OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [drivers/] [block/] [umem.c] - Rev 1275

Go to most recent revision | Compare with Previous | Blame | View Log

/*
 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
 *
 * (C) 2001 San Mehat <nettwerk@valinux.com>
 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
 *
 * This driver for the Micro Memory PCI Memory Module with Battery Backup
 * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
 *
 * This driver is released to the public under the terms of the
 *  GNU GENERAL PUBLIC LICENSE version 2
 * See the file COPYING for details.
 *
 * This driver provides a standard block device interface for Micro Memory(tm)
 * PCI based RAM boards.
 * 10/05/01: Phap Nguyen - Rebuilt the driver
 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
 * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
 *                       - use stand disk partitioning (so fdisk works).
 * 08nov2001:NeilBrown	 - change driver name from "mm" to "umem"
 *			 - incorporate into main kernel
 * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
 *			 - use spin_lock_bh instead of _irq
 *			 - Never block on make_request.  queue
 *			   bh's instead.
 *			 - unregister umem from devfs at mod unload
 *			 - Change version to 2.3
 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
 * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
 */
 
#include <linux/config.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/ioctl.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/smp_lock.h>
#include <linux/timer.h>
#include <linux/pci.h>
#include <linux/slab.h>
 
#include <linux/fcntl.h>        /* O_ACCMODE */
#include <linux/hdreg.h>  /* HDIO_GETGEO */
 
#include <linux/umem.h>
 
#include <asm/uaccess.h>
#include <asm/io.h>
 
#define PRINTK(x...) do {} while (0)
#define dprintk(x...) do {} while (0)
/*#define dprintk(x...) printk(x) */
 
#define MM_MAXCARDS 4
#define MM_RAHEAD 2      /* two sectors */
#define MM_BLKSIZE 1024  /* 1k blocks */
#define MM_HARDSECT 512  /* 512-byte hardware sectors */
#define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
#define DEVICE_NR(device) (MINOR(device)>>MM_SHIFT)
 
/*
 * Version Information
 */
 
#define DRIVER_VERSION "v2.3"
#define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
#define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
 
static int debug;
/* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
#define HW_TRACE(x)
 
#define DEBUG_LED_ON_TRANSFER	0x01
#define DEBUG_BATTERY_POLLING	0x02
 
MODULE_PARM(debug, "i");
MODULE_PARM_DESC(debug, "Debug bitmask");
 
static int init_mem = 0;
 
MODULE_PARM(init_mem, "i");
MODULE_PARM_DESC(init_mem, "Initialize memory");
 
static int pci_read_cmd = 0x0C;		/* Read Multiple */
MODULE_PARM(pci_read_cmd, "i");
MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
 
static int pci_write_cmd = 0x0F;	/* Write and Invalidate */
MODULE_PARM(pci_write_cmd, "i");
MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
 
static int pci_cmds;
 
#define MAJOR_NR	UMEM_MAJOR
 
#include <linux/blk.h>
#include <linux/blkpg.h>
 
 
static devfs_handle_t devfs_handle;      /*  For the directory */
 
 
struct cardinfo {
	int		card_number;
	struct pci_dev	*dev;
 
	int		irq;
 
	unsigned long	csr_base;
	unsigned char	*csr_remap;
	unsigned long	csr_len;
#ifdef CONFIG_MM_MAP_MEMORY
	unsigned long	mem_base;
	unsigned char	*mem_remap;
	unsigned long	mem_len;
#endif
 
	unsigned int	win_size; /* PCI window size */
	unsigned int	mm_size;  /* size in kbytes */
 
	struct buffer_head	*bh, **bhtail;
 
	struct mm_page {
		dma_addr_t		page_dma;
		struct mm_dma_desc	*desc;
		int	 		cnt, headcnt;
		struct buffer_head	*bh, **bhtail;
	} mm_pages[2];
#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
 
	int  Active, Ready;
 
	struct tasklet_struct	tasklet;
	unsigned int dma_status;
 
	struct tq_struct plug_tq;
 
	struct {
		int		good;
		int		warned;
		unsigned long	last_change;
	} battery[2];
 
	atomic_t	 usage;
	spinlock_t 	lock;
	int		check_batteries;
 
	int		flags;
};
 
static struct cardinfo cards[MM_MAXCARDS];
static struct block_device_operations mm_fops;
static struct timer_list battery_timer;
 
 
static int              mm_hardsect  [MM_MAXCARDS << MM_SHIFT];
static int              mm_blocksizes[MM_MAXCARDS << MM_SHIFT];
static int              mm_sizes[MM_MAXCARDS << MM_SHIFT];
static struct hd_struct mm_partitions[MM_MAXCARDS << MM_SHIFT];
 
static int num_cards = 0;
 
struct gendisk mm_gendisk = {
    major:         MAJOR_NR,		/* Major number assigned later */
    major_name:    "umem",		/* Name of the major device */
    minor_shift:   MM_SHIFT,		/* Shift to get device number */
    max_p:         1 << MM_SHIFT,	/* Number of partitions */
    fops:          &mm_fops,   		/* Block dev operations */
/* everything else is dynamic */
};
 
 
static void check_batteries(struct cardinfo *card);
 
/*
-----------------------------------------------------------------------------------
--                           get_userbit
-----------------------------------------------------------------------------------
*/
static int get_userbit(struct cardinfo *card, int bit)
{
	unsigned char led;
 
	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
	return led & bit;
}
/*
-----------------------------------------------------------------------------------
--                            set_userbit
-----------------------------------------------------------------------------------
*/
static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
{
	unsigned char led;
 
