OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [drivers/] [char/] [drm-4.0/] [mga_dma.c] - Rev 1275

Go to most recent revision | Compare with Previous | Blame | View Log

/* mga_dma.c -- DMA support for mga g200/g400 -*- linux-c -*-
 * Created: Mon Dec 13 01:50:01 1999 by jhartmann@precisioninsight.com
 *
 * Copyright 1999 Precision Insight, Inc., Cedar Park, Texas.
 * Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 *
 * Authors: Rickard E. (Rik) Faith <faith@valinux.com>
 *	    Jeff Hartmann <jhartmann@valinux.com>
 *	    Keith Whitwell <keithw@valinux.com>
 *
 */
 
#define __NO_VERSION__
#include "drmP.h"
#include "mga_drv.h"
 
#include <linux/interrupt.h>	/* For task queue support */
 
#define MGA_REG(reg)		2
#define MGA_BASE(reg)		((unsigned long) \
				((drm_device_t *)dev)->maplist[MGA_REG(reg)]->handle)
#define MGA_ADDR(reg)		(MGA_BASE(reg) + reg)
#define MGA_DEREF(reg)		*(__volatile__ int *)MGA_ADDR(reg)
#define MGA_READ(reg)		MGA_DEREF(reg)
#define MGA_WRITE(reg,val) 	do { MGA_DEREF(reg) = val; } while (0)
 
#define PDEA_pagpxfer_enable 	     0x2
 
static int mga_flush_queue(drm_device_t *dev);
 
static unsigned long mga_alloc_page(drm_device_t *dev)
{
	unsigned long address;
 
	address = __get_free_page(GFP_KERNEL);
	if(address == 0UL) {
		return 0;
	}
	atomic_inc(&virt_to_page(address)->count);
	set_bit(PG_reserved, &virt_to_page(address)->flags);
 
	return address;
}
 
static void mga_free_page(drm_device_t *dev, unsigned long page)
{
	if(!page) return;
	atomic_dec(&virt_to_page(page)->count);
	clear_bit(PG_reserved, &virt_to_page(page)->flags);
	free_page(page);
	return;
}
 
static void mga_delay(void)
{
	return;
}
 
/* These are two age tags that will never be sent to
 * the hardware */
#define MGA_BUF_USED 	0xffffffff
#define MGA_BUF_FREE	0
 
static int mga_freelist_init(drm_device_t *dev)
{
      	drm_device_dma_t *dma = dev->dma;
   	drm_buf_t *buf;
   	drm_mga_buf_priv_t *buf_priv;
      	drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private;
   	drm_mga_freelist_t *item;
   	int i;
 
   	dev_priv->head = drm_alloc(sizeof(drm_mga_freelist_t), DRM_MEM_DRIVER);
	if(dev_priv->head == NULL) return -ENOMEM;
   	memset(dev_priv->head, 0, sizeof(drm_mga_freelist_t));
   	dev_priv->head->age = MGA_BUF_USED;
 
   	for (i = 0; i < dma->buf_count; i++) {
	   	buf = dma->buflist[ i ];
	        buf_priv = buf->dev_private;
		item = drm_alloc(sizeof(drm_mga_freelist_t),
				 DRM_MEM_DRIVER);
	   	if(item == NULL) return -ENOMEM;
	   	memset(item, 0, sizeof(drm_mga_freelist_t));
	  	item->age = MGA_BUF_FREE;
	   	item->prev = dev_priv->head;
	   	item->next = dev_priv->head->next;
	   	if(dev_priv->head->next != NULL)
			dev_priv->head->next->prev = item;
	   	if(item->next == NULL) dev_priv->tail = item;
	   	item->buf = buf;
	   	buf_priv->my_freelist = item;
		buf_priv->discard = 0;
		buf_priv->dispatched = 0;
	   	dev_priv->head->next = item;
	}
 
   	return 0;
}
 
static void mga_freelist_cleanup(drm_device_t *dev)
{
      	drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private;
   	drm_mga_freelist_t *item;
   	drm_mga_freelist_t *prev;
 
   	item = dev_priv->head;
   	while(item) {
	   	prev = item;
	   	item = item->next;
	   	drm_free(prev, sizeof(drm_mga_freelist_t), DRM_MEM_DRIVER);
	}
 
   	dev_priv->head = dev_priv->tail = NULL;
}
 
/* Frees dispatch lock */
static inline void mga_dma_quiescent(drm_device_t *dev)
{
	drm_device_dma_t  *dma      = dev->dma;
	drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private;
	drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
   	unsigned long end;
	int i;
 
