OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [drivers/] [char/] [rtc.c] - Rev 1774

Go to most recent revision | Compare with Previous | Blame | View Log

/*
 *	Real Time Clock interface for Linux	
 *
 *	Copyright (C) 1996 Paul Gortmaker
 *
 *	This driver allows use of the real time clock (built into
 *	nearly all computers) from user space. It exports the /dev/rtc
 *	interface supporting various ioctl() and also the
 *	/proc/driver/rtc pseudo-file for status information.
 *
 *	The ioctls can be used to set the interrupt behaviour and
 *	generation rate from the RTC via IRQ 8. Then the /dev/rtc
 *	interface can be used to make use of these timer interrupts,
 *	be they interval or alarm based.
 *
 *	The /dev/rtc interface will block on reads until an interrupt
 *	has been received. If a RTC interrupt has already happened,
 *	it will output an unsigned long and then block. The output value
 *	contains the interrupt status in the low byte and the number of
 *	interrupts since the last read in the remaining high bytes. The 
 *	/dev/rtc interface can also be used with the select(2) call.
 *
 *	This program is free software; you can redistribute it and/or
 *	modify it under the terms of the GNU General Public License
 *	as published by the Free Software Foundation; either version
 *	2 of the License, or (at your option) any later version.
 *
 *	Based on other minimal char device drivers, like Alan's
 *	watchdog, Ted's random, etc. etc.
 *
 *	1.07	Paul Gortmaker.
 *	1.08	Miquel van Smoorenburg: disallow certain things on the
 *		DEC Alpha as the CMOS clock is also used for other things.
 *	1.09	Nikita Schmidt: epoch support and some Alpha cleanup.
 *	1.09a	Pete Zaitcev: Sun SPARC
 *	1.09b	Jeff Garzik: Modularize, init cleanup
 *	1.09c	Jeff Garzik: SMP cleanup
 *	1.10	Paul Barton-Davis: add support for async I/O
 *	1.10a	Andrea Arcangeli: Alpha updates
 *	1.10b	Andrew Morton: SMP lock fix
 *	1.10c	Cesar Barros: SMP locking fixes and cleanup
 *	1.10d	Paul Gortmaker: delete paranoia check in rtc_exit
 *	1.10e	Maciej W. Rozycki: Handle DECstation's year weirdness.
 *	1.10f	Maciej W. Rozycki: Handle memory-mapped chips properly.
 */
 
#define RTC_VERSION		"1.10f"
 
/*
 *	Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
 *	interrupts disabled. Due to the index-port/data-port (0x70/0x71)
 *	design of the RTC, we don't want two different things trying to
 *	get to it at once. (e.g. the periodic 11 min sync from time.c vs.
 *	this driver.)
 */
 
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/miscdevice.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/mc146818rtc.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/spinlock.h>
#include <linux/sysctl.h>
 
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/system.h>
 
#ifdef __sparc__
#include <linux/pci.h>
#include <asm/ebus.h>
#ifdef __sparc_v9__
#include <asm/isa.h>
#endif
 
static unsigned long rtc_port;
static int rtc_irq = PCI_IRQ_NONE;
#endif
 
#if RTC_IRQ
static int rtc_has_irq = 1;
#endif
 
/*
 *	We sponge a minor off of the misc major. No need slurping
 *	up another valuable major dev number for this. If you add
 *	an ioctl, make sure you don't conflict with SPARC's RTC
 *	ioctls.
 */
 
static struct fasync_struct *rtc_async_queue;
 
static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
 
#if RTC_IRQ
static struct timer_list rtc_irq_timer;
#endif
 
static ssize_t rtc_read(struct file *file, char *buf,
			size_t count, loff_t *ppos);
 
static int rtc_ioctl(struct inode *inode, struct file *file,
		     unsigned int cmd, unsigned long arg);
 