	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
	if (state)
		led |= bit;
	else
		led &= ~bit;
	writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
 
	return 0;
}
/*
-----------------------------------------------------------------------------------
--                             set_led
-----------------------------------------------------------------------------------
*/
/*
 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
 */
static void set_led(struct cardinfo *card, int shift, unsigned char state)
{
	unsigned char led;
 
	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
	if (state == LED_FLIP)
		led ^= (1<<shift);
	else {
		led &= ~(0x03 << shift);
		led |= (state << shift);
	}
	writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
 
}
 
#ifdef MM_DIAG
/*
-----------------------------------------------------------------------------------
--                              dump_regs
-----------------------------------------------------------------------------------
*/
static void dump_regs(struct cardinfo *card)
{
	unsigned char *p;
	int i, i1;
 
	p = card->csr_remap;
	for (i = 0; i < 8; i++) {
		printk(KERN_DEBUG "%p   ", p);
 
		for (i1 = 0; i1 < 16; i1++)
			printk("%02x ", *p++);
 
		printk("\n");
	}
}
#endif
/*
-----------------------------------------------------------------------------------
--                            dump_dmastat
-----------------------------------------------------------------------------------
*/
static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
{
	printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number);
	if (dmastat & DMASCR_ANY_ERR)
		printk("ANY_ERR ");
	if (dmastat & DMASCR_MBE_ERR)
		printk("MBE_ERR ");
	if (dmastat & DMASCR_PARITY_ERR_REP)
		printk("PARITY_ERR_REP ");
	if (dmastat & DMASCR_PARITY_ERR_DET)
		printk("PARITY_ERR_DET ");
	if (dmastat & DMASCR_SYSTEM_ERR_SIG)
		printk("SYSTEM_ERR_SIG ");
	if (dmastat & DMASCR_TARGET_ABT)
		printk("TARGET_ABT ");
	if (dmastat & DMASCR_MASTER_ABT)
		printk("MASTER_ABT ");
	if (dmastat & DMASCR_CHAIN_COMPLETE)
		printk("CHAIN_COMPLETE ");
	if (dmastat & DMASCR_DMA_COMPLETE)
		printk("DMA_COMPLETE ");
	printk("\n");
}
 
/*
 * Theory of request handling
 *
 * Each buffer_head is assigned to one mm_dma_desc.
 * We have two pages of mm_dma_desc, holding about 64 descriptors
 * each.  These are allocated at init time.
 * One page is "Ready" and is either full, or can have request added.
 * The other page might be "Active", which DMA is happening on it.
 *
 * Whenever IO on the active page completes, the Ready page is activated
 * and the ex-Active page is clean out and made Ready.
 * Otherwise the Ready page is only activated when it becomes full, or
 * when mm_unplug_device is called via run_task_queue(&tq_disk).
 *
 * If a request arrives while both pages a full, it is queued, and b_rdev is
 * overloaded to record whether it was a read or a write.
 *
 * The interrupt handler only polls the device to clear the interrupt.
 * The processing of the result is done in a tasklet.
 */
 
static void mm_start_io(struct cardinfo *card)
{
	/* we have the lock, we know there is
	 * no IO active, and we know that card->Active
	 * is set
	 */
	struct mm_dma_desc *desc;
	struct mm_page *page;
	int offset;
 
	/* make the last descriptor end the chain */
	page = &card->mm_pages[card->Active];
	PRINTK("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
	desc = &page->desc[page->cnt-1];
 
	desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
	desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
	desc->sem_control_bits = desc->control_bits;
 
 
	if (debug & DEBUG_LED_ON_TRANSFER)
		set_led(card, LED_REMOVE, LED_ON);
 
	desc = &page->desc[page->headcnt];
	writel(0, card->csr_remap + DMA_PCI_ADDR);
	writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
 
	writel(0, card->csr_remap + DMA_LOCAL_ADDR);
	writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
 
	writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
	writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
 
	writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
	writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
 
	offset = ((char*)desc) - ((char*)page->desc);
	writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
	       card->csr_remap + DMA_DESCRIPTOR_ADDR);
	writel(cpu_to_le32((page->page_dma)>>31>>1),
	       card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
 
	/* Go, go, go */
	writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
	       card->csr_remap + DMA_STATUS_CTRL);
}
 
static int add_bh(struct cardinfo *card);
 
static void activate(struct cardinfo *card)
{
	/* if No page is Active, and Ready is 
	 * not empty, then switch Ready page
	 * to active and start IO.
	 * Then add any bh's that are available to Ready
	 */
 
	do {
		while (add_bh(card))
			;
 
		if (card->Active == -1 &&
		    card->mm_pages[card->Ready].cnt > 0) {
			card->Active = card->Ready;
			card->Ready = 1-card->Ready;
			mm_start_io(card);
		}
 