	DRM_DEBUG("dispatch_status = 0x%02lx\n", dev_priv->dispatch_status);
	end = jiffies + (HZ*3);
    	while(1) {
		if(!test_and_set_bit(MGA_IN_DISPATCH,
				     &dev_priv->dispatch_status)) {
			break;
		}
	   	if((signed)(end - jiffies) <= 0) {
			DRM_ERROR("irqs: %d wanted %d\n",
				  atomic_read(&dev->total_irq),
				  atomic_read(&dma->total_lost));
			DRM_ERROR("lockup: dispatch_status = 0x%02lx,"
				  " jiffies = %lu, end = %lu\n",
				  dev_priv->dispatch_status, jiffies, end);
			return;
		}
		for (i = 0 ; i < 2000 ; i++) mga_delay();
	}
	end = jiffies + (HZ*3);
    	DRM_DEBUG("quiescent status : %x\n", MGA_READ(MGAREG_STATUS));
    	while((MGA_READ(MGAREG_STATUS) & 0x00030001) != 0x00020000) {
		if((signed)(end - jiffies) <= 0) {
			DRM_ERROR("irqs: %d wanted %d\n",
				  atomic_read(&dev->total_irq),
				  atomic_read(&dma->total_lost));
			DRM_ERROR("lockup\n");
			clear_bit(MGA_IN_DISPATCH, &dev_priv->dispatch_status);
			return;
		}
		for (i = 0 ; i < 2000 ; i++) mga_delay();
	}
    	sarea_priv->dirty |= MGA_DMA_FLUSH;
 
    	clear_bit(MGA_IN_DISPATCH, &dev_priv->dispatch_status);
	DRM_DEBUG("exit, dispatch_status = 0x%02lx\n",
		  dev_priv->dispatch_status);
}
 
static void mga_reset_freelist(drm_device_t *dev)
{
   	drm_device_dma_t  *dma      = dev->dma;
   	drm_buf_t *buf;
   	drm_mga_buf_priv_t *buf_priv;
	int i;
 
   	for (i = 0; i < dma->buf_count; i++) {
	   	buf = dma->buflist[ i ];
	        buf_priv = buf->dev_private;
		buf_priv->my_freelist->age = MGA_BUF_FREE;
	}
}
 
/* Least recently used :
 * These operations are not atomic b/c they are protected by the
 * hardware lock */
 
drm_buf_t *mga_freelist_get(drm_device_t *dev)
{
   	DECLARE_WAITQUEUE(entry, current);
   	drm_mga_private_t *dev_priv =
     		(drm_mga_private_t *) dev->dev_private;
	drm_mga_freelist_t *prev;
   	drm_mga_freelist_t *next;
	static int failed = 0;
	int return_null = 0;
 
	if(failed >= 1000 && dev_priv->tail->age >= dev_priv->last_prim_age) {
		DRM_DEBUG("Waiting on freelist,"
			  " tail->age = %d, last_prim_age= %d\n",
			  dev_priv->tail->age,
			  dev_priv->last_prim_age);
	   	add_wait_queue(&dev_priv->buf_queue, &entry);
		set_bit(MGA_IN_GETBUF, &dev_priv->dispatch_status);
	   	for (;;) {
			current->state = TASK_INTERRUPTIBLE;
		   	mga_dma_schedule(dev, 0);
			if(dev_priv->tail->age < dev_priv->last_prim_age)
				break;
		   	atomic_inc(&dev->total_sleeps);
		   	schedule();
		   	if (signal_pending(current)) {
				++return_null;
				break;
			}
		}
		clear_bit(MGA_IN_GETBUF, &dev_priv->dispatch_status);
		current->state = TASK_RUNNING;
	   	remove_wait_queue(&dev_priv->buf_queue, &entry);
		if (return_null) return NULL;
	}
 
   	if(dev_priv->tail->age < dev_priv->last_prim_age) {
		prev = dev_priv->tail->prev;
	   	next = dev_priv->tail;
	   	prev->next = NULL;
	   	next->prev = next->next = NULL;
	   	dev_priv->tail = prev;
	   	next->age = MGA_BUF_USED;
		failed = 0;
	   	return next->buf;
	}
 
	failed++;
   	return NULL;
}
 
int mga_freelist_put(drm_device_t *dev, drm_buf_t *buf)
{
      	drm_mga_private_t *dev_priv =
     		(drm_mga_private_t *) dev->dev_private;
   	drm_mga_buf_priv_t *buf_priv = buf->dev_private;
	drm_mga_freelist_t *prev;
   	drm_mga_freelist_t *head;
   	drm_mga_freelist_t *next;
 
   	if(buf_priv->my_freelist->age == MGA_BUF_USED) {
		/* Discarded buffer, put it on the tail */
		next = buf_priv->my_freelist;
		next->age = MGA_BUF_FREE;
		prev = dev_priv->tail;
		prev->next = next;
		next->prev = prev;
		next->next = NULL;
		dev_priv->tail = next;
	} else {
		/* Normally aged buffer, put it on the head + 1,
		 * as the real head is a sentinal element
		 */
		next = buf_priv->my_freelist;
		head = dev_priv->head;
		prev = head->next;
		head->next = next;
		prev->prev = next;
		next->prev = head;
		next->next = prev;
	}
 
   	return 0;
}
 
static int mga_init_primary_bufs(drm_device_t *dev, drm_mga_init_t *init)
{
   	drm_mga_private_t *dev_priv = dev->dev_private;
	drm_mga_prim_buf_t *prim_buffer;
   	int i, temp, size_of_buf;
   	int offset = init->reserved_map_agpstart;
 
