/*
		 * Read the config register to find our interrupt
		 */
		intr = inb(eisa[i]+0xCC0) >> 4;
		if (intr & 1) 
			intr = 11;
		else if (intr & 2) 
			intr = 10;
		else if (intr & 4) 
			intr = 14;
		else if (intr & 8) 
			intr = 15;
 
		hba[ctlr]->intr = intr;
		sprintf(hba[ctlr]->devname, "ida%d", ctlr);
		hba[ctlr]->product_name = products[j].product_name;
		hba[ctlr]->access = *(products[j].access);
		hba[ctlr]->ctlr = ctlr;
		hba[ctlr]->board_id = board_id;
		hba[ctlr]->pci_dev = NULL; /* not PCI */
 
DBGINFO(
	printk("i = %d, j = %d\n", i, j);
	printk("irq = %x\n", intr);
	printk("product name = %s\n", products[j].product_name);
	printk("board_id = %x\n", board_id);
);
 
		num_ctlr++;
		i++;
 
		if (cpqarray_register_ctlr(ctlr, 0) == -1)
			printk(KERN_WARNING 
				"cpqarray%d: Can't register EISA controller\n",
				ctlr);
	}
 
	return num_ctlr;
}
 
 
/*
 * Open.  Make sure the device is really there.
 */
static int ida_open(struct inode *inode, struct file *filep)
{
	int ctlr = MAJOR(inode->i_rdev) - MAJOR_NR;
	int dsk  = MINOR(inode->i_rdev) >> NWD_SHIFT;
 
	DBGINFO(printk("ida_open %x (%x:%x)\n", inode->i_rdev, ctlr, dsk) );
	if (ctlr > MAX_CTLR || hba[ctlr] == NULL)
		return -ENXIO;
 
	/*
	 * Root is allowed to open raw volume zero even if its not configured
	 * so array config can still work.  I don't think I really like this,
	 * but I'm already using way to many device nodes to claim another one
	 * for "raw controller".
	 */
	if (hba[ctlr]->sizes[MINOR(inode->i_rdev)] == 0) {
		if (MINOR(inode->i_rdev) != 0)
			return -ENXIO;
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
	}
 
	hba[ctlr]->drv[dsk].usage_count++;
	hba[ctlr]->usage_count++;
	return 0;
}
 
/*
 * Close.  Sync first.
 */
static int ida_release(struct inode *inode, struct file *filep)
{
	int ctlr = MAJOR(inode->i_rdev) - MAJOR_NR;
	int dsk  = MINOR(inode->i_rdev) >> NWD_SHIFT;
 
	DBGINFO(printk("ida_release %x (%x:%x)\n", inode->i_rdev, ctlr, dsk) );
 
	hba[ctlr]->drv[dsk].usage_count--;
	hba[ctlr]->usage_count--;
	return 0;
}
 
/*
 * Enqueuing and dequeuing functions for cmdlists.
 */
static inline void addQ(cmdlist_t **Qptr, cmdlist_t *c)
{
	if (*Qptr == NULL) {
		*Qptr = c;
		c->next = c->prev = c;
	} else {
		c->prev = (*Qptr)->prev;
		c->next = (*Qptr);
		(*Qptr)->prev->next = c;
		(*Qptr)->prev = c;
	}
}
 
static inline cmdlist_t *removeQ(cmdlist_t **Qptr, cmdlist_t *c)
{
	if (c && c->next != c) {
		if (*Qptr == c) 
			*Qptr = c->next;
		c->prev->next = c->next;
		c->next->prev = c->prev;
	} else {
		*Qptr = NULL;
	}
	return c;
}
 
/*
 * Get a request and submit it to the controller.
 * This routine needs to grab all the requests it possibly can from the
 * req Q and submit them.  Interrupts are off (and need to be off) when you
 * are in here (either via the dummy do_ida_request functions or by being
 * called from the interrupt handler
 */
static void do_ida_request(request_queue_t *q)
{
	ctlr_info_t *h = q->queuedata;
	cmdlist_t *c;
	unsigned long lastdataend;
	struct list_head * queue_head = &q->queue_head;
	struct buffer_head *bh;
	struct request *creq;
	struct scatterlist tmp_sg[SG_MAX];
	int i, seg;
 
	if (q->plugged)
		goto startio;
 
next:
	if (list_empty(queue_head))
		goto startio;
 
	creq = blkdev_entry_next_request(queue_head);
	if (creq->nr_segments > SG_MAX)
		BUG();
 
	if (h->ctlr != MAJOR(creq->rq_dev)-MAJOR_NR ) {
		printk(KERN_WARNING "doreq cmd for %d, %x at %p\n",
				h->ctlr, creq->rq_dev, creq);
		blkdev_dequeue_request(creq);
		complete_buffers(creq->bh, 0);
		end_that_request_last(creq);
		goto startio;
	}
 
	if ((c = cmd_alloc(h,1)) == NULL)
		goto startio;
 
	blkdev_dequeue_request(creq);
 
	spin_unlock_irq(&io_request_lock);
 
	bh = creq->bh;
 
	c->ctlr = h->ctlr;
	c->hdr.unit = MINOR(creq->rq_dev) >> NWD_SHIFT;
	c->hdr.size = sizeof(rblk_t) >> 2;
	c->size += sizeof(rblk_t);
 
	c->req.hdr.blk = hba[h->ctlr]->hd[MINOR(creq->rq_dev)].start_sect 
				+ creq->sector;
	c->rq = creq;
DBGPX(
	if (bh == NULL)
		panic("bh == NULL?");
 
	printk("sector=%d, nr_sectors=%d\n", creq->sector, creq->nr_sectors);
);
	seg = 0;
	lastdataend = ~0UL;
	while(bh) {
		if (bh_phys(bh) == lastdataend) {
			tmp_sg[seg-1].length += bh->b_size;
			lastdataend += bh->b_size;
		} else {
			if (seg == SG_MAX)
				BUG();
			tmp_sg[seg].page = bh->b_page;
			tmp_sg[seg].length = bh->b_size;
			tmp_sg[seg].offset = bh_offset(bh);
			lastdataend = bh_phys(bh) + bh->b_size;
			seg++;
		}
		bh = bh->b_reqnext;
	}
	/* Now do all the DMA Mappings */
	for( i=0; i < seg; i++) {
		c->req.sg[i].size = tmp_sg[i].length;
		c->req.sg[i].addr = (__u32) pci_map_page(
                		h->pci_dev, tmp_sg[i].page, tmp_sg[i].offset,
				tmp_sg[i].length,
                                (creq->cmd == READ) ? 
					PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
	}
DBGPX(	printk("Submitting %d sectors in %d segments\n", sect, seg); );
	c->req.hdr.sg_cnt = seg;
	c->req.hdr.blk_cnt = creq->nr_sectors;
	c->req.hdr.cmd = (creq->cmd == READ) ? IDA_READ : IDA_WRITE;
	c->type = CMD_RWREQ;
 
	spin_lock_irq(&io_request_lock);
 
	/* Put the request on the tail of the request queue */
	addQ(&h->reqQ, c);
	h->Qdepth++;
	if (h->Qdepth > h->maxQsinceinit) 
		h->maxQsinceinit = h->Qdepth;
 
	goto next;
 
startio:
	start_io(h);
}
 
/* 
 * start_io submits everything on a controller's request queue
 * and moves it to the completion queue.
 *
 * Interrupts had better be off if you're in here
 */
static void start_io(ctlr_info_t *h)
{
	cmdlist_t *c;
 
	while((c = h->reqQ) != NULL) {
		/* Can't do anything if we're busy */
		if (h->access.fifo_full(h) == 0)
			return;
 
