URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [drivers/] [char/] [ipmi/] [ipmi_kcs_sm.c] - Rev 1774
Go to most recent revision | Compare with Previous | Blame | View Log
/* * ipmi_kcs_sm.c * * State machine for handling IPMI KCS interfaces. * * Author: MontaVista Software, Inc. * Corey Minyard <minyard@mvista.com> * source@mvista.com * * Copyright 2002 MontaVista Software Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * This state machine is taken from the state machine in the IPMI spec, * pretty much verbatim. If you have questions about the states, see * that document. */ #include <asm/io.h> #include <asm/string.h> /* Gets rid of memcpy warning */ #include "ipmi_kcs_sm.h" /* Set this if you want a printout of why the state machine was hosed when it gets hosed. */ #define DEBUG_HOSED_REASON /* Print the state machine state on entry every time. */ #undef DEBUG_STATE /* The states the KCS driver may be in. */ enum kcs_states { KCS_IDLE, /* The KCS interface is currently doing nothing. */ KCS_START_OP, /* We are starting an operation. The data is in the output buffer, but nothing has been done to the interface yet. This was added to the state machine in the spec to wait for the initial IBF. */ KCS_WAIT_WRITE_START, /* We have written a write cmd to the interface. */ KCS_WAIT_WRITE, /* We are writing bytes to the interface. */ KCS_WAIT_WRITE_END, /* We have written the write end cmd to the interface, and still need to write the last byte. */ KCS_WAIT_READ, /* We are waiting to read data from the interface. */ KCS_ERROR0, /* State to transition to the error handler, this was added to the state machine in the spec to be sure IBF was there. */ KCS_ERROR1, /* First stage error handler, wait for the interface to respond. */ KCS_ERROR2, /* The abort cmd has been written, wait for the interface to respond. */ KCS_ERROR3, /* We wrote some data to the interface, wait for it to switch to read mode. */ KCS_HOSED /* The hardware failed to follow the state machine. */ }; #define MAX_KCS_READ_SIZE 80 #define MAX_KCS_WRITE_SIZE 80 /* Timeouts in microseconds. */ #define IBF_RETRY_TIMEOUT 1000000 #define OBF_RETRY_TIMEOUT 1000000 #define MAX_ERROR_RETRIES 10 #define IPMI_ERR_MSG_TRUNCATED 0xc6 #define IPMI_ERR_UNSPECIFIED 0xff struct kcs_data { enum kcs_states state; unsigned int port; unsigned char *addr; unsigned char write_data[MAX_KCS_WRITE_SIZE]; int write_pos; int write_count; int orig_write_count; unsigned char read_data[MAX_KCS_READ_SIZE]; int read_pos; int truncated; unsigned int error_retries; long ibf_timeout; long obf_timeout; }; void init_kcs_data(struct kcs_data *kcs, unsigned int port, unsigned char *addr) { kcs->state = KCS_IDLE; kcs->port = port; kcs->addr = addr; kcs->write_pos = 0; kcs->write_count = 0; kcs->orig_write_count = 0; kcs->read_pos = 0; kcs->error_retries = 0; kcs->truncated = 0; kcs->ibf_timeout = IBF_RETRY_TIMEOUT; kcs->obf_timeout = OBF_RETRY_TIMEOUT; } /* Remember, init_one_kcs() insured port and addr can't both be set */ static inline unsigned char read_status(struct kcs_data *kcs) { if (kcs->port) return inb(kcs->port + 1); else return readb(kcs->addr + 1); } static inline unsigned char read_data(struct kcs_data *kcs) { if (kcs->port) return inb(kcs->port + 0); else return readb(kcs->addr + 0); } static inline void write_cmd(struct kcs_data *kcs, unsigned char data) { if (kcs->port) outb(data, kcs->port + 1); else writeb(data, kcs->addr + 1); } static inline void write_data(struct kcs_data *kcs, unsigned char