	} while (card->Active == -1 && add_bh(card));
}
 
static inline void reset_page(struct mm_page *page)
{
	page->cnt = 0;
	page->headcnt = 0;
	page->bh = NULL;
	page->bhtail = & page->bh;
}
 
static void mm_unplug_device(void *data)
{
	struct cardinfo *card = data;
 
	spin_lock_bh(&card->lock);
	activate(card);
	spin_unlock_bh(&card->lock);
}
 
/* 
 * If there is room on Ready page, take
 * one bh off list and add it.
 * return 1 if there was room, else 0.
 */
static int add_bh(struct cardinfo *card)
{
	struct mm_page *p;
	struct mm_dma_desc *desc;
	dma_addr_t dma_handle;
	int offset;
	struct buffer_head *bh;
	int rw;
 
	bh = card->bh;
	if (!bh)
		return 0;
 
	if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
		return 0;
 
	card->bh = bh->b_reqnext;
	if (card->bh == NULL)
		card->bhtail = &card->bh;
	rw = bh->b_rdev;
 
	dma_handle = pci_map_page(card->dev, bh->b_page, bh_offset(bh),
				  bh->b_size,
				  (rw==READ) ?
				  PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
 
	p = &card->mm_pages[card->Ready];
	desc = &p->desc[p->cnt];
	p->cnt++;
	*(p->bhtail) = bh;
	p->bhtail = &(bh->b_reqnext);
	bh->b_reqnext = NULL;
 
	desc->data_dma_handle = dma_handle;
 
	desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
	desc->local_addr= cpu_to_le64(bh->b_rsector << 9);
	desc->transfer_size = cpu_to_le32(bh->b_size);
	offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
	desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
	desc->zero1 = desc->zero2 = 0;
	offset = ( ((char*)(desc+1)) - ((char*)p->desc));
	desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
	desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
					 DMASCR_PARITY_INT_EN|
					 DMASCR_CHAIN_EN |
					 DMASCR_SEM_EN |
					 pci_cmds);
	if (rw == WRITE)
		desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
	desc->sem_control_bits = desc->control_bits;
	return 1;
}
 
static void process_page(unsigned long data)
{
	/* check if any of the requests in the page are DMA_COMPLETE,
	 * and deal with them appropriately.
	 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
	 * dma must have hit an error on that descriptor, so use dma_status instead
	 * and assume that all following descriptors must be re-tried.
	 */
	struct mm_page *page;
	struct buffer_head *ok=NULL, *fail=NULL;
	struct cardinfo *card = (struct cardinfo *)data;
	unsigned int dma_status = card->dma_status;
 
	spin_lock_bh(&card->lock);
	if (card->Active < 0)
		goto out_unlock;
	page = &card->mm_pages[card->Active];
 
	while (page->bh != NULL) {
		struct buffer_head *bh = page->bh;
		struct mm_dma_desc *desc = &page->desc[page->headcnt];
		int control = le32_to_cpu(desc->sem_control_bits);
		int last=0;
 
		if (!(control & DMASCR_DMA_COMPLETE)) {
			control = dma_status;
			last=1; 
		}
		page->headcnt++;
		page->bh = bh->b_reqnext;
 
		pci_unmap_page(card->dev, desc->data_dma_handle, bh->b_size,
				 (control& DMASCR_TRANSFER_READ) ?
				PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
		if (!(control & DMASCR_HARD_ERROR)) {
			/* it worked just fine */
			bh->b_reqnext = ok;
			ok = bh;
		} else {
			/* error */
			bh->b_reqnext = fail;
			fail = bh;
			printk(KERN_WARNING "MM%d: I/O error on sector %lx/%x\n",
			       card->card_number, bh->b_rsector, bh->b_size);
			dump_dmastat(card, control);
		}
		if (last) break;
	}
 
	if (debug & DEBUG_LED_ON_TRANSFER)
		set_led(card, LED_REMOVE, LED_OFF);
 
	if (card->check_batteries) {
		card->check_batteries = 0;
		check_batteries(card);
	}
	if (page->headcnt >= page->cnt) {
		reset_page(page);
		card->Active = -1;
		activate(card);
	} else {
		/* haven't finished with this one yet */
		PRINTK("do some more\n");
		mm_start_io(card);
	}
 out_unlock:
	spin_unlock_bh(&card->lock);
 
	while(ok) {
		struct buffer_head *bh = ok;
		ok = bh->b_reqnext;
		bh->b_reqnext = NULL;
		bh->b_end_io(bh, 1);
	}
	while(fail) {
		struct buffer_head *bh = fail;
		fail = bh->b_reqnext;
		bh->b_reqnext = NULL;
		bh->b_end_io(bh, 0);
	}
 
}
 
/*
-----------------------------------------------------------------------------------
--                              mm_make_request
-----------------------------------------------------------------------------------
*/
static int mm_make_request(request_queue_t *q, int rw, struct buffer_head *bh)
{
	struct cardinfo *card = &cards[DEVICE_NR(bh->b_rdev)];
	PRINTK("mm_make_request %d %ld %d\n", rw, bh->b_rsector, bh->b_size);
	bh->b_rsector += mm_partitions[MINOR(bh->b_rdev)].start_sect;
	bh->b_rdev = rw; /* overloading... */
 
	spin_lock_bh(&card->lock);
	*card->bhtail = bh;
	bh->b_reqnext = NULL;
	card->bhtail = &bh->b_reqnext;
	spin_unlock_bh(&card->lock);
 
	queue_task(&card->plug_tq, &tq_disk);
	return 0;
}
 
/*
-----------------------------------------------------------------------------------
--                              mm_interrupt
-----------------------------------------------------------------------------------
*/
static void mm_interrupt(int irq, void *__card, struct pt_regs *regs)
{
	struct cardinfo *card = (struct cardinfo *) __card;
	unsigned int dma_status;
	unsigned short cfg_status;
 
HW_TRACE(0x30);
 
	dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
 
	if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
		/* interrupt wasn't for me ... */
		return;
        }
 
	/* clear COMPLETION interrupts */
	if (card->flags & UM_FLAG_NO_BYTE_STATUS)
		writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
		       card->csr_remap+ DMA_STATUS_CTRL);
	else
		writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
		       card->csr_remap+ DMA_STATUS_CTRL + 2);
 