		/* Get the first entry from the request Q */
		removeQ(&h->reqQ, c);
		h->Qdepth--;
 
		/* Tell the controller to do our bidding */
		h->access.submit_command(h, c);
 
		/* Get onto the completion Q */
		addQ(&h->cmpQ, c);
	}
}
 
static inline void complete_buffers(struct buffer_head *bh, int ok)
{
	struct buffer_head *xbh;
	while(bh) {
		xbh = bh->b_reqnext;
		bh->b_reqnext = NULL;
 
		blk_finished_io(bh->b_size >> 9);
		bh->b_end_io(bh, ok);
 
		bh = xbh;
	}
}
/*
 * Mark all buffers that cmd was responsible for
 */
static inline void complete_command(cmdlist_t *cmd, int timeout)
{
	int ok=1;
	int i;
 
	if (cmd->req.hdr.rcode & RCODE_NONFATAL &&
	   (hba[cmd->ctlr]->misc_tflags & MISC_NONFATAL_WARN) == 0) {
		printk(KERN_NOTICE "Non Fatal error on ida/c%dd%d\n",
				cmd->ctlr, cmd->hdr.unit);
		hba[cmd->ctlr]->misc_tflags |= MISC_NONFATAL_WARN;
	}
	if (cmd->req.hdr.rcode & RCODE_FATAL) {
		printk(KERN_WARNING "Fatal error on ida/c%dd%d\n",
				cmd->ctlr, cmd->hdr.unit);
		ok = 0;
	}
	if (cmd->req.hdr.rcode & RCODE_INVREQ) {
				printk(KERN_WARNING "Invalid request on ida/c%dd%d = (cmd=%x sect=%d cnt=%d sg=%d ret=%x)\n",
				cmd->ctlr, cmd->hdr.unit, cmd->req.hdr.cmd,
				cmd->req.hdr.blk, cmd->req.hdr.blk_cnt,
				cmd->req.hdr.sg_cnt, cmd->req.hdr.rcode);
		ok = 0;	
	}
	if (timeout) 
		ok = 0;
	/* unmap the DMA mapping for all the scatter gather elements */
        for(i=0; i<cmd->req.hdr.sg_cnt; i++)
        {
                pci_unmap_page(hba[cmd->ctlr]->pci_dev,
                        cmd->req.sg[i].addr, cmd->req.sg[i].size,
                        (cmd->req.hdr.cmd == IDA_READ) ? PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
        }
 
	complete_buffers(cmd->rq->bh, ok);
	DBGPX(printk("Done with %p\n", cmd->rq););
	end_that_request_last(cmd->rq);
}
 
/*
 *  The controller will interrupt us upon completion of commands.
 *  Find the command on the completion queue, remove it, tell the OS and
 *  try to queue up more IO
 */
static void do_ida_intr(int irq, void *dev_id, struct pt_regs *regs)
{
	ctlr_info_t *h = dev_id;
	cmdlist_t *c;
	unsigned long istat;
	unsigned long flags;
	__u32 a,a1;
 
	istat = h->access.intr_pending(h);
	/* Is this interrupt for us? */
	if (istat == 0)
		return;
 
	/*
	 * If there are completed commands in the completion queue,
	 * we had better do something about it.
	 */
	spin_lock_irqsave(&io_request_lock, flags);
	if (istat & FIFO_NOT_EMPTY) {
		while((a = h->access.command_completed(h))) {
			a1 = a; a &= ~3;
			if ((c = h->cmpQ) == NULL)
			{  
				printk(KERN_WARNING "cpqarray: Completion of %08lx ignored\n", (unsigned long)a1);
				continue;	
			} 
			while(c->busaddr != a) {
				c = c->next;
				if (c == h->cmpQ) 
					break;
			}
			/*
			 * If we've found the command, take it off the
			 * completion Q and free it
			 */
			if (c->busaddr == a) {
				removeQ(&h->cmpQ, c);
				/*  Check for invalid command.
                                 *  Controller returns command error,
                                 *  But rcode = 0.
                                 */
 
				if((a1 & 0x03) && (c->req.hdr.rcode == 0)) {
                                	c->req.hdr.rcode = RCODE_INVREQ;
                                }
				if (c->type == CMD_RWREQ) {
					complete_command(c, 0);
					cmd_free(h, c, 1);
				} else if (c->type == CMD_IOCTL_PEND) {
					complete(c->waiting);
				}
				continue;
			}
		}
	}
 
	/*
	 * See if we can queue up some more IO
	 */
	do_ida_request(BLK_DEFAULT_QUEUE(MAJOR_NR + h->ctlr));
	spin_unlock_irqrestore(&io_request_lock, flags);
}
 
/*
 * This timer was for timing out requests that haven't happened after
 * IDA_TIMEOUT.  That wasn't such a good idea.  This timer is used to
 * reset a flags structure so we don't flood the user with
 * "Non-Fatal error" messages.
 */
static void ida_timer(unsigned long tdata)
{
	ctlr_info_t *h = (ctlr_info_t*)tdata;
 
	h->timer.expires = jiffies + IDA_TIMER;
	add_timer(&h->timer);
	h->misc_tflags = 0;
}
 
/*
 *  ida_ioctl does some miscellaneous stuff like reporting drive geometry,
 *  setting readahead and submitting commands from userspace to the controller.
 */
static int ida_ioctl(struct inode *inode, struct file *filep, unsigned int cmd, unsigned long arg)
{
	int ctlr = MAJOR(inode->i_rdev) - MAJOR_NR;
	int dsk  = MINOR(inode->i_rdev) >> NWD_SHIFT;
	int error;
 
	switch(cmd) {
	case HDIO_GETGEO:
	{
		struct hd_geometry driver_geo;
 
		if (hba[ctlr]->drv[dsk].cylinders) {
			driver_geo.heads = hba[ctlr]->drv[dsk].heads;
			driver_geo.sectors = hba[ctlr]->drv[dsk].sectors;
			driver_geo.cylinders = hba[ctlr]->drv[dsk].cylinders;
		} else {
			driver_geo.heads = 0xff;
			driver_geo.sectors = 0x3f;
			driver_geo.cylinders = hba[ctlr]->drv[dsk].nr_blks 
							/ (0xff*0x3f);
		}
		driver_geo.start=
		hba[ctlr]->hd[MINOR(inode->i_rdev)].start_sect;
		if (copy_to_user((void *) arg, &driver_geo,
				sizeof( struct hd_geometry)))
			return  -EFAULT;
		return(0);
	}
	case HDIO_GETGEO_BIG:
	{
		struct hd_big_geometry driver_geo;
 
		if (hba[ctlr]->drv[dsk].cylinders) {
			driver_geo.heads = hba[ctlr]->drv[dsk].heads;
			driver_geo.sectors = hba[ctlr]->drv[dsk].sectors;
			driver_geo.cylinders = hba[ctlr]->drv[dsk].cylinders;
		} else {
			driver_geo.heads = 0xff;
			driver_geo.sectors = 0x3f;
			driver_geo.cylinders = hba[ctlr]->drv[dsk].nr_blks 
				/ (0xff*0x3f);
		}
		driver_geo.start=
			hba[ctlr]->hd[MINOR(inode->i_rdev)].start_sect;
		if (copy_to_user((void *) arg, &driver_geo,
				sizeof( struct hd_big_geometry)))
			return  -EFAULT;
		return(0);
	}
 