   	dev_priv->primary_size = ((init->primary_size + PAGE_SIZE - 1) /
				  PAGE_SIZE) * PAGE_SIZE;
   	size_of_buf = dev_priv->primary_size / MGA_NUM_PRIM_BUFS;
	dev_priv->warp_ucode_size = init->warp_ucode_size;
   	dev_priv->prim_bufs = drm_alloc(sizeof(drm_mga_prim_buf_t *) *
					(MGA_NUM_PRIM_BUFS + 1),
					DRM_MEM_DRIVER);
   	if(dev_priv->prim_bufs == NULL) {
		DRM_ERROR("Unable to allocate memory for prim_buf\n");
		return -ENOMEM;
	}
   	memset(dev_priv->prim_bufs,
	       0, sizeof(drm_mga_prim_buf_t *) * (MGA_NUM_PRIM_BUFS + 1));
 
   	temp = init->warp_ucode_size + dev_priv->primary_size;
	temp = ((temp + PAGE_SIZE - 1) / PAGE_SIZE) * PAGE_SIZE;
 
	dev_priv->ioremap = drm_ioremap(dev->agp->base + offset,
					temp, dev);
	if(dev_priv->ioremap == NULL) {
		DRM_ERROR("Ioremap failed\n");
		return -ENOMEM;
	}
   	init_waitqueue_head(&dev_priv->wait_queue);
 
   	for(i = 0; i < MGA_NUM_PRIM_BUFS; i++) {
	   	prim_buffer = drm_alloc(sizeof(drm_mga_prim_buf_t),
					DRM_MEM_DRIVER);
	   	if(prim_buffer == NULL) return -ENOMEM;
	   	memset(prim_buffer, 0, sizeof(drm_mga_prim_buf_t));
	   	prim_buffer->phys_head = offset + dev->agp->base;
	   	prim_buffer->current_dma_ptr =
			prim_buffer->head =
			(u32 *) (dev_priv->ioremap +
				 offset -
				 init->reserved_map_agpstart);
	   	prim_buffer->num_dwords = 0;
	   	prim_buffer->max_dwords = size_of_buf / sizeof(u32);
	   	prim_buffer->max_dwords -= 5; /* Leave room for the softrap */
	   	prim_buffer->sec_used = 0;
	   	prim_buffer->idx = i;
		prim_buffer->prim_age = i + 1;
	   	offset = offset + size_of_buf;
	   	dev_priv->prim_bufs[i] = prim_buffer;
	}
	dev_priv->current_prim_idx = 0;
        dev_priv->next_prim =
		dev_priv->last_prim =
		dev_priv->current_prim =
        	dev_priv->prim_bufs[0];
	dev_priv->next_prim_age = 2;
	dev_priv->last_prim_age = 1;
   	set_bit(MGA_BUF_IN_USE, &dev_priv->current_prim->buffer_status);
   	return 0;
}
 
void mga_fire_primary(drm_device_t *dev, drm_mga_prim_buf_t *prim)
{
       	drm_mga_private_t *dev_priv = dev->dev_private;
      	drm_device_dma_t  *dma	    = dev->dma;
       	drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
 	int use_agp = PDEA_pagpxfer_enable;
	unsigned long end;
   	int i;
   	int next_idx;
       	PRIMLOCALS;
 
   	dev_priv->last_prim = prim;
 
 	/* We never check for overflow, b/c there is always room */
    	PRIMPTR(prim);
   	if(num_dwords <= 0) {
		DRM_ERROR("num_dwords == 0 when dispatched\n");
		goto out_prim_wait;
	}
 	PRIMOUTREG( MGAREG_DMAPAD, 0);
 	PRIMOUTREG( MGAREG_DMAPAD, 0);
       	PRIMOUTREG( MGAREG_DMAPAD, 0);
   	PRIMOUTREG( MGAREG_SOFTRAP, 0);
    	PRIMFINISH(prim);
 
	end = jiffies + (HZ*3);
    	if(sarea_priv->dirty & MGA_DMA_FLUSH) {
		while((MGA_READ(MGAREG_STATUS) & 0x00030001) != 0x00020000) {
			if((signed)(end - jiffies) <= 0) {
				DRM_ERROR("irqs: %d wanted %d\n",
					  atomic_read(&dev->total_irq),
					  atomic_read(&dma->total_lost));
				DRM_ERROR("lockup (flush)\n");
				goto out_prim_wait;
			}
 
			for (i = 0 ; i < 4096 ; i++) mga_delay();
		}
		sarea_priv->dirty &= ~(MGA_DMA_FLUSH);
	} else {
		while((MGA_READ(MGAREG_STATUS) & 0x00020001) != 0x00020000) {
			if((signed)(end - jiffies) <= 0) {
				DRM_ERROR("irqs: %d wanted %d\n",
					  atomic_read(&dev->total_irq),
					  atomic_read(&dma->total_lost));
				DRM_ERROR("lockup (wait)\n");
				goto out_prim_wait;
			}
 