data) { if (kcs->port) outb(data, kcs->port + 0); else writeb(data, kcs->addr + 0); } /* Control codes. */ #define KCS_GET_STATUS_ABORT 0x60 #define KCS_WRITE_START 0x61 #define KCS_WRITE_END 0x62 #define KCS_READ_BYTE 0x68 /* Status bits. */ #define GET_STATUS_STATE(status) (((status) >> 6) & 0x03) #define KCS_IDLE_STATE 0 #define KCS_READ_STATE 1 #define KCS_WRITE_STATE 2 #define KCS_ERROR_STATE 3 #define GET_STATUS_ATN(status) ((status) & 0x04) #define GET_STATUS_IBF(status) ((status) & 0x02) #define GET_STATUS_OBF(status) ((status) & 0x01) static inline void write_next_byte(struct kcs_data *kcs) { write_data(kcs, kcs->write_data[kcs->write_pos]); (kcs->write_pos)++; (kcs->write_count)--; } static inline void start_error_recovery(struct kcs_data *kcs, char *reason) { (kcs->error_retries)++; if (kcs->error_retries > MAX_ERROR_RETRIES) { #ifdef DEBUG_HOSED_REASON printk("ipmi_kcs_sm: kcs hosed: %s\n", reason); #endif kcs->state = KCS_HOSED; } else { kcs->state = KCS_ERROR0; } } static inline void read_next_byte(struct kcs_data *kcs) { if (kcs->read_pos >= MAX_KCS_READ_SIZE) { /* Throw the data away and mark it truncated. */ read_data(kcs); kcs->truncated = 1; } else { kcs->read_data[kcs->read_pos] = read_data(kcs); (kcs->read_pos)++; } write_data(kcs, KCS_READ_BYTE); } static inline int check_ibf(struct kcs_data *kcs, unsigned char status, long time) { if (GET_STATUS_IBF(status)) { kcs->ibf_timeout -= time; if (kcs->ibf_timeout < 0) { start_error_recovery(kcs, "IBF not ready in time"); kcs->ibf_timeout = IBF_RETRY_TIMEOUT; return 1; } return 0; } kcs->ibf_timeout = IBF_RETRY_TIMEOUT; return 1; } static inline int check_obf(struct kcs_data *kcs, unsigned char status, long time) { if (! GET_STATUS_OBF(status)) { kcs->obf_timeout -= time; if (kcs->obf_timeout < 0) { start_error_recovery(kcs, "OBF not ready in time"); return 1; } return 0; } kcs->obf_timeout = OBF_RETRY_TIMEOUT; return 1; } static void clear_obf(struct kcs_data *kcs, unsigned char status) { if (GET_STATUS_OBF(status)) read_data(kcs); } static void restart_kcs_transaction(struct kcs_data *kcs) { kcs->write_count = kcs->orig_write_count; kcs->write_pos = 0; kcs->read_pos = 0; kcs->state = KCS_WAIT_WRITE_START; kcs->ibf_timeout = IBF_RETRY_TIMEOUT; kcs->obf_timeout = OBF_RETRY_TIMEOUT; write_cmd(kcs, KCS_WRITE_START); } int start_kcs_transaction(struct kcs_data *kcs, char *data, unsigned int size) { if ((size < 2) || (size > MAX_KCS_WRITE_SIZE)) { return -1; } if ((kcs->state != KCS_IDLE) && (kcs->state != KCS_HOSED)) { return -2; } kcs->error_retries = 0; memcpy(kcs->write_data, data, size); kcs->write_count = size; kcs->orig_write_count = size; kcs->write_pos = 0; kcs->read_pos = 0; kcs->state = KCS_START_OP; kcs->ibf_timeout = IBF_RETRY_TIMEOUT; kcs->obf_timeout = OBF_RETRY_TIMEOUT; return 0; } int kcs_get_result(struct kcs_data *kcs, unsigned char *data, int length) { if (length < kcs->read_pos) { kcs->read_pos = length; kcs->truncated = 1; } memcpy(data, kcs->read_data, kcs->read_pos); if ((length >= 3) && (kcs->read_pos < 3)) { /* Guarantee that we return at least 3 bytes, with an error in the third byte if it is too short. */ data[2] = IPMI_ERR_UNSPECIFIED; kcs->read_pos = 3; } if (kcs->truncated) { /* Report a truncated error. We might overwrite another error, but that's too bad, the user needs to know it was truncated. */ data[2] = IPMI_ERR_MSG_TRUNCATED; kcs->truncated = 0; } return kcs->read_pos; } /* This implements the state machine defined in the IPMI manual, see that for