	case IDAGETDRVINFO:
	{
 
		ida_ioctl_t *io = (ida_ioctl_t*)arg;
		return copy_to_user(&io->c.drv,&hba[ctlr]->drv[dsk],sizeof(drv_info_t));
	}
	case BLKRRPART:
		return revalidate_logvol(inode->i_rdev, 1);
	case IDAPASSTHRU:
	{
 
		ida_ioctl_t *io = (ida_ioctl_t*)arg;
		ida_ioctl_t my_io;
 
		if (!capable(CAP_SYS_RAWIO)) 
			return -EPERM;
		if (copy_from_user(&my_io, io, sizeof(my_io)))
			return -EFAULT;
		error = ida_ctlr_ioctl(ctlr, dsk, &my_io);
		if (error)
			return error;
		if (copy_to_user(io, &my_io, sizeof(my_io)))
			return -EFAULT;
		return 0;
	}
	case IDABIGPASSTHRU:
	{
 
		ida_big_ioctl_t *io = (ida_big_ioctl_t*)arg;
		ida_big_ioctl_t my_io;
 
		if (!capable(CAP_SYS_RAWIO))
			return -EPERM;
		if (copy_from_user(&my_io, io, sizeof(my_io)))
			return -EFAULT;
		error = ida_ctlr_big_ioctl(ctlr, dsk, &my_io);
		if (error)
			return error;
		if (copy_to_user(io, &my_io, sizeof(my_io)))
			return -EFAULT;
		return 0;
	}
	case IDAGETCTLRSIG:
		if (!arg) 
			return -EINVAL;
		put_user(hba[ctlr]->ctlr_sig, (int*)arg);
		return 0;
	case IDAREVALIDATEVOLS:
		return revalidate_allvol(inode->i_rdev);
	case IDADRIVERVERSION:
		if (!arg) return -EINVAL;
		put_user(DRIVER_VERSION, (unsigned long*)arg);
		return 0;
	case IDAGETPCIINFO:
	{
 
		ida_pci_info_struct pciinfo;
 
		if (!arg) 
			return -EINVAL;
		pciinfo.bus = hba[ctlr]->pci_dev->bus->number;
		pciinfo.dev_fn = hba[ctlr]->pci_dev->devfn;
		pciinfo.board_id = hba[ctlr]->board_id;
		if(copy_to_user((void *) arg, &pciinfo,  
			sizeof( ida_pci_info_struct)))
				return -EFAULT;
		return(0);
	}	
	case IDADEREGDISK:
			return( deregister_disk(ctlr,dsk));
	case IDAREGNEWDISK:
	{
		int logvol = arg; 
		return(register_new_disk(ctlr, logvol));
	}	
 
	case IDAGETLOGINFO:
	{
		idaLogvolInfo_struct luninfo;
		int num_parts = 0;
		int i, start;
 
		luninfo.LogVolID = dsk; 
		luninfo.num_opens = hba[ctlr]->drv[dsk].usage_count;
 
		/* count partitions 1 to 15 with sizes > 0 */
		start = (dsk << NWD_SHIFT); 	
		for(i=1; i <IDA_MAX_PART; i++) {
			int minor = start+i;
			if(hba[ctlr]->sizes[minor] != 0)
				num_parts++;
		}
		luninfo.num_parts = num_parts;
		if (copy_to_user((void *) arg, &luninfo, 
			sizeof( idaLogvolInfo_struct) ))
				return -EFAULT;
		return(0);
	}
 
	case BLKGETSIZE:
	case BLKGETSIZE64:
	case BLKFLSBUF:
	case BLKBSZSET:
	case BLKBSZGET:
	case BLKSSZGET:
	case BLKROSET:
	case BLKROGET:
	case BLKRASET:
	case BLKRAGET:
	case BLKELVGET:
	case BLKELVSET:
	case BLKPG:
		return blk_ioctl(inode->i_rdev, cmd, arg);
 
	default:
		return -EINVAL;
	}
 
}
/*
 * ida_ctlr_ioctl is for passing commands to the controller from userspace.
 * The command block (io) has already been copied to kernel space for us,
 * however, any elements in the sglist need to be copied to kernel space
 * or copied back to userspace.
 *
 * Only root may perform a controller passthru command, however I'm not doing
 * any serious sanity checking on the arguments.  Doing an IDA_WRITE_MEDIA and
 * putting a 64M buffer in the sglist is probably a *bad* idea.
 */
static int ida_ctlr_ioctl(int ctlr, int dsk, ida_ioctl_t *io)
{
	ctlr_info_t *h = hba[ctlr];
	cmdlist_t *c;
	void *p = NULL;
	unsigned long flags;
	int error;
	DECLARE_COMPLETION(wait);
 
	if ((c = cmd_alloc(h, 0)) == NULL)
		return -ENOMEM;
	c->ctlr = ctlr;
	c->hdr.unit = (io->unit & UNITVALID) ? (io->unit & ~UNITVALID) : dsk;
	c->hdr.size = sizeof(rblk_t) >> 2;
	c->size += sizeof(rblk_t);
 
	c->req.hdr.cmd = io->cmd;
	c->req.hdr.blk = io->blk;
	c->req.hdr.blk_cnt = io->blk_cnt;
	c->type = CMD_IOCTL_PEND;
 
	/* Pre submit processing */
	switch(io->cmd) {
	case PASSTHRU_A:
		p = kmalloc(io->sg[0].size, GFP_KERNEL);
		if (!p) { 
			error = -ENOMEM; 
			cmd_free(h, c, 0); 
			return(error);
		}
		if (copy_from_user(p, (void*)io->sg[0].addr, io->sg[0].size)) {
			kfree(p);
			cmd_free(h, c, 0); 
			return -EFAULT;
		}
		c->req.hdr.blk = pci_map_single(h->pci_dev, &(io->c), 
				sizeof(ida_ioctl_t), 
				PCI_DMA_BIDIRECTIONAL);
		c->req.sg[0].size = io->sg[0].size;
		c->req.sg[0].addr = pci_map_single(h->pci_dev, p, 
			c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL);
		c->req.hdr.sg_cnt = 1;
		break;
	case IDA_READ:
	case SENSE_SURF_STATUS:
	case READ_FLASH_ROM:
	case SENSE_CONTROLLER_PERFORMANCE:
		p = kmalloc(io->sg[0].size, GFP_KERNEL);
		if (!p) { 
                        error = -ENOMEM; 
                        cmd_free(h, c, 0);
                        return(error);
                }
 
		c->req.sg[0].size = io->sg[0].size;
		c->req.sg[0].addr = pci_map_single(h->pci_dev, p, 
			c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL); 
		c->req.hdr.sg_cnt = 1;
		break;
	case IDA_WRITE:
	case IDA_WRITE_MEDIA:
	case DIAG_PASS_THRU:
	case COLLECT_BUFFER:
	case WRITE_FLASH_ROM:
		p = kmalloc(io->sg[0].size, GFP_KERNEL);
		if (!p) { 
                        error = -ENOMEM; 
                        cmd_free(h, c, 0);
                        return(error);
                }
		if (copy_from_user(p, (void*)io->sg[0].addr, io->sg[0].size)) {
			kfree(p);
                        cmd_free(h, c, 0);
			return -EFAULT;
		}
		c->req.sg[0].size = io->sg[0].size;
		c->req.sg[0].addr = pci_map_single(h->pci_dev, p, 
			c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL); 
		c->req.hdr.sg_cnt = 1;
		break;
	default:
		c->req.sg[0].size = sizeof(io->c);
		c->req.sg[0].addr = pci_map_single(h->pci_dev,&io->c, 
			c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL);
		c->req.hdr.sg_cnt = 1;
	}
 
	c->waiting = &wait;
 