			for (i = 0 ; i < 4096 ; i++) mga_delay();
		}
	}
 
   	mga_flush_write_combine();
    	atomic_inc(&dev_priv->pending_bufs);
       	MGA_WRITE(MGAREG_PRIMADDRESS, phys_head | TT_GENERAL);
 	MGA_WRITE(MGAREG_PRIMEND, (phys_head + num_dwords * 4) | use_agp);
   	prim->num_dwords = 0;
	sarea_priv->last_enqueue = prim->prim_age;
 
   	next_idx = prim->idx + 1;
    	if(next_idx >= MGA_NUM_PRIM_BUFS)
		next_idx = 0;
 
    	dev_priv->next_prim = dev_priv->prim_bufs[next_idx];
	return;
 
 out_prim_wait:
	prim->num_dwords = 0;
	prim->sec_used = 0;
	clear_bit(MGA_BUF_IN_USE, &prim->buffer_status);
   	wake_up_interruptible(&dev_priv->wait_queue);
	clear_bit(MGA_BUF_SWAP_PENDING, &prim->buffer_status);
	clear_bit(MGA_IN_DISPATCH, &dev_priv->dispatch_status);
}
 
int mga_advance_primary(drm_device_t *dev)
{
   	DECLARE_WAITQUEUE(entry, current);
   	drm_mga_private_t *dev_priv = dev->dev_private;
   	drm_mga_prim_buf_t *prim_buffer;
   	drm_device_dma_t  *dma      = dev->dma;
   	int next_prim_idx;
   	int ret = 0;
 
   	/* This needs to reset the primary buffer if available,
	 * we should collect stats on how many times it bites
	 * it's tail */
 
   	next_prim_idx = dev_priv->current_prim_idx + 1;
   	if(next_prim_idx >= MGA_NUM_PRIM_BUFS)
     		next_prim_idx = 0;
   	prim_buffer = dev_priv->prim_bufs[next_prim_idx];
	set_bit(MGA_IN_WAIT, &dev_priv->dispatch_status);
 
      	/* In use is cleared in interrupt handler */
 
   	if(test_and_set_bit(MGA_BUF_IN_USE, &prim_buffer->buffer_status)) {
	   	add_wait_queue(&dev_priv->wait_queue, &entry);
	   	for (;;) {
			current->state = TASK_INTERRUPTIBLE;
		   	mga_dma_schedule(dev, 0);
		   	if(!test_and_set_bit(MGA_BUF_IN_USE,
					     &prim_buffer->buffer_status))
				break;
		   	atomic_inc(&dev->total_sleeps);
		   	atomic_inc(&dma->total_missed_sched);
		   	schedule();
		   	if (signal_pending(current)) {
			   	ret = -ERESTARTSYS;
			   	break;
			}
		}
		current->state = TASK_RUNNING;
	   	remove_wait_queue(&dev_priv->wait_queue, &entry);
	   	if(ret) return ret;
	}
	clear_bit(MGA_IN_WAIT, &dev_priv->dispatch_status);
 
   	/* This primary buffer is now free to use */
   	prim_buffer->current_dma_ptr = prim_buffer->head;
   	prim_buffer->num_dwords = 0;
   	prim_buffer->sec_used = 0;
	prim_buffer->prim_age = dev_priv->next_prim_age++;
	if(prim_buffer->prim_age == 0 || prim_buffer->prim_age == 0xffffffff) {
		mga_flush_queue(dev);
		mga_dma_quiescent(dev);
		mga_reset_freelist(dev);
		prim_buffer->prim_age = (dev_priv->next_prim_age += 2);
	}
 
	/* Reset all buffer status stuff */
	clear_bit(MGA_BUF_NEEDS_OVERFLOW, &prim_buffer->buffer_status);
	clear_bit(MGA_BUF_FORCE_FIRE, &prim_buffer->buffer_status);
	clear_bit(MGA_BUF_SWAP_PENDING, &prim_buffer->buffer_status);
 
   	dev_priv->current_prim = prim_buffer;
   	dev_priv->current_prim_idx = next_prim_idx;
   	return 0;
}
 
/* More dynamic performance decisions */
static inline int mga_decide_to_fire(drm_device_t *dev)
{
   	drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private;
 
   	if(test_bit(MGA_BUF_FORCE_FIRE, &dev_priv->next_prim->buffer_status)) {
	   	return 1;
	}
 
	if (test_bit(MGA_IN_GETBUF, &dev_priv->dispatch_status) &&
	    dev_priv->next_prim->num_dwords) {
	   	return 1;
	}
 
	if (test_bit(MGA_IN_FLUSH, &dev_priv->dispatch_status) &&
	    dev_priv->next_prim->num_dwords) {
	   	return 1;
	}
 
   	if(atomic_read(&dev_priv->pending_bufs) <= MGA_NUM_PRIM_BUFS - 1) {
		if(test_bit(MGA_BUF_SWAP_PENDING,
			    &dev_priv->next_prim->buffer_status)) {
			return 1;
		}
	}
 