	/* log errors and clear interrupt status */
	if (dma_status & DMASCR_ANY_ERR) {
		unsigned int	data_log1, data_log2;
		unsigned int	addr_log1, addr_log2;
		unsigned char	stat, count, syndrome, check;
 
		stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
 
		data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
		data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
		addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
		addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
 
		count = readb(card->csr_remap + ERROR_COUNT);
		syndrome = readb(card->csr_remap + ERROR_SYNDROME);
		check = readb(card->csr_remap + ERROR_CHECK);
 
		dump_dmastat(card, dma_status);
 
		if (stat & 0x01)
			printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)\n",
				card->card_number, count);
		if (stat & 0x02)
			printk(KERN_ERR "MM%d*: Multi-bit EDC error\n",
				card->card_number);
 
		printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
			card->card_number, addr_log2, addr_log1, data_log2, data_log1);
		printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
			card->card_number, check, syndrome);
 
		writeb(0, card->csr_remap + ERROR_COUNT);
	}
 
	if (dma_status & DMASCR_PARITY_ERR_REP) {
		printk(KERN_ERR "MM%d*: PARITY ERROR REPORTED\n", card->card_number);
		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
	}
 
	if (dma_status & DMASCR_PARITY_ERR_DET) {
		printk(KERN_ERR "MM%d*: PARITY ERROR DETECTED\n", card->card_number); 
		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
	}
 
	if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
		printk(KERN_ERR "MM%d*: SYSTEM ERROR\n", card->card_number); 
		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
	}
 
	if (dma_status & DMASCR_TARGET_ABT) {
		printk(KERN_ERR "MM%d*: TARGET ABORT\n", card->card_number); 
		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
	}
 
	if (dma_status & DMASCR_MASTER_ABT) {
		printk(KERN_ERR "MM%d*: MASTER ABORT\n", card->card_number); 
		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
	}
 
	/* and process the DMA descriptors */
	card->dma_status = dma_status;
	tasklet_schedule(&card->tasklet);
 
HW_TRACE(0x36);
 
}
/*
-----------------------------------------------------------------------------------
--                         set_fault_to_battery_status
-----------------------------------------------------------------------------------
*/
/*
 * If both batteries are good, no LED
 * If either battery has been warned, solid LED
 * If both batteries are bad, flash the LED quickly
 * If either battery is bad, flash the LED semi quickly
 */
static void set_fault_to_battery_status(struct cardinfo *card)
{
	if (card->battery[0].good && card->battery[1].good)
		set_led(card, LED_FAULT, LED_OFF);
	else if (card->battery[0].warned || card->battery[1].warned)
		set_led(card, LED_FAULT, LED_ON);
	else if (!card->battery[0].good && !card->battery[1].good)
		set_led(card, LED_FAULT, LED_FLASH_7_0);
	else
		set_led(card, LED_FAULT, LED_FLASH_3_5);
}
 
static void init_battery_timer(void);
 
 
/*
-----------------------------------------------------------------------------------
--                            check_battery
-----------------------------------------------------------------------------------
*/
static int check_battery(struct cardinfo *card, int battery, int status)
{
	if (status != card->battery[battery].good) {
		card->battery[battery].good = !card->battery[battery].good;
		card->battery[battery].last_change = jiffies;
 
		if (card->battery[battery].good) {
			printk(KERN_ERR "MM%d: Battery %d now good\n",
				card->card_number, battery + 1);
			card->battery[battery].warned = 0;
		} else
			printk(KERN_ERR "MM%d: Battery %d now FAILED\n",
				card->card_number, battery + 1);
 
		return 1;
	} else if (!card->battery[battery].good &&
		   !card->battery[battery].warned &&
		   time_after_eq(jiffies, card->battery[battery].last_change +
				 (HZ * 60 * 60 * 5))) {
		printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hours\n",
			card->card_number, battery + 1);
		card->battery[battery].warned = 1;
 
		return 1;
	}
 
	return 0;
}
/*
-----------------------------------------------------------------------------------
--                              check_batteries
-----------------------------------------------------------------------------------
*/
static void check_batteries(struct cardinfo *card)
{
	/* NOTE: this must *never* be called while the card
	 * is doing (bus-to-card) DMA, or you will need the
	 * reset switch
	 */
	unsigned char status;
	int ret1, ret2;
 
	status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
	if (debug & DEBUG_BATTERY_POLLING)
		printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %s\n",
		       card->card_number,
		       (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
		       (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
 
	ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
	ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
 
	if (ret1 || ret2)
		set_fault_to_battery_status(card);
}
 
static void check_all_batteries(unsigned long ptr)
{
	int i;
 
	for (i = 0; i < num_cards; i++) 
		if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
			struct cardinfo *card = &cards[i];
			spin_lock_bh(&card->lock);
			if (card->Active >= 0)
				card->check_batteries = 1;
			else
				check_batteries(card);
			spin_unlock_bh(&card->lock);
		}
 
	init_battery_timer();
}
/*
-----------------------------------------------------------------------------------
--                            init_battery_timer
-----------------------------------------------------------------------------------
*/
static void init_battery_timer(void)
{
	init_timer(&battery_timer);
	battery_timer.function = check_all_batteries;
	battery_timer.expires = jiffies + (HZ * 60);
	add_timer(&battery_timer);
}
/*
-----------------------------------------------------------------------------------
--                              del_battery_timer
-----------------------------------------------------------------------------------
*/
static void del_battery_timer(void)
{
	del_timer(&battery_timer);
}
/*
-----------------------------------------------------------------------------------
--                                mm_revalidate
-----------------------------------------------------------------------------------
*/
/*
 * Note no locks taken out here.  In a worst case scenario, we could drop
 * a chunk of system memory.  But that should never happen, since validation
 * happens at open or mount time, when locks are held.
 */
static int mm_revalidate(kdev_t i_rdev)
{
	int i;
 
	int card_number = DEVICE_NR(i_rdev);
	/* first partition, # of partitions */
	int part1 = (DEVICE_NR(i_rdev) << MM_SHIFT) + 1;
	int npart = (1 << MM_SHIFT) -1;
 