details on how this works. Divide that flowchart into sections delimited by "Wait for IBF" and this will become clear. */ enum kcs_result kcs_event(struct kcs_data *kcs, long time) { unsigned char status; unsigned char state; status = read_status(kcs); #ifdef DEBUG_STATE printk(" State = %d, %x\n", kcs->state, status); #endif /* All states wait for ibf, so just do it here. */ if (!check_ibf(kcs, status, time)) return KCS_CALL_WITH_DELAY; /* Just about everything looks at the KCS state, so grab that, too. */ state = GET_STATUS_STATE(status); switch (kcs->state) { case KCS_IDLE: /* If there's and interrupt source, turn it off. */ clear_obf(kcs, status); if (GET_STATUS_ATN(status)) return KCS_ATTN; else return KCS_SM_IDLE; case KCS_START_OP: if (state != KCS_IDLE) { start_error_recovery(kcs, "State machine not idle at start"); break; } clear_obf(kcs, status); write_cmd(kcs, KCS_WRITE_START); kcs->state = KCS_WAIT_WRITE_START; break; case KCS_WAIT_WRITE_START: if (state != KCS_WRITE_STATE) { start_error_recovery( kcs, "Not in write state at write start"); break; } read_data(kcs); if (kcs->write_count == 1) { write_cmd(kcs, KCS_WRITE_END); kcs->state = KCS_WAIT_WRITE_END; } else { write_next_byte(kcs); kcs->state = KCS_WAIT_WRITE; } break; case KCS_WAIT_WRITE: if (state != KCS_WRITE_STATE) { start_error_recovery(kcs, "Not in write state for write"); break; } clear_obf(kcs, status); if (kcs->write_count == 1) { write_cmd(kcs, KCS_WRITE_END); kcs->state = KCS_WAIT_WRITE_END; } else { write_next_byte(kcs); } break; case KCS_WAIT_WRITE_END: if (state != KCS_WRITE_STATE) { start_error_recovery(kcs, "Not in write state for write end"); break; } clear_obf(kcs, status); write_next_byte(kcs); kcs->state = KCS_WAIT_READ; break; case KCS_WAIT_READ: if ((state != KCS_READ_STATE) && (state != KCS_IDLE_STATE)) { start_error_recovery( kcs, "Not in read or idle in read state"); break; } if (state == KCS_READ_STATE) { if (! check_obf(kcs, status, time)) return KCS_CALL_WITH_DELAY; read_next_byte(kcs); } else { /* We don't implement this exactly like the state machine in the spec. Some broken hardware does not write the final dummy byte to the read register. Thus obf will never go high here. We just go straight to idle, and we handle clearing out obf in idle state if it happens to come in. */ clear_obf(kcs, status); kcs->orig_write_count = 0; kcs->state = KCS_IDLE; return KCS_TRANSACTION_COMPLETE; } break; case KCS_ERROR0: clear_obf(kcs, status); write_cmd(kcs, KCS_GET_STATUS_ABORT); kcs->state = KCS_ERROR1; break; case KCS_ERROR1: clear_obf(kcs, status); write_data(kcs, 0); kcs->state = KCS_ERROR2; break; case KCS_ERROR2: if (state != KCS_READ_STATE) { start_error_recovery(kcs, "Not in read state for error2"); break; } if (! check_obf(kcs, status, time)) return KCS_CALL_WITH_DELAY; clear_obf(kcs, status); write_data(kcs, KCS_READ_BYTE); kcs->state = KCS_ERROR3; break; case KCS_ERROR3: if (state != KCS_IDLE_STATE) { start_error_recovery(kcs, "Not in idle state for error3"); break; } if (! check_obf(kcs, status, time)) return KCS_CALL_WITH_DELAY; clear_obf(kcs, status); if (kcs->orig_write_count) { restart_kcs_transaction(kcs); } else { kcs->state = KCS_IDLE; return KCS_TRANSACTION_COMPLETE; } break; case KCS_HOSED: break; } if (kcs->state == KCS_HOSED) { init_kcs_data(kcs, kcs->port, kcs->addr); return KCS_SM_HOSED; } return KCS_CALL_WITHOUT_DELAY; } int kcs_size(void) { return sizeof(struct kcs_data); }
Go to most recent revision | Compare with Previous | Blame | View Log