   	if(atomic_read(&dev_priv->pending_bufs) <= MGA_NUM_PRIM_BUFS / 2) {
		if(dev_priv->next_prim->sec_used >= MGA_DMA_BUF_NR / 8) {
			return 1;
		}
	}
 
   	if(atomic_read(&dev_priv->pending_bufs) >= MGA_NUM_PRIM_BUFS / 2) {
		if(dev_priv->next_prim->sec_used >= MGA_DMA_BUF_NR / 4) {
			return 1;
		}
	}
 
   	return 0;
}
 
int mga_dma_schedule(drm_device_t *dev, int locked)
{
      	drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private;
	int               retval    = 0;
 
   	if (!dev_priv) return -EBUSY;
 
	if (test_and_set_bit(0, &dev->dma_flag)) {
		retval = -EBUSY;
		goto sch_out_wakeup;
	}
 
   	if(test_bit(MGA_IN_FLUSH, &dev_priv->dispatch_status) ||
	   test_bit(MGA_IN_WAIT, &dev_priv->dispatch_status) ||
	   test_bit(MGA_IN_GETBUF, &dev_priv->dispatch_status)) {
		locked = 1;
	}
 
   	if (!locked &&
	    !drm_lock_take(&dev->lock.hw_lock->lock, DRM_KERNEL_CONTEXT)) {
	   	clear_bit(0, &dev->dma_flag);
		retval = -EBUSY;
		goto sch_out_wakeup;
	}
 
   	if(!test_and_set_bit(MGA_IN_DISPATCH, &dev_priv->dispatch_status)) {
	   	/* Fire dma buffer */
	   	if(mga_decide_to_fire(dev)) {
			clear_bit(MGA_BUF_FORCE_FIRE,
				  &dev_priv->next_prim->buffer_status);
		   	if(dev_priv->current_prim == dev_priv->next_prim) {
				/* Schedule overflow for a later time */
				set_bit(MGA_BUF_NEEDS_OVERFLOW,
					&dev_priv->next_prim->buffer_status);
			}
		   	mga_fire_primary(dev, dev_priv->next_prim);
		} else {
			clear_bit(MGA_IN_DISPATCH, &dev_priv->dispatch_status);
		}
	}
 
	if (!locked) {
		if (drm_lock_free(dev, &dev->lock.hw_lock->lock,
				  DRM_KERNEL_CONTEXT)) {
			DRM_ERROR("\n");
		}
	}
 
	clear_bit(0, &dev->dma_flag);
 
sch_out_wakeup:
      	if(test_bit(MGA_IN_FLUSH, &dev_priv->dispatch_status) &&
	   atomic_read(&dev_priv->pending_bufs) == 0) {
		/* Everything has been processed by the hardware */
		clear_bit(MGA_IN_FLUSH, &dev_priv->dispatch_status);
		wake_up_interruptible(&dev_priv->flush_queue);
	}
 
	if(test_bit(MGA_IN_GETBUF, &dev_priv->dispatch_status)
	   && dev_priv->tail->age < dev_priv->last_prim_age)
		wake_up_interruptible(&dev_priv->buf_queue);
 
	return retval;
}
 
static void mga_dma_service(int irq, void *device, struct pt_regs *regs)
{
    	drm_device_t	 *dev = (drm_device_t *)device;
    	drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private;
    	drm_mga_prim_buf_t *last_prim_buffer;
 
    	atomic_inc(&dev->total_irq);
	if((MGA_READ(MGAREG_STATUS) & 0x00000001) != 0x00000001) return;
      	MGA_WRITE(MGAREG_ICLEAR, 0x00000001);
   	last_prim_buffer = dev_priv->last_prim;
    	last_prim_buffer->num_dwords = 0;
    	last_prim_buffer->sec_used = 0;
	dev_priv->sarea_priv->last_dispatch =
		dev_priv->last_prim_age = last_prim_buffer->prim_age;
      	clear_bit(MGA_BUF_IN_USE, &last_prim_buffer->buffer_status);
      	clear_bit(MGA_BUF_SWAP_PENDING, &last_prim_buffer->buffer_status);
      	clear_bit(MGA_IN_DISPATCH, &dev_priv->dispatch_status);
      	atomic_dec(&dev_priv->pending_bufs);
   	queue_task(&dev->tq, &tq_immediate);
   	mark_bh(IMMEDIATE_BH);
   	wake_up_interruptible(&dev_priv->wait_queue);
}
 
static void mga_dma_task_queue(void *device)
{
	mga_dma_schedule((drm_device_t *)device, 0);
}
 
int mga_dma_cleanup(drm_device_t *dev)
{
	if(dev->dev_private) {
		drm_mga_private_t *dev_priv =
			(drm_mga_private_t *) dev->dev_private;
 
		if (dev->irq) mga_flush_queue(dev);
		mga_dma_quiescent(dev);
 
		if(dev_priv->ioremap) {
			int temp = (dev_priv->warp_ucode_size +
				    dev_priv->primary_size +
				    PAGE_SIZE - 1) / PAGE_SIZE * PAGE_SIZE;
 