	/* Put the request on the tail of the request queue */
	spin_lock_irqsave(&io_request_lock, flags);
	addQ(&h->reqQ, c);
	h->Qdepth++;
	start_io(h);
	spin_unlock_irqrestore(&io_request_lock, flags);
 
	/* Wait for completion */
	wait_for_completion(&wait);
 
	/* Unmap the DMA  */
	pci_unmap_single(h->pci_dev, c->req.sg[0].addr, c->req.sg[0].size, 
		PCI_DMA_BIDIRECTIONAL);
	/* Post submit processing */
	switch(io->cmd) {
	case PASSTHRU_A:
		pci_unmap_single(h->pci_dev, c->req.hdr.blk,
                                sizeof(ida_ioctl_t),
                                PCI_DMA_BIDIRECTIONAL);
	case IDA_READ:
	case SENSE_SURF_STATUS:
	case DIAG_PASS_THRU:
	case SENSE_CONTROLLER_PERFORMANCE:
	case READ_FLASH_ROM:
		if (copy_to_user((void*)io->sg[0].addr, p, io->sg[0].size)) {
			kfree(p);
			return -EFAULT;
		}
		/* fall through and free p */
	case IDA_WRITE:
	case IDA_WRITE_MEDIA:
	case COLLECT_BUFFER:
	case WRITE_FLASH_ROM:
		kfree(p);
		break;
	default:;
		/* Nothing to do */
	}
 
	io->rcode = c->req.hdr.rcode;
	cmd_free(h, c, 0);
	return(0);
}
 
/*
 * ida_ctlr_big_ioctl is for passing commands to the controller from userspace.
 * The command block (io) has already been copied to kernel space for us,
 *
 * Only root may perform a controller passthru command, however I'm not doing
 * any serious sanity checking on the arguments.  
 */
static int ida_ctlr_big_ioctl(int ctlr, int dsk, ida_big_ioctl_t *io)
{
	ctlr_info_t *h = hba[ctlr];
	cmdlist_t *c;
	__u8   *scsi_param = NULL;
	__u8	*buff[SG_MAX] = {NULL,};
	size_t	buff_size[SG_MAX];
	__u8	sg_used = 0;
	unsigned long flags;
	int error = 0;
	int i;
	DECLARE_COMPLETION(wait);
 
	/* Check kmalloc limits  using all SGs */
	if( io->buff_malloc_size > IDA_MAX_KMALLOC_SIZE)
		return -EINVAL;
	if( io->buff_size > io->buff_malloc_size * SG_MAX)
		return -EINVAL;
	if ((c = cmd_alloc(h, 0)) == NULL)
		return -ENOMEM;
 
	c->ctlr = ctlr;
	c->hdr.unit = (io->unit & UNITVALID) ? (io->unit & ~UNITVALID) : dsk;
	c->hdr.size = sizeof(rblk_t) >> 2;
	c->size += sizeof(rblk_t);
 
	c->req.hdr.cmd = io->cmd;
	c->req.hdr.blk = io->blk;
	c->req.hdr.blk_cnt = io->blk_cnt;
	c->type = CMD_IOCTL_PEND;
 
	/* Pre submit processing */
	/* for passthru_a the scsi command is in another record */
	if (io->cmd == PASSTHRU_A) {
 
		if (io->scsi_param == NULL)
		{
			error = -EINVAL;
			cmd_free(h, c, 0);
			return(error);
		}
		scsi_param = kmalloc(sizeof(scsi_param_t),  GFP_KERNEL);
		if (scsi_param == NULL) {
			error = -ENOMEM;
			cmd_free(h, c, 0);
			return(error);
		}
 
		/* copy the scsi command to get passed thru */ 	
		if (copy_from_user(scsi_param, io->scsi_param, 
					sizeof(scsi_param_t))) {	
			kfree(scsi_param);
			cmd_free(h, c, 0);
			return -EFAULT;
		}
 
		/* with this command the scsi command is seperate */
		c->req.hdr.blk = pci_map_single(h->pci_dev, scsi_param,
				sizeof(scsi_param_t), PCI_DMA_BIDIRECTIONAL);
	}
 
	/* fill in the SG entries */
	/* create buffers if we need to */ 
	if(io->buff_size > 0) {
		size_t size_left_alloc = io->buff_size;
		__u8 *data_ptr = io->buff;
 
		while(size_left_alloc > 0) {
			buff_size[sg_used] = (size_left_alloc 
					> io->buff_malloc_size)
				? io->buff_malloc_size : size_left_alloc;
			buff[sg_used] = kmalloc( buff_size[sg_used], 
					GFP_KERNEL);
			if (buff[sg_used] == NULL) {
				error = -ENOMEM;
				goto ida_alloc_cleanup;
			}
			if(io->xfer_type & IDA_XFER_WRITE) {
				/* Copy the data into the buffer created */
				if (copy_from_user(buff[sg_used], data_ptr,
						buff_size[sg_used])) {
					error = -EFAULT;
					goto ida_alloc_cleanup;
				}
			}
			/* put the data into the scatter gather list */
			c->req.sg[sg_used].size = buff_size[sg_used];
			c->req.sg[sg_used].addr = pci_map_single(h->pci_dev, 
					buff[sg_used], buff_size[sg_used],
					 PCI_DMA_BIDIRECTIONAL);
 
			size_left_alloc -= buff_size[sg_used];
			data_ptr += buff_size[sg_used];
			sg_used++;
		}
	}
	c->req.hdr.sg_cnt = sg_used;
 
	c->waiting = &wait;
 
	/* Put the request on the tail of the request queue */
	spin_lock_irqsave(&io_request_lock, flags);
	addQ(&h->reqQ, c);
	h->Qdepth++;
	start_io(h);
	spin_unlock_irqrestore(&io_request_lock, flags);
 
	/* Wait for completion */
	wait_for_completion(&wait);
	/* Unmap the DMA  */
	for(i=0; i<c->req.hdr.sg_cnt; i++) {
		pci_unmap_single(h->pci_dev, c->req.sg[i].addr, 
				c->req.sg[i].size, PCI_DMA_BIDIRECTIONAL);
	}
 
	/* if we are reading data from the hardware copy it back to user */
	if (io->xfer_type & IDA_XFER_READ) {
		__u8	*data_ptr = io->buff;
		int i;
 
	    	for(i=0; i<c->req.hdr.sg_cnt; i++) {
			if (copy_to_user(data_ptr, buff[i], buff_size[i])) { 
				error = -EFAULT;
				goto ida_alloc_cleanup;
			}
			data_ptr += buff_size[i];
 