	/* first clear old partition information */
	for (i=0; i<npart ;i++) {
		mm_gendisk.sizes[part1+i]=0;
		mm_gendisk.part[part1+i].start_sect = 0;
		mm_gendisk.part[part1+i].nr_sects = 0;
	}
 
	mm_gendisk.part[card_number << MM_SHIFT].nr_sects =
		cards[card_number].mm_size << 1;
 
 
	/* then fill new info */
	printk(KERN_INFO "mm partition check: (%d)\n", DEVICE_NR(i_rdev));
	grok_partitions(&mm_gendisk, card_number,  1<<MM_SHIFT,
			mm_gendisk.sizes[card_number<<MM_SHIFT]);
	return 0;
}
/*
-----------------------------------------------------------------------------------
--                            mm_ioctl
-----------------------------------------------------------------------------------
*/
static int mm_ioctl(struct inode *i, struct file *f, unsigned int cmd, unsigned long arg)
{
	int err, size, card_number;
	struct hd_geometry geo;
	unsigned int minor;
 
	if (!i || !i->i_rdev)
		return -EINVAL;
 
	minor       = MINOR(i->i_rdev);
	card_number = (minor >> MM_SHIFT);
 
 
	switch(cmd) {
 
	case BLKGETSIZE:
		/* Return the device size, expressed in sectors */
		err = ! access_ok (VERIFY_WRITE, arg, sizeof(long));
		if (err) return -EFAULT;
		size = mm_gendisk.part[minor].nr_sects;
		if (copy_to_user((long *) arg, &size, sizeof (long)))
			return -EFAULT;
		return 0;
 
 
	case BLKRAGET: /* return the readahead value */
		err = ! access_ok(VERIFY_WRITE, arg, sizeof(long));
		if (err) return -EFAULT;
		copy_to_user((long *)arg, &read_ahead[MAJOR(i->i_rdev)],sizeof(long));
		return 0;
 
	case BLKRASET: /* set the readahead value */
		if (!capable(CAP_SYS_RAWIO)) return -EACCES;
		if (arg > 0xff) return -EINVAL; /* limit it */
		read_ahead[MAJOR(i->i_rdev)] = arg;
		return 0;
 
	case BLKRRPART:
		return (mm_revalidate(i->i_rdev));
 
	case HDIO_GETGEO:
		/*
		 * get geometry: we have to fake one...  trim the size to a
		 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
		 * whatever cylinders.
		 */
		err = ! access_ok(VERIFY_WRITE, arg, sizeof(geo));
		if (err) return -EFAULT;
		size = cards[card_number].mm_size * (1024 / MM_HARDSECT);
		geo.heads     = 64;
		geo.sectors   = 32;
		geo.start     = mm_gendisk.part[minor].start_sect;
		geo.cylinders = size / (geo.heads * geo.sectors);
 
		if (copy_to_user((void *) arg, &geo, sizeof(geo)))
			return -EFAULT;
		return 0;
 
 
	default:
		return blk_ioctl(i->i_rdev, cmd, arg);
	}
 
	return -ENOTTY; /* unknown command */
}
/*
-----------------------------------------------------------------------------------
--                                mm_check_change
-----------------------------------------------------------------------------------
  Future support for removable devices
*/
static int mm_check_change(kdev_t i_rdev)
{
	int card_number = DEVICE_NR(i_rdev);
/*  struct cardinfo *dev = cards + card_number; */
	if (card_number >= num_cards) /* paranoid */
		return 0;
 
	return 0;
}
 
/*
-----------------------------------------------------------------------------------
--                            mm_open
-----------------------------------------------------------------------------------
*/
static int mm_open(struct inode *i, struct file *filp)
{
	int num;
	struct cardinfo *card;
 
	num = DEVICE_NR(i->i_rdev);
	if (num >= num_cards)
		return -ENXIO;
 
	card = cards + num;
 
	atomic_inc(&card->usage);
	MOD_INC_USE_COUNT;
 
	return 0;
}
/*
-----------------------------------------------------------------------------------
--                              mm_do_release
-----------------------------------------------------------------------------------
*/
static int mm_do_release(struct inode *i, struct file *filp)
{
	int num;
	struct cardinfo *card;
 
	num = DEVICE_NR(i->i_rdev);
 
	card = cards + num;
 
	if (atomic_dec_and_test(&card->usage))
		invalidate_device(i->i_rdev, 1);
 
	MOD_DEC_USE_COUNT;
	return 0;
}
#define INITIALIZE_BHS	32
/*
-----------------------------------------------------------------------------------
--                               mm_init_mem
-----------------------------------------------------------------------------------
*/
static void mm_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
{
	mark_buffer_uptodate(bh, uptodate);
	unlock_buffer(bh);
}
 
 
static int __devinit mm_init_mem(struct cardinfo *card)
{
	struct buffer_head *bhlist, *bhactive, *bh;
	unsigned int i;
	int rc = 0;
	struct page *zero_page;
 