			drm_ioremapfree((void *) dev_priv->ioremap, temp, dev);
		}
	   	if(dev_priv->status_page != NULL) {
		   	iounmap(dev_priv->status_page);
		}
	   	if(dev_priv->real_status_page != 0UL) {
		   	mga_free_page(dev, dev_priv->real_status_page);
		}
	   	if(dev_priv->prim_bufs != NULL) {
		   	int i;
		   	for(i = 0; i < MGA_NUM_PRIM_BUFS; i++) {
			   	if(dev_priv->prim_bufs[i] != NULL) {
			     		drm_free(dev_priv->prim_bufs[i],
						 sizeof(drm_mga_prim_buf_t),
						 DRM_MEM_DRIVER);
				}
			}
		   	drm_free(dev_priv->prim_bufs, sizeof(void *) *
				 (MGA_NUM_PRIM_BUFS + 1),
				 DRM_MEM_DRIVER);
		}
		if(dev_priv->head != NULL) {
		   	mga_freelist_cleanup(dev);
		}
 
 
		drm_free(dev->dev_private, sizeof(drm_mga_private_t),
			 DRM_MEM_DRIVER);
		dev->dev_private = NULL;
	}
 
	return 0;
}
 
static int mga_dma_initialize(drm_device_t *dev, drm_mga_init_t *init) {
	drm_mga_private_t *dev_priv;
	drm_map_t *sarea_map = NULL;
 
	dev_priv = drm_alloc(sizeof(drm_mga_private_t), DRM_MEM_DRIVER);
	if(dev_priv == NULL) return -ENOMEM;
	dev->dev_private = (void *) dev_priv;
 
	memset(dev_priv, 0, sizeof(drm_mga_private_t));
 
	if((init->reserved_map_idx >= dev->map_count) ||
	   (init->buffer_map_idx >= dev->map_count)) {
		mga_dma_cleanup(dev);
		return -EINVAL;
	}
 
	dev_priv->reserved_map_idx = init->reserved_map_idx;
	dev_priv->buffer_map_idx = init->buffer_map_idx;
	sarea_map = dev->maplist[0];
	dev_priv->sarea_priv = (drm_mga_sarea_t *)
		((u8 *)sarea_map->handle +
		 init->sarea_priv_offset);
 
	/* Scale primary size to the next page */
	dev_priv->chipset = init->chipset;
	dev_priv->frontOffset = init->frontOffset;
	dev_priv->backOffset = init->backOffset;
	dev_priv->depthOffset = init->depthOffset;
	dev_priv->textureOffset = init->textureOffset;
	dev_priv->textureSize = init->textureSize;
	dev_priv->cpp = init->cpp;
	dev_priv->sgram = init->sgram;
	dev_priv->stride = init->stride;
 
	dev_priv->mAccess = init->mAccess;
   	init_waitqueue_head(&dev_priv->flush_queue);
	init_waitqueue_head(&dev_priv->buf_queue);
	dev_priv->WarpPipe = 0xff000000;
	dev_priv->vertexsize = 0;
 
   	DRM_DEBUG("chipset=%d ucode_size=%d backOffset=%x depthOffset=%x\n",
		  dev_priv->chipset, dev_priv->warp_ucode_size,
		  dev_priv->backOffset, dev_priv->depthOffset);
   	DRM_DEBUG("cpp: %d sgram: %d stride: %d maccess: %x\n",
		  dev_priv->cpp, dev_priv->sgram, dev_priv->stride,
		  dev_priv->mAccess);
 
	memcpy(&dev_priv->WarpIndex, &init->WarpIndex,
	       sizeof(drm_mga_warp_index_t) * MGA_MAX_WARP_PIPES);
 
   	if(mga_init_primary_bufs(dev, init) != 0) {
		DRM_ERROR("Can not initialize primary buffers\n");
		mga_dma_cleanup(dev);
		return -ENOMEM;
	}
   	dev_priv->real_status_page = mga_alloc_page(dev);
      	if(dev_priv->real_status_page == 0UL) {
		mga_dma_cleanup(dev);
		DRM_ERROR("Can not allocate status page\n");
		return -ENOMEM;
	}
 
   	dev_priv->status_page =
		ioremap_nocache(virt_to_bus((void *)dev_priv->real_status_page),
				PAGE_SIZE);
 
   	if(dev_priv->status_page == NULL) {
		mga_dma_cleanup(dev);
		DRM_ERROR("Can not remap status page\n");
		return -ENOMEM;
	}
 
   	/* Write status page when secend or softrap occurs */
   	MGA_WRITE(MGAREG_PRIMPTR,
		  virt_to_bus((void *)dev_priv->real_status_page) | 0x00000003);
 
 
	/* Private is now filled in, initialize the hardware */
	{
		PRIMLOCALS;
		PRIMGETPTR( dev_priv );
 