		}
 
	}
 
	io->rcode = c->req.hdr.rcode;
 
	if(scsi_param) {
		pci_unmap_single(h->pci_dev, c->req.hdr.blk,
			sizeof(scsi_param_t), PCI_DMA_BIDIRECTIONAL);
		/* copy the scsi_params back to the user */ 
		if( copy_to_user(io->scsi_param, scsi_param, 
					sizeof(scsi_param_t))) {
			error = -EFAULT;	
		}
		kfree(scsi_param);
	}
	cmd_free(h, c, 0);
	return(error);
 
ida_alloc_cleanup:
	if(scsi_param) {
		pci_unmap_single(h->pci_dev, c->req.hdr.blk,
			sizeof(scsi_param_t), PCI_DMA_BIDIRECTIONAL);
		kfree(scsi_param);
	}
	for (i=0; i<sg_used; i++) {
		if(buff[sg_used] != NULL) {	
			pci_unmap_single(h->pci_dev, c->req.sg[i].addr, 
				buff_size[sg_used], PCI_DMA_BIDIRECTIONAL);
			kfree(buff[sg_used]);
		}
	}	
	cmd_free(h, c, 0);
	return(error);
}
/*
 * Commands are pre-allocated in a large block.  Here we use a simple bitmap
 * scheme to suballocte them to the driver.  Operations that are not time
 * critical (and can wait for kmalloc and possibly sleep) can pass in NULL
 * as the first argument to get a new command.
 */
static cmdlist_t * cmd_alloc(ctlr_info_t *h, int get_from_pool)
{
	cmdlist_t * c;
	int i;
	dma_addr_t cmd_dhandle;
 
	if (!get_from_pool) {
		c = (cmdlist_t*)pci_alloc_consistent(h->pci_dev, 
			sizeof(cmdlist_t), &cmd_dhandle);
		if(c==NULL)
			return NULL;
	} else {
		do {
			i = find_first_zero_bit(h->cmd_pool_bits, NR_CMDS);
			if (i == NR_CMDS)
				return NULL;
		} while(test_and_set_bit(i%32, h->cmd_pool_bits+(i/32)) != 0);
		c = h->cmd_pool + i;
		cmd_dhandle = h->cmd_pool_dhandle + i*sizeof(cmdlist_t);
		h->nr_allocs++;
	}
 
	memset(c, 0, sizeof(cmdlist_t));
	c->busaddr = cmd_dhandle; 
	return c;
}
 
static void cmd_free(ctlr_info_t *h, cmdlist_t *c, int got_from_pool)
{
	int i;
 
	if (!got_from_pool) {
		pci_free_consistent(h->pci_dev, sizeof(cmdlist_t), c,
			c->busaddr);
	} else {
		i = c - h->cmd_pool;
		clear_bit(i%32, h->cmd_pool_bits+(i/32));
		h->nr_frees++;
	}
}
 
/***********************************************************************
    name:        sendcmd
    Send a command to an IDA using the memory mapped FIFO interface
    and wait for it to complete.  
    This routine should only be called at init time.
***********************************************************************/
static int sendcmd(
	__u8	cmd,
	int	ctlr,
	void	*buff,
	size_t	size,
	unsigned int blk,
	unsigned int blkcnt,
	unsigned int log_unit )
{
	cmdlist_t *c;
	int complete;
	unsigned long temp;
	unsigned long i;
	ctlr_info_t *info_p = hba[ctlr];
 
	c = cmd_alloc(info_p, 1);
	if(!c)
		return IO_ERROR;
	c->ctlr = ctlr;
	c->hdr.unit = log_unit;
	c->hdr.prio = 0;
	c->hdr.size = sizeof(rblk_t) >> 2;
	c->size += sizeof(rblk_t);
 
	/* The request information. */
	c->req.hdr.next = 0;
	c->req.hdr.rcode = 0;
	c->req.bp = 0;
	c->req.hdr.sg_cnt = 1;
	c->req.hdr.reserved = 0;
 
	if (size == 0)
		c->req.sg[0].size = 512;
	else
		c->req.sg[0].size = size;
 
	c->req.hdr.blk = blk;
	c->req.hdr.blk_cnt = blkcnt;
	c->req.hdr.cmd = (unsigned char) cmd;
	c->req.sg[0].addr = (__u32) pci_map_single(info_p->pci_dev, 
		buff, c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL);
	/*
	 * Disable interrupt
	 */
	info_p->access.set_intr_mask(info_p, 0);
	/* Make sure there is room in the command FIFO */
	/* Actually it should be completely empty at this time. */
	for (i = 200000; i > 0; i--) {
		temp = info_p->access.fifo_full(info_p);
		if (temp != 0) {
			break;
		}
		udelay(10);
DBG(
		printk(KERN_WARNING "cpqarray ida%d: idaSendPciCmd FIFO full,"
			" waiting!\n", ctlr);
);
	} 
	/*
	 * Send the cmd
	 */
	info_p->access.submit_command(info_p, c);
	complete = pollcomplete(ctlr);
 
	pci_unmap_single(info_p->pci_dev, (dma_addr_t) c->req.sg[0].addr, 
		c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL);
	if (complete != 1) {
		if (complete != c->busaddr) {
			printk( KERN_WARNING
			"cpqarray ida%d: idaSendPciCmd "
		      "Invalid command list address returned! (%08lx)\n",
				ctlr, (unsigned long)complete);
			cmd_free(info_p, c, 1);
			return (IO_ERROR);
		}
	} else {
		printk( KERN_WARNING
			"cpqarray ida%d: idaSendPciCmd Timeout out, "
			"No command list address returned!\n",
			ctlr);
		cmd_free(info_p, c, 1);
		return (IO_ERROR);
	}
 
	if (c->req.hdr.rcode & 0x00FE) {
		if (!(c->req.hdr.rcode & BIG_PROBLEM)) {
			printk( KERN_WARNING
			"cpqarray ida%d: idaSendPciCmd, error: "
				"Controller failed at init time "
				"cmd: 0x%x, return code = 0x%x\n",
				ctlr, c->req.hdr.cmd, c->req.hdr.rcode);
 
			cmd_free(info_p, c, 1);
			return (IO_ERROR);
		}
	}
	cmd_free(info_p, c, 1);
	return (IO_OK);
}
 
static int frevalidate_logvol(kdev_t dev)
{
	return revalidate_logvol(dev, 0);
}
 
/*
 * revalidate_allvol is for online array config utilities.  After a
 * utility reconfigures the drives in the array, it can use this function
 * (through an ioctl) to make the driver zap any previous disk structs for
 * that controller and get new ones.
 *
 * Right now I'm using the getgeometry() function to do this, but this
 * function should probably be finer grained and allow you to revalidate one
 * particualar logical volume (instead of all of them on a particular
 * controller).
 */
static int revalidate_allvol(kdev_t dev)
{
	int ctlr, i;
	unsigned long flags;
 
	ctlr = MAJOR(dev) - MAJOR_NR;
	if (MINOR(dev) != 0)
		return -ENXIO;
 
	spin_lock_irqsave(&io_request_lock, flags);
	if (hba[ctlr]->usage_count > 1) {
		spin_unlock_irqrestore(&io_request_lock, flags);
		printk(KERN_WARNING "cpqarray: Device busy for volume"
			" revalidation (usage=%d)\n", hba[ctlr]->usage_count);
		return -EBUSY;
	}
	spin_unlock_irqrestore(&io_request_lock, flags);
	hba[ctlr]->usage_count++;
 