	/* Turn this off when we flush the contents of memory and have */
	/*  the card rebuild ECC */
	writeb(EDC_NONE_DEFAULT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
 
	printk("MM%d: initializing memory\n", card->card_number);
 
	zero_page = alloc_page(GFP_KERNEL);
	if (!zero_page) {
		printk(KERN_ERR "unable to allocate page for zeroing memory\n");
		rc = -ENOMEM;
		goto out_alloc_zero_page;
	}
 
	memset(page_address(zero_page), 0, PAGE_SIZE);
 
	i=0; bhlist = NULL;
	while (i < INITIALIZE_BHS) {
		bh = kmem_cache_alloc(bh_cachep, SLAB_KERNEL);
		if (bh == NULL)
			break;
		bh->b_next = bhlist;
		bhlist = bh;
 
		bh->b_size = PAGE_SIZE;
		init_buffer(bh, mm_end_buffer_io_sync, NULL);
		set_bh_page(bh, zero_page, 0);
		bh->b_dev = bh->b_rdev =
			MKDEV(MAJOR_NR, card->card_number<<MM_SHIFT);
		init_waitqueue_head(&bh->b_wait);
 
		i++;
	}
	if (bhlist == NULL) {
		printk(KERN_ERR "MM: count not allocate buffer heads!!\n");
		rc = -ENOMEM;
		goto out_alloc_bh;
	}
 
	bhactive = NULL;
	for (i = 0; i < card->mm_size / (PAGE_SIZE / 1024);i++) {
		if (bhlist == NULL) {
			/* time to wait for some buffers */
			while (bhactive) {
				bh = bhactive;
				bhactive = bh->b_next;
				wait_on_buffer(bh);
				if (!test_bit(BH_Uptodate, &bh->b_state))
					rc = -EIO;
				bh->b_next = bhlist;
				bhlist = bh;
			}
		}
		bh = bhlist;
		bhlist = bh->b_next;
 
		bh->b_blocknr = i;
		bh->b_rsector = i*(PAGE_SIZE/512);
		set_bit(BH_Lock, &bh->b_state);
		clear_bit(BH_Uptodate, &bh->b_state);
		mm_make_request(NULL, WRITE, bh);
		bh->b_next = bhactive;
		bhactive = bh;
	}
	while (bhactive) {
		bh = bhactive;
		bhactive = bh->b_next;
		wait_on_buffer(bh);
		bh->b_next = bhlist;
		bhlist = bh;
	}
 
	if (!rc)
		set_userbit(card, MEMORY_INITIALIZED, 1);
 
	while (bhlist) {
		bh = bhlist;
		bhlist = bh->b_next;
		kmem_cache_free(bh_cachep, bh);
	}
 
out_alloc_bh:
 
	free_page((unsigned long) zero_page);
out_alloc_zero_page:
 
	return rc;
}
/*
-----------------------------------------------------------------------------------
--                             mm_fops
-----------------------------------------------------------------------------------
*/
static struct block_device_operations mm_fops = {
	owner:		THIS_MODULE,
	open:		mm_open,
	release:	mm_do_release,
	ioctl:		mm_ioctl,
	revalidate:	mm_revalidate,
	check_media_change: mm_check_change,
};
/*
-----------------------------------------------------------------------------------
--                                mm_pci_probe
-----------------------------------------------------------------------------------
*/
static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
	int ret = -ENODEV;
	struct cardinfo *card = &cards[num_cards];
	unsigned char	mem_present;
	unsigned char	batt_status;
	unsigned int	saved_bar, data;
	int		magic_number;
 
	if (pci_enable_device(dev) < 0)
		return -ENODEV;
 
	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
	pci_set_master(dev);
 
	card->dev         = dev;
	card->card_number = num_cards;
 
	card->csr_base = pci_resource_start(dev, 0);
	card->csr_len  = pci_resource_len(dev, 0);
#ifdef CONFIG_MM_MAP_MEMORY
	card->mem_base = pci_resource_start(dev, 1);
	card->mem_len  = pci_resource_len(dev, 1);
#endif
 
	printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n",
	       card->card_number, dev->bus->number, dev->devfn);
 
	if (pci_set_dma_mask(dev, 0xffffffffffffffffLL) &&
	    !pci_set_dma_mask(dev, 0xffffffffLL)) {
		printk(KERN_WARNING "MM%d: NO suitable DMA found\n",num_cards);
		return  -ENOMEM;
	}
	if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) {
		printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
		ret = -ENOMEM;
 
		goto failed_req_csr;
	}
 
	card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len);
	if (!card->csr_remap) {
		printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
		ret = -ENOMEM;
 
		goto failed_remap_csr;
	}
 
	printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card->card_number,
	       card->csr_base, card->csr_remap, card->csr_len);
 