		PRIMOUTREG(MGAREG_DMAPAD, 0);
		PRIMOUTREG(MGAREG_DMAPAD, 0);
		PRIMOUTREG(MGAREG_DWGSYNC, 0x0100);
		PRIMOUTREG(MGAREG_SOFTRAP, 0);
		/* Poll for the first buffer to insure that
		 * the status register will be correct
		 */
 
		mga_flush_write_combine();
	   	MGA_WRITE(MGAREG_PRIMADDRESS, phys_head | TT_GENERAL);
 
		MGA_WRITE(MGAREG_PRIMEND, ((phys_head + num_dwords * 4) |
					   PDEA_pagpxfer_enable));
 
	   	while(MGA_READ(MGAREG_DWGSYNC) != 0x0100) ;
	}
 
	if(mga_freelist_init(dev) != 0) {
	   	DRM_ERROR("Could not initialize freelist\n");
	   	mga_dma_cleanup(dev);
	   	return -ENOMEM;
	}
	return 0;
}
 
int mga_dma_init(struct inode *inode, struct file *filp,
		 unsigned int cmd, unsigned long arg)
{
	drm_file_t *priv = filp->private_data;
	drm_device_t *dev = priv->dev;
	drm_mga_init_t init;
 
	if (copy_from_user(&init, (drm_mga_init_t *)arg, sizeof(init)))
		return -EFAULT;
 
	switch(init.func) {
	case MGA_INIT_DMA:
		return mga_dma_initialize(dev, &init);
	case MGA_CLEANUP_DMA:
		return mga_dma_cleanup(dev);
	}
 
	return -EINVAL;
}
 
int mga_irq_install(drm_device_t *dev, int irq)
{
	int retcode;
 
	if (!irq)     return -EINVAL;
 
	down(&dev->struct_sem);
	if (dev->irq) {
		up(&dev->struct_sem);
		return -EBUSY;
	}
	dev->irq = irq;
	up(&dev->struct_sem);
 
	DRM_DEBUG("install irq handler %d\n", irq);
 
	dev->context_flag     = 0;
	dev->interrupt_flag   = 0;
	dev->dma_flag	      = 0;
	dev->dma->next_buffer = NULL;
	dev->dma->next_queue  = NULL;
	dev->dma->this_buffer = NULL;
	INIT_LIST_HEAD(&dev->tq.list);
	dev->tq.sync	      = 0;
	dev->tq.routine	      = mga_dma_task_queue;
	dev->tq.data	      = dev;
 
				/* Before installing handler */
	MGA_WRITE(MGAREG_IEN, 0);
   				/* Install handler */
	if ((retcode = request_irq(dev->irq,
				   mga_dma_service,
				   SA_SHIRQ,
				   dev->devname,
				   dev))) {
		down(&dev->struct_sem);
		dev->irq = 0;
		up(&dev->struct_sem);
		return retcode;
	}
				/* After installing handler */
   	MGA_WRITE(MGAREG_ICLEAR, 0x00000001);
	MGA_WRITE(MGAREG_IEN, 0x00000001);
	return 0;
}
 
int mga_irq_uninstall(drm_device_t *dev)
{
	int irq;
 
	down(&dev->struct_sem);
	irq	 = dev->irq;
	dev->irq = 0;
	up(&dev->struct_sem);
 
	if (!irq) return -EINVAL;
   	DRM_DEBUG("remove irq handler %d\n", irq);
      	MGA_WRITE(MGAREG_ICLEAR, 0x00000001);
	MGA_WRITE(MGAREG_IEN, 0);
	free_irq(irq, dev);
	return 0;
}
 
int mga_control(struct inode *inode, struct file *filp, unsigned int cmd,
		  unsigned long arg)
{
	drm_file_t	*priv	= filp->private_data;
	drm_device_t	*dev	= priv->dev;
	drm_control_t	ctl;
 
	if (copy_from_user(&ctl, (drm_control_t *)arg, sizeof(ctl)))
		return -EFAULT;
 
	switch (ctl.func) {
	case DRM_INST_HANDLER:
		return mga_irq_install(dev, ctl.irq);
	case DRM_UNINST_HANDLER:
		return mga_irq_uninstall(dev);
	default:
		return -EINVAL;
	}
}
 
static int mga_flush_queue(drm_device_t *dev)
{
   	DECLARE_WAITQUEUE(entry, current);
  	drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private;
   	int ret = 0;
 
   	if(!dev_priv) return 0;
 
   	if(dev_priv->next_prim->num_dwords != 0) {
   		add_wait_queue(&dev_priv->flush_queue, &entry);
		if (test_bit(MGA_IN_FLUSH, &dev_priv->dispatch_status)) 
			DRM_ERROR("Incorrect mga_flush_queue logic\n");
		set_bit(MGA_IN_FLUSH, &dev_priv->dispatch_status);
		mga_dma_schedule(dev, 0);
   		for (;;) {
			current->state = TASK_INTERRUPTIBLE;
	   		if (!test_bit(MGA_IN_FLUSH,
				      &dev_priv->dispatch_status))
				break;
		   	atomic_inc(&dev->total_sleeps);
	      		schedule();
	      		if (signal_pending(current)) {
		   		ret = -EINTR; /* Can't restart */
				clear_bit(MGA_IN_FLUSH,
					  &dev_priv->dispatch_status);
		   		break;
			}
		}
		current->state = TASK_RUNNING;
   		remove_wait_queue(&dev_priv->flush_queue, &entry);
	}
   	return ret;
}
 