	/*
	 * Set the partition and block size structures for all volumes
	 * on this controller to zero.  And set the hardsizes to non zero to 
	 * avoid a possible divide by zero error.  
	 * We will reread all of this data
	 */
	memset(hba[ctlr]->hd,         0, sizeof(struct hd_struct)*NWD*16);
	memset(hba[ctlr]->sizes,      0, sizeof(int)*NWD*16);
	memset(hba[ctlr]->blocksizes, 0, sizeof(int)*NWD*16);
	memset(hba[ctlr]->drv,        0, sizeof(drv_info_t)*NWD);
	hba[ctlr]->gendisk.nr_real = 0;
 
	for(i=0;i<256;i++)
                hba[ctlr]->hardsizes[i] = 0;
	/*
	 * Tell the array controller not to give us any interrupts while
	 * we check the new geometry.  Then turn interrupts back on when
	 * we're done.
	 */
	hba[ctlr]->access.set_intr_mask(hba[ctlr], 0);
	getgeometry(ctlr);
	hba[ctlr]->access.set_intr_mask(hba[ctlr], FIFO_NOT_EMPTY);
 
	ida_geninit(ctlr);
	for(i=0; i<NWD; i++)
		if (hba[ctlr]->sizes[i<<NWD_SHIFT])
			revalidate_logvol(dev+(i<<NWD_SHIFT), 2);
 
	hba[ctlr]->usage_count--;
	return 0;
}
 
static int deregister_disk(int ctlr, int logvol)
{
	unsigned long flags;
	struct gendisk *gdev = &(hba[ctlr]->gendisk); 
	ctlr_info_t  *h = hba[ctlr];
	int start, max_p, i;	
 
 
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
 
	spin_lock_irqsave(&io_request_lock, flags);
	/* make sure logical volume is NOT is use */
	if( h->drv[logvol].usage_count > 1) {
		spin_unlock_irqrestore(&io_request_lock, flags);
                return -EBUSY;
	}
	h->drv[logvol].usage_count++;
	spin_unlock_irqrestore(&io_request_lock, flags);
 
	/* invalidate the devices and deregister the disk */ 
	max_p = gdev->max_p;
	start = logvol << gdev->minor_shift;
	for (i=max_p-1; i>=0; i--) {
		int minor = start+i;
		// printk("invalidating( %d %d)\n", ctlr, minor);
		invalidate_device(MKDEV(MAJOR_NR+ctlr, minor), 1);
		/* so open will now fail */
		hba[ctlr]->sizes[minor] = 0;
		/* so it will no longer appear in /proc/partitions */
		gdev->part[minor].start_sect = 0;
		gdev->part[minor].nr_sects = 0;
	}
	/* check to see if it was the last disk */
	if (logvol == h->highest_lun) {
		/* if so, find the new hightest lun */
		int i, newhighest =-1;
		for(i=0; i<h->highest_lun; i++) {
			/* if the disk has size > 0, it is available */
			if (hba[ctlr]->sizes[i << gdev->minor_shift] != 0)
				newhighest = i;
		}
		h->highest_lun = newhighest;
 
	}
	--h->log_drives;
	gdev->nr_real = h->highest_lun+1; 
	/* zero out the disk size info */ 
	h->drv[logvol].nr_blks = 0;
	h->drv[logvol].cylinders = 0;
	h->drv[logvol].blk_size = 0;
	return(0);
 
}
 
static int sendcmd_withirq(
	__u8	cmd,
	int	ctlr,
	void	*buff,
	size_t	size,
	unsigned int blk,
	unsigned int blkcnt,
	unsigned int log_unit )
{
	cmdlist_t *c;
	unsigned long flags;
	ctlr_info_t *info_p = hba[ctlr];
	DECLARE_COMPLETION(wait);
 
	c = cmd_alloc(info_p, 0);
	if(!c)
		return IO_ERROR;
	c->type = CMD_IOCTL_PEND;
	c->ctlr = ctlr;
	c->hdr.unit = log_unit;
	c->hdr.prio = 0;
	c->hdr.size = sizeof(rblk_t) >> 2;
	c->size += sizeof(rblk_t);
 
	/* The request information. */
	c->req.hdr.next = 0;
	c->req.hdr.rcode = 0;
	c->req.bp = 0;
	c->req.hdr.sg_cnt = 1;
	c->req.hdr.reserved = 0;
 
	if (size == 0)
		c->req.sg[0].size = 512;
	else
		c->req.sg[0].size = size;
 
	c->req.hdr.blk = blk;
	c->req.hdr.blk_cnt = blkcnt;
	c->req.hdr.cmd = (unsigned char) cmd;
	c->req.sg[0].addr = (__u32) pci_map_single(info_p->pci_dev, 
		buff, c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL);
 
	c->waiting = &wait;
	/* Put the request on the tail of the request queue */
	spin_lock_irqsave(&io_request_lock, flags);
	addQ(&info_p->reqQ, c);
	info_p->Qdepth++;
	start_io(info_p);
	spin_unlock_irqrestore(&io_request_lock, flags);
 
	/* Wait for completion */
	wait_for_completion(&wait);
 
	if (c->req.hdr.rcode & RCODE_FATAL) {
		printk(KERN_WARNING "Fatal error on ida/c%dd%d\n",
				c->ctlr, c->hdr.unit);
		cmd_free(info_p, c, 0);
		return(IO_ERROR);
	}
	if (c->req.hdr.rcode & RCODE_INVREQ) {
		printk(KERN_WARNING "Invalid request on ida/c%dd%d = (cmd=%x sect=%d cnt=%d sg=%d ret=%x)\n",
				c->ctlr, c->hdr.unit, c->req.hdr.cmd,
				c->req.hdr.blk, c->req.hdr.blk_cnt,
				c->req.hdr.sg_cnt, c->req.hdr.rcode);
		cmd_free(info_p, c, 0);
		return(IO_ERROR);	
	}
	cmd_free(info_p, c, 0);
	return(IO_OK);
}
 
static int register_new_disk(int ctlr, int logvol)
{
	struct gendisk *gdev = &(hba[ctlr]->gendisk);
	ctlr_info_t *info_p = hba[ctlr];
	int ret_code, size;
	sense_log_drv_stat_t *id_lstatus_buf;
	id_log_drv_t *id_ldrive;
	drv_info_t *drv;
	int max_p;
	int start;
	int i;	
 
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	if( (logvol < 0) || (logvol >= IDA_MAX_PART))
		return -EINVAL;
	/* disk is already registered */
	if(hba[ctlr]->sizes[logvol <<  gdev->minor_shift] != 0 )
		return -EINVAL;
 
	id_ldrive = (id_log_drv_t *)kmalloc(sizeof(id_log_drv_t), GFP_KERNEL);
	if(id_ldrive == NULL) {
		printk( KERN_ERR "cpqarray:  out of memory.\n");
		return -1;
	}
	id_lstatus_buf = (sense_log_drv_stat_t *)kmalloc(sizeof(sense_log_drv_stat_t), GFP_KERNEL);
	if(id_lstatus_buf == NULL) {
		kfree(id_ldrive);
		printk( KERN_ERR "cpqarray:  out of memory.\n");
		return -1;
	}
 
	size = sizeof(sense_log_drv_stat_t);
 