#ifdef CONFIG_MM_MAP_MEMORY
	if (!request_mem_region(card->mem_base, card->mem_len, "Micro Memory")) {
		printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
		ret = -ENOMEM;
 
		goto failed_req_mem;
	}
 
	if (!(card->mem_remap = (unsigned char *)ioremap(card->mem_base, cards->mem_len))) {
		printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
		ret = -ENOMEM;
 
		goto failed_remap_mem;
	}
 
	printk(KERN_INFO "MM%d: MEM 0x%8lx -> 0x%8lx (0x%lx)\n", card->card_number,
	       card->mem_base, card->mem_remap, card->mem_len);
#else
	printk(KERN_INFO "MM%d: MEM area not remapped (CONFIG_MM_MAP_MEMORY not set)\n",
	       card->card_number);
#endif
	switch(card->dev->device) {
	case 0x5415:
		card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
		magic_number = 0x59;
		break;
 
	case 0x5425:
		magic_number = 0x5C;
		break;
 
	case 0x6155:
		card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
		magic_number = 0x99;
		break;
 
	default:
		magic_number = 0x100;
		break;
	}
 
	if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
		printk(KERN_ERR "MM%d: Magic number invalid\n", card->card_number);
		ret = -ENOMEM;
		goto failed_magic;
	}
 
	card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
						      PAGE_SIZE*2,
						      &card->mm_pages[0].page_dma);
	card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
						      PAGE_SIZE*2,
						      &card->mm_pages[1].page_dma);
	if (card->mm_pages[0].desc == NULL ||
	    card->mm_pages[1].desc == NULL) {
		printk(KERN_ERR "MM%d: alloc failed\n", card->card_number);
		goto failed_alloc;
	}
	reset_page(&card->mm_pages[0]);
	reset_page(&card->mm_pages[1]);
	card->Ready = 0;	/* page 0 is ready */
	card->Active = -1;	/* no page is active */
	card->bh = NULL;
	card->bhtail = &card->bh;
 
	tasklet_init(&card->tasklet, process_page, (unsigned long)card);
 
	card->plug_tq.sync = 0;
	card->plug_tq.routine = &mm_unplug_device;
	card->plug_tq.data = card;
	card->check_batteries = 0;
 
	mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
	switch (mem_present) {
	case MEM_128_MB:
		card->mm_size = 1024 * 128;
		break;
	case MEM_256_MB:
		card->mm_size = 1024 * 256;
		break;
	case MEM_512_MB:
		card->mm_size = 1024 * 512;
		break;
	case MEM_1_GB:
		card->mm_size = 1024 * 1024;
		break;
	case MEM_2_GB:
		card->mm_size = 1024 * 2048;
		break;
	default:
		card->mm_size = 0;
		break;
	}
 
	/* Clear the LED's we control */
	set_led(card, LED_REMOVE, LED_OFF);
	set_led(card, LED_FAULT, LED_OFF);
 
	batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
 
	card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
	card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
	card->battery[0].last_change = card->battery[1].last_change = jiffies;
 
	if (card->flags & UM_FLAG_NO_BATT) 
		printk(KERN_INFO "MM%d: Size %d KB\n",
		       card->card_number, card->mm_size);
	else {
		printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
		       card->card_number, card->mm_size,
		       (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
		       card->battery[0].good ? "OK" : "FAILURE",
		       (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
		       card->battery[1].good ? "OK" : "FAILURE");
 
		set_fault_to_battery_status(card);
	}
 
	pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
	data = 0xffffffff;
	pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
	pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
	pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
	data &= 0xfffffff0;
	data = ~data;
	data += 1;
 
	card->win_size = data;
 
 
	if (request_irq(dev->irq, mm_interrupt, SA_SHIRQ, "pci-umem", card)) {
		printk(KERN_ERR "MM%d: Unable to allocate IRQ\n", card->card_number);
		ret = -ENODEV;
 
		goto failed_req_irq;
	}
 
	card->irq = dev->irq;
	printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %d\n", card->card_number,
	       card->win_size, card->irq);
 
        spin_lock_init(&card->lock);
 
	pci_set_drvdata(dev, card);
 
	if (pci_write_cmd != 0x0F) 	/* If not Memory Write & Invalidate */
		pci_write_cmd = 0x07;	/* then Memory Write command */
 
	if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
		unsigned short cfg_command;
		pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
		cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
		pci_write_config_word(dev, PCI_COMMAND, cfg_command);
	}
	pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
 
	num_cards++;
 
	if (init_mem)
		mm_init_mem(card);
	else {
		if (!get_userbit(card, MEMORY_INITIALIZED))
			printk(KERN_INFO "MM%d: memory NOT initialized. perhaps load with init_mem=1?\n", card->card_number);
		else
			printk(KERN_INFO "MM%d: memory already initialized\n", card->card_number);
	}
 
	/* Enable ECC */
	writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
 
	return 0;
 
 failed_req_irq:
 failed_alloc:
	if (card->mm_pages[0].desc)
		pci_free_consistent(card->dev, PAGE_SIZE*2,
				    card->mm_pages[0].desc,
				    card->mm_pages[0].page_dma);
	if (card->mm_pages[1].desc)
		pci_free_consistent(card->dev, PAGE_SIZE*2,
				    card->mm_pages[1].desc,
				    card->mm_pages[1].page_dma);
 failed_magic:
#ifdef CONFIG_MM_MAP_MEMORY
	iounmap((void *) card->mem_remap);
 failed_remap_mem:
	release_mem_region(card->mem_base, card->mem_len);
 failed_req_mem:
#endif
	iounmap((void *) card->csr_remap);
 failed_remap_csr:
	release_mem_region(card->csr_base, card->csr_len);
 failed_req_csr:
 
	return ret;
}
/*
-----------------------------------------------------------------------------------
--                              mm_pci_remove
-----------------------------------------------------------------------------------
*/
static void mm_pci_remove(struct pci_dev *dev)
{
	struct cardinfo *card = pci_get_drvdata(dev);
 