/* Must be called with the lock held */
void mga_reclaim_buffers(drm_device_t *dev, pid_t pid)
{
	drm_device_dma_t *dma = dev->dma;
	int		 i;
 
	if (!dma) return;
      	if(dev->dev_private == NULL) return;
	if(dma->buflist == NULL) return;
 
	DRM_DEBUG("buf_count=%d\n", dma->buf_count);
 
        mga_flush_queue(dev);
 
	for (i = 0; i < dma->buf_count; i++) {
	   	drm_buf_t *buf = dma->buflist[ i ];
	   	drm_mga_buf_priv_t *buf_priv = buf->dev_private;
 
		/* Only buffers that need to get reclaimed ever
		 * get set to free
		 */
		if (buf->pid == pid  && buf_priv) {
			if(buf_priv->my_freelist->age == MGA_BUF_USED)
		     		buf_priv->my_freelist->age = MGA_BUF_FREE;
		}
	}
}
 
int mga_lock(struct inode *inode, struct file *filp, unsigned int cmd,
	       unsigned long arg)
{
	drm_file_t	  *priv	  = filp->private_data;
	drm_device_t	  *dev	  = priv->dev;
	DECLARE_WAITQUEUE(entry, current);
	int		  ret	= 0;
	drm_lock_t	  lock;
 
	if (copy_from_user(&lock, (drm_lock_t *)arg, sizeof(lock)))
		return -EFAULT;
 
	if (lock.context == DRM_KERNEL_CONTEXT) {
		DRM_ERROR("Process %d using kernel context %d\n",
			  current->pid, lock.context);
		return -EINVAL;
	}
 
	if (lock.context < 0) return -EINVAL;
 
	/* Only one queue:
	 */
 
	if (!ret) {
		add_wait_queue(&dev->lock.lock_queue, &entry);
		for (;;) {
			current->state = TASK_INTERRUPTIBLE;
			if (!dev->lock.hw_lock) {
				/* Device has been unregistered */
				ret = -EINTR;
				break;
			}
			if (drm_lock_take(&dev->lock.hw_lock->lock,
					  lock.context)) {
				dev->lock.pid	    = current->pid;
				dev->lock.lock_time = jiffies;
				atomic_inc(&dev->total_locks);
				break;	/* Got lock */
			}
 
				/* Contention */
			atomic_inc(&dev->total_sleeps);
			schedule();
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				break;
			}
		}
		current->state = TASK_RUNNING;
		remove_wait_queue(&dev->lock.lock_queue, &entry);
	}
 
	if (!ret) {
		sigemptyset(&dev->sigmask);
		sigaddset(&dev->sigmask, SIGSTOP);
		sigaddset(&dev->sigmask, SIGTSTP);
		sigaddset(&dev->sigmask, SIGTTIN);
		sigaddset(&dev->sigmask, SIGTTOU);
		dev->sigdata.context = lock.context;
		dev->sigdata.lock    = dev->lock.hw_lock;
		block_all_signals(drm_notifier, &dev->sigdata, &dev->sigmask);
 
		if (lock.flags & _DRM_LOCK_QUIESCENT) {
		   DRM_DEBUG("_DRM_LOCK_QUIESCENT\n");
		   mga_flush_queue(dev);
		   mga_dma_quiescent(dev);
		}
	}
 
	if (ret) DRM_DEBUG("%d %s\n", lock.context,
			   ret ? "interrupted" : "has lock");
	return ret;
}
 
int mga_flush_ioctl(struct inode *inode, struct file *filp,
		    unsigned int cmd, unsigned long arg)
{
       	drm_file_t	  *priv	  = filp->private_data;
    	drm_device_t	  *dev	  = priv->dev;
	drm_lock_t	  lock;
      	drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private;
 
	if (copy_from_user(&lock, (drm_lock_t *)arg, sizeof(lock)))
		return -EFAULT;
 
	if(!_DRM_LOCK_IS_HELD(dev->lock.hw_lock->lock)) {
		DRM_ERROR("lock not held\n");
		return -EINVAL;
	}
 
   	if(lock.flags & _DRM_LOCK_FLUSH || lock.flags & _DRM_LOCK_FLUSH_ALL) {
		drm_mga_prim_buf_t *temp_buf;
 
		temp_buf = dev_priv->current_prim;
 
		if(temp_buf && temp_buf->num_dwords) {
			set_bit(MGA_BUF_FORCE_FIRE, &temp_buf->buffer_status);
			mga_advance_primary(dev);
 		}
		mga_dma_schedule(dev, 1);
	}
   	if(lock.flags & _DRM_LOCK_QUIESCENT) {
		mga_flush_queue(dev);
		mga_dma_quiescent(dev);
	}
 
    	return 0;
}
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.