	/*
		Send "Identify logical drive status" cmd
	 */
	ret_code = sendcmd_withirq(SENSE_LOG_DRV_STAT,
		ctlr, id_lstatus_buf, size, 0, 0, logvol);
	if (ret_code == IO_ERROR) {
			/*
			   If can't get logical drive status, set
			   the logical drive map to 0, so the
			   idastubopen will fail for all logical drives
			   on the controller. 
			 */
			/* Free all the buffers and return */
 
                kfree(id_lstatus_buf);
                kfree(id_ldrive);
                return -1;
	}
	/*
		   Make sure the logical drive is configured
	 */
	if (id_lstatus_buf->status == LOG_NOT_CONF) {
		printk(KERN_WARNING "cpqarray: c%dd%d array not configured\n",
			ctlr, logvol); 
		kfree(id_lstatus_buf);
                kfree(id_ldrive);
		return -1;
	}
	ret_code = sendcmd_withirq(ID_LOG_DRV, ctlr, id_ldrive,
			       sizeof(id_log_drv_t), 0, 0, logvol);
			/*
			   If error, the bit for this
			   logical drive won't be set and
			   idastubopen will return error. 
			 */
	if (ret_code == IO_ERROR) {
		printk(KERN_WARNING "cpqarray: c%dd%d unable to ID logical volume\n",
			ctlr,logvol);
		kfree(id_lstatus_buf);
                kfree(id_ldrive);
		return -1;
	}
	drv = &info_p->drv[logvol];
	drv->blk_size = id_ldrive->blk_size;
	drv->nr_blks = id_ldrive->nr_blks;
	drv->cylinders = id_ldrive->drv.cyl;
	drv->heads = id_ldrive->drv.heads;
	drv->sectors = id_ldrive->drv.sect_per_track;
	info_p->log_drv_map |=	(1 << logvol);
	if (info_p->highest_lun < logvol)
		info_p->highest_lun = logvol;
 
	printk(KERN_INFO "cpqarray ida/c%dd%d: blksz=%d nr_blks=%d\n",
		ctlr, logvol, drv->blk_size, drv->nr_blks);
 
	hba[ctlr]->drv[logvol].usage_count = 0;	
 
	max_p = gdev->max_p;
	start = logvol<< gdev->minor_shift;
 
	for(i=max_p-1; i>=0; i--) {
		int minor = start+i;
		invalidate_device(MKDEV(MAJOR_NR + ctlr, minor), 1);
		gdev->part[minor].start_sect = 0;
		gdev->part[minor].nr_sects = 0;
 
		/* reset the blocksize so we can read the partition table */
		blksize_size[MAJOR_NR+ctlr][minor] = 1024;
		hba[ctlr]->hardsizes[minor] = drv->blk_size;
	}
	++hba[ctlr]->log_drives;
	gdev->nr_real = info_p->highest_lun + 1;
	/* setup partitions per disk */
	grok_partitions(gdev, logvol, IDA_MAX_PART, drv->nr_blks); 
 
	kfree(id_lstatus_buf);
        kfree(id_ldrive);
	return (0);
}
 
/* Borrowed and adapted from sd.c */
static int revalidate_logvol(kdev_t dev, int maxusage)
{
	int ctlr, target;
	struct gendisk *gdev;
	unsigned long flags;
	int max_p;
	int start;
	int i;
 
	target = DEVICE_NR(dev);
	ctlr = MAJOR(dev) - MAJOR_NR;
	gdev = &(hba[ctlr]->gendisk);
 
	spin_lock_irqsave(&io_request_lock, flags);
	if (hba[ctlr]->drv[target].usage_count > maxusage) {
		spin_unlock_irqrestore(&io_request_lock, flags);
		printk(KERN_WARNING "cpqarray: Device busy for "
			"revalidation (usage=%d)\n",
			hba[ctlr]->drv[target].usage_count);
		return -EBUSY;
	}
 
	hba[ctlr]->drv[target].usage_count++;
	spin_unlock_irqrestore(&io_request_lock, flags);
 
	max_p = gdev->max_p;
	start = target << gdev->minor_shift;
 
	for(i=max_p-1; i>=0; i--) {
		int minor = start+i;
		invalidate_device(MKDEV(MAJOR_NR + ctlr, minor), 1);
		gdev->part[minor].start_sect = 0;	
		gdev->part[minor].nr_sects = 0;	
 
		/* reset the blocksize so we can read the partition table */
		blksize_size[MAJOR_NR+ctlr][minor] = 1024;
	}
 
	/* 16 minors per disk... */
	grok_partitions(gdev, target, IDA_MAX_PART, 
		hba[ctlr]->drv[target].nr_blks);
	hba[ctlr]->drv[target].usage_count--;
	return 0;
}
 
 
/********************************************************************
    name: pollcomplete
    Wait polling for a command to complete.
    The memory mapped FIFO is polled for the completion.
    Used only at init time, interrupts disabled.
 ********************************************************************/
static int pollcomplete(int ctlr)
{
	int done;
	int i;
 
	/* Wait (up to 2 seconds) for a command to complete */
 
	for (i = 200000; i > 0; i--) {
		done = hba[ctlr]->access.command_completed(hba[ctlr]);
		if (done == 0) {
			udelay(10);	/* a short fixed delay */
		} else
			return (done);
	}
	/* Invalid address to tell caller we ran out of time */
	return 1;
}
/*****************************************************************
    start_fwbk
    Starts controller firmwares background processing. 
    Currently only the Integrated Raid controller needs this done.
    If the PCI mem address registers are written to after this, 
	 data corruption may occur
*****************************************************************/
static void start_fwbk(int ctlr)
{
		id_ctlr_t *id_ctlr_buf; 
	int ret_code;
 
	if(	(hba[ctlr]->board_id != 0x40400E11)
		&& (hba[ctlr]->board_id != 0x40480E11) )
 
	/* Not a Integrated Raid, so there is nothing for us to do */
		return;
	printk(KERN_DEBUG "cpqarray: Starting firmware's background"
		" processing\n");
	/* Command does not return anything, but idasend command needs a 
		buffer */
	id_ctlr_buf = (id_ctlr_t *)kmalloc(sizeof(id_ctlr_t), GFP_KERNEL);
	if(id_ctlr_buf==NULL) {
		printk(KERN_WARNING "cpqarray: Out of memory. "
			"Unable to start background processing.\n");
		return;
	}		
	ret_code = sendcmd(RESUME_BACKGROUND_ACTIVITY, ctlr, 
		id_ctlr_buf, 0, 0, 0, 0);
	if(ret_code != IO_OK)
		printk(KERN_WARNING "cpqarray: Unable to start"
			" background processing\n");
 
	kfree(id_ctlr_buf);
}
/*****************************************************************
    getgeometry
    Get ida logical volume geometry from the controller 
    This is a large bit of code which once existed in two flavors,
    It is used only at init time.
*****************************************************************/
static void getgeometry(int ctlr)
{				
	id_log_drv_t *id_ldrive;
	id_ctlr_t *id_ctlr_buf;
	sense_log_drv_stat_t *id_lstatus_buf;
	config_t *sense_config_buf;
	unsigned int log_unit, log_index;
	int ret_code, size;
	drv_info_t *drv;
	ctlr_info_t *info_p = hba[ctlr];
	int i;
 