	tasklet_kill(&card->tasklet);
	iounmap(card->csr_remap);
	release_mem_region(card->csr_base, card->csr_len);
#ifdef CONFIG_MM_MAP_MEMORY
	iounmap(card->mem_remap);
	release_mem_region(card->mem_base, card->mem_len);
#endif
	free_irq(card->irq, card);
 
	if (card->mm_pages[0].desc)
		pci_free_consistent(card->dev, PAGE_SIZE*2,
				    card->mm_pages[0].desc,
				    card->mm_pages[0].page_dma);
	if (card->mm_pages[1].desc)
		pci_free_consistent(card->dev, PAGE_SIZE*2,
				    card->mm_pages[1].desc,
				    card->mm_pages[1].page_dma);
}
 
static const struct pci_device_id __devinitdata mm_pci_ids[] = { {
	vendor:		PCI_VENDOR_ID_MICRO_MEMORY,
	device:		PCI_DEVICE_ID_MICRO_MEMORY_5415CN,
	}, {
	vendor:		PCI_VENDOR_ID_MICRO_MEMORY,
	device:		PCI_DEVICE_ID_MICRO_MEMORY_5425CN,
	}, {
	.vendor =	PCI_VENDOR_ID_MICRO_MEMORY,
	.device =	PCI_DEVICE_ID_MICRO_MEMORY_6155,
	}, {
	.vendor	=	0x8086,
	.device	=	0xB555,
	.subvendor=	0x1332,
	.subdevice=	0x5460,
	.class	=	0x050000,
	.class_mask=	0,
	}, { /* end: all zeroes */ }
};
 
MODULE_DEVICE_TABLE(pci, mm_pci_ids);
 
static struct pci_driver mm_pci_driver = {
	name:		"umem",
	id_table:	mm_pci_ids,
	probe:		mm_pci_probe,
	remove:		mm_pci_remove,
};
/*
-----------------------------------------------------------------------------------
--                               mm_init
-----------------------------------------------------------------------------------
*/
int __init mm_init(void)
{
	int retval, i;
	int err;
 
	printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
 
	memset (cards,    0, MM_MAXCARDS * sizeof(struct cardinfo));
	memset (mm_sizes, 0, (MM_MAXCARDS << MM_SHIFT) * sizeof (int));
	memset (mm_partitions, 0,
		(MM_MAXCARDS << MM_SHIFT) * sizeof(struct hd_struct));
 
	retval = pci_module_init(&mm_pci_driver);
	if (retval)
		return -ENOMEM;
 
	err = devfs_register_blkdev(MAJOR_NR, "umem", &mm_fops);
	if (err < 0) {
		printk(KERN_ERR "MM: Could not register block device\n");
		return -EIO;
	}
	devfs_handle = devfs_mk_dir(NULL, "umem", NULL);
 
	read_ahead[MAJOR_NR] = MM_RAHEAD;
 
 
	/* Initialize partition size: partion 0 of each card is the entire card */
	for (i = 0; i < num_cards; i++) {
		mm_sizes[i << MM_SHIFT] = cards[i].mm_size;
	}
        mm_gendisk.sizes = mm_sizes;
 
	for (i = 0; i < num_cards; i++) {
		spin_lock_init(&cards[i].lock);
		mm_partitions[i << MM_SHIFT].nr_sects =
			cards[i].mm_size * (1024 / MM_HARDSECT);
	}
 
	mm_gendisk.part      = mm_partitions;
	mm_gendisk.nr_real   = num_cards;
 
	add_gendisk(&mm_gendisk);
 
	blk_queue_make_request(BLK_DEFAULT_QUEUE(MAJOR_NR),
			       mm_make_request);
 
	for (i = 0; i < num_cards << MM_SHIFT; i++) {
		mm_hardsect[i]   = MM_HARDSECT;
		mm_blocksizes[i] = MM_BLKSIZE;
	}
 
	hardsect_size[MAJOR_NR] = mm_hardsect;
	blksize_size[MAJOR_NR]  = mm_blocksizes;
        blk_size[MAJOR_NR]      = mm_gendisk.sizes;
        for (i = 0; i < num_cards; i++) {
		register_disk(&mm_gendisk, MKDEV(MAJOR_NR, i<<MM_SHIFT), MM_SHIFT,
			      &mm_fops, cards[i].mm_size << 1);
	}
 
	init_battery_timer();
	printk("MM: desc_per_page = %ld\n", DESC_PER_PAGE);
/* printk("mm_init: Done. 10-19-01 9:00\n"); */
	return 0;
}
/*
-----------------------------------------------------------------------------------
--                             mm_cleanup
-----------------------------------------------------------------------------------
*/
void __exit mm_cleanup(void)
{
	int i;
 
	del_battery_timer();
 
	for (i=0; i < num_cards ; i++)
		devfs_register_partitions(&mm_gendisk, i<<MM_SHIFT, 1);
	if (devfs_handle)
		devfs_unregister(devfs_handle);
	devfs_handle = NULL;
 
	pci_unregister_driver(&mm_pci_driver);
 
	devfs_unregister_blkdev(MAJOR_NR, "umem");
 
        for (i = 0; i < (num_cards << MM_SHIFT); i++)
		invalidate_device (MKDEV(MAJOR_NR,i), 1);
 
	hardsect_size[MAJOR_NR] = NULL;
	blksize_size [MAJOR_NR] = NULL;
	blk_size     [MAJOR_NR] = NULL;
        read_ahead   [MAJOR_NR] = 0;
 
	/*
	 * Get our gendisk structure off the list.
	 */
	del_gendisk(&mm_gendisk);
}
 
module_init(mm_init);
module_exit(mm_cleanup);
 
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.