	info_p->log_drv_map = 0;	
 
	id_ldrive = (id_log_drv_t *)kmalloc(sizeof(id_log_drv_t), GFP_KERNEL);
	if(id_ldrive == NULL) {
		printk( KERN_ERR "cpqarray:  out of memory.\n");
		return;
	}
 
	id_ctlr_buf = (id_ctlr_t *)kmalloc(sizeof(id_ctlr_t), GFP_KERNEL);
	if(id_ctlr_buf == NULL) {
		kfree(id_ldrive);
		printk( KERN_ERR "cpqarray:  out of memory.\n");
		return;
	}
 
	id_lstatus_buf = (sense_log_drv_stat_t *)kmalloc(sizeof(sense_log_drv_stat_t), GFP_KERNEL);
	if(id_lstatus_buf == NULL) {
		kfree(id_ctlr_buf);
		kfree(id_ldrive);
		printk( KERN_ERR "cpqarray:  out of memory.\n");
		return;
	}
 
	sense_config_buf = (config_t *)kmalloc(sizeof(config_t), GFP_KERNEL);
	if(sense_config_buf == NULL) {
		kfree(id_lstatus_buf);
		kfree(id_ctlr_buf);
		kfree(id_ldrive);
		printk( KERN_ERR "cpqarray:  out of memory.\n");
		return;
	}
 
	memset(id_ldrive, 0, sizeof(id_log_drv_t));
	memset(id_ctlr_buf, 0, sizeof(id_ctlr_t));
	memset(id_lstatus_buf, 0, sizeof(sense_log_drv_stat_t));
	memset(sense_config_buf, 0, sizeof(config_t));
 
	info_p->phys_drives = 0;
	info_p->log_drv_map = 0;
	info_p->drv_assign_map = 0;
	info_p->drv_spare_map = 0;
	info_p->mp_failed_drv_map = 0;	/* only initialized here */
	/* Get controllers info for this logical drive */
	ret_code = sendcmd(ID_CTLR, ctlr, id_ctlr_buf, 0, 0, 0, 0);
	if (ret_code == IO_ERROR) {
		/*
		 * If can't get controller info, set the logical drive map to 0,
		 * so the idastubopen will fail on all logical drives
		 * on the controller.
		 */
		 /* Free all the buffers and return */ 
		printk(KERN_ERR "cpqarray: error sending ID controller\n");
		kfree(sense_config_buf);
                kfree(id_lstatus_buf);
                kfree(id_ctlr_buf);
                kfree(id_ldrive);
                return;
        }
 
	info_p->log_drives = id_ctlr_buf->nr_drvs;;
	for(i=0;i<4;i++)
		info_p->firm_rev[i] = id_ctlr_buf->firm_rev[i];
	info_p->ctlr_sig = id_ctlr_buf->cfg_sig;
 
	printk(" (%s)\n", info_p->product_name);
	/*
	 * Initialize logical drive map to zero
	 */
	log_index = 0;
	/*
	 * Get drive geometry for all logical drives
	 */
	if (id_ctlr_buf->nr_drvs > IDA_MAX_PART)
		printk(KERN_WARNING "cpqarray ida%d:  This driver supports "
			"16 logical drives per controller.\n.  "
			" Additional drives will not be "
			"detected\n", ctlr);
 
	for (log_unit = 0;
	     (log_index < id_ctlr_buf->nr_drvs)
	     && (log_unit < NWD);
	     log_unit++) {
 
		size = sizeof(sense_log_drv_stat_t);
 
		/*
		   Send "Identify logical drive status" cmd
		 */
		ret_code = sendcmd(SENSE_LOG_DRV_STAT,
			     ctlr, id_lstatus_buf, size, 0, 0, log_unit);
		if (ret_code == IO_ERROR) {
			/*
			   If can't get logical drive status, set
			   the logical drive map to 0, so the
			   idastubopen will fail for all logical drives
			   on the controller. 
			 */
			info_p->log_drv_map = 0;	
			printk( KERN_WARNING
			     "cpqarray ida%d: idaGetGeometry - Controller"
				" failed to report status of logical drive %d\n"
			 "Access to this controller has been disabled\n",
				ctlr, log_unit);
			/* Free all the buffers and return */
                	kfree(sense_config_buf);
                	kfree(id_lstatus_buf);
                	kfree(id_ctlr_buf);
                	kfree(id_ldrive);
                	return;
		}
		/*
		   Make sure the logical drive is configured
		 */
		if (id_lstatus_buf->status != LOG_NOT_CONF) {
			ret_code = sendcmd(ID_LOG_DRV, ctlr, id_ldrive,
			       sizeof(id_log_drv_t), 0, 0, log_unit);
			/*
			   If error, the bit for this
			   logical drive won't be set and
			   idastubopen will return error. 
			 */
			if (ret_code != IO_ERROR) {
				drv = &info_p->drv[log_unit];
				drv->blk_size = id_ldrive->blk_size;
				drv->nr_blks = id_ldrive->nr_blks;
				drv->cylinders = id_ldrive->drv.cyl;
				drv->heads = id_ldrive->drv.heads;
				drv->sectors = id_ldrive->drv.sect_per_track;
				info_p->log_drv_map |=	(1 << log_unit);
 
	printk(KERN_INFO "cpqarray ida/c%dd%d: blksz=%d nr_blks=%d\n",
		ctlr, log_unit, drv->blk_size, drv->nr_blks);
				ret_code = sendcmd(SENSE_CONFIG,
						  ctlr, sense_config_buf,
				 sizeof(config_t), 0, 0, log_unit);
				if (ret_code == IO_ERROR) {
					info_p->log_drv_map = 0;
					/* Free all the buffers and return */
                			printk(KERN_ERR "cpqarray: error sending sense config\n");
                			kfree(sense_config_buf);
                			kfree(id_lstatus_buf);
                			kfree(id_ctlr_buf);
                			kfree(id_ldrive);
                			return;
 
				}
				if(log_unit > info_p->highest_lun)
					info_p->highest_lun = log_unit;
				info_p->phys_drives =
				    sense_config_buf->ctlr_phys_drv;
				info_p->drv_assign_map
				    |= sense_config_buf->drv_asgn_map;
				info_p->drv_assign_map
				    |= sense_config_buf->spare_asgn_map;
				info_p->drv_spare_map
				    |= sense_config_buf->spare_asgn_map;
			}	/* end of if no error on id_ldrive */
			log_index = log_index + 1;
		}		/* end of if logical drive configured */
	}			/* end of for log_unit */
	kfree(sense_config_buf);
  	kfree(id_ldrive);
  	kfree(id_lstatus_buf);
	kfree(id_ctlr_buf);
	return;
 
}
 
static void __exit cleanup_cpqarray_module(void)
{
        int i;
 
        pci_unregister_driver(&cpqarray_pci_driver);
        /* double check that all controller entrys have been removed */
        for (i=0; i< MAX_CTLR; i++) {
                if (hba[i] != NULL) {
                        printk(KERN_WARNING "cpqarray: had to remove"
                                        " controller %d\n", i);
                        cpqarray_remove_one_eisa(i);
                }
        }
        remove_proc_entry("cpqarray", proc_root_driver);
}
 
 
module_init(init_cpqarray_module);
module_exit(cleanup_cpqarray_module);
 
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.