#if RTC_IRQ
static unsigned int rtc_poll(struct file *file, poll_table *wait);
#endif
 
static void get_rtc_time (struct rtc_time *rtc_tm);
static void get_rtc_alm_time (struct rtc_time *alm_tm);
#if RTC_IRQ
static void rtc_dropped_irq(unsigned long data);
 
static void set_rtc_irq_bit(unsigned char bit);
static void mask_rtc_irq_bit(unsigned char bit);
#endif
 
static inline unsigned char rtc_is_updating(void);
 
static int rtc_read_proc(char *page, char **start, off_t off,
                         int count, int *eof, void *data);
 
/*
 *	Bits in rtc_status. (6 bits of room for future expansion)
 */
 
#define RTC_IS_OPEN		0x01	/* means /dev/rtc is in use	*/
#define RTC_TIMER_ON		0x02	/* missed irq timer active	*/
 
/*
 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
 * protected by the big kernel lock. However, ioctl can still disable the timer
 * in rtc_status and then with del_timer after the interrupt has read
 * rtc_status but before mod_timer is called, which would then reenable the
 * timer (but you would need to have an awful timing before you'd trip on it)
 */
static unsigned long rtc_status = 0;	/* bitmapped status byte.	*/
static unsigned long rtc_freq = 0;	/* Current periodic IRQ rate	*/
static unsigned long rtc_irq_data = 0;	/* our output to the world	*/
static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
 
/*
 *	If this driver ever becomes modularised, it will be really nice
 *	to make the epoch retain its value across module reload...
 */
 
static unsigned long epoch = 1900;	/* year corresponding to 0x00	*/
 
static const unsigned char days_in_mo[] = 
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
 
#if RTC_IRQ
/*
 *	A very tiny interrupt handler. It runs with SA_INTERRUPT set,
 *	but there is possibility of conflicting with the set_rtc_mmss()
 *	call (the rtc irq and the timer irq can easily run at the same
 *	time in two different CPUs). So we need to serializes
 *	accesses to the chip with the rtc_lock spinlock that each
 *	architecture should implement in the timer code.
 *	(See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
 */
 
static void rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	/*
	 *	Can be an alarm interrupt, update complete interrupt,
	 *	or a periodic interrupt. We store the status in the
	 *	low byte and the number of interrupts received since
	 *	the last read in the remainder of rtc_irq_data.
	 */
 
	spin_lock (&rtc_lock);
	rtc_irq_data += 0x100;
	rtc_irq_data &= ~0xff;
	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
 
	if (rtc_status & RTC_TIMER_ON)
		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
 
	spin_unlock (&rtc_lock);
 
	/* Now do the rest of the actions */
	wake_up_interruptible(&rtc_wait);	
 
	kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
}
#endif
 
/*
 * sysctl-tuning infrastructure.
 */
static ctl_table rtc_table[] = {
    { 1, "max-user-freq", &rtc_max_user_freq, sizeof(int), 0644, NULL,
      &proc_dointvec, NULL, },
    { 0, }
};
 
static ctl_table rtc_root[] = {
    { 1, "rtc", NULL, 0, 0555, rtc_table, },
    { 0, }
};
 
static ctl_table dev_root[] = {
    { CTL_DEV, "dev", NULL, 0, 0555, rtc_root, },
    { 0, }
};
 
static struct ctl_table_header *sysctl_header;
 
static int __init init_sysctl(void)
{
    sysctl_header = register_sysctl_table(dev_root, 0);
    return 0;
}
 
static void __exit cleanup_sysctl(void)
{
    unregister_sysctl_table(sysctl_header);
}
 
/*
 *	Now all the various file operations that we export.
 */
 
static ssize_t rtc_read(struct file *file, char *buf,
			size_t count, loff_t *ppos)
{
#if !RTC_IRQ
	return -EIO;
#else
	DECLARE_WAITQUEUE(wait, current);
	unsigned long data;
	ssize_t retval;
 
	if (rtc_has_irq == 0)
		return -EIO;
 
	/*
	 * Historically this function used to assume that sizeof(unsigned long)
	 * is the same in userspace and kernelspace.  This lead to problems
	 * for configurations with multiple ABIs such a the MIPS o32 and 64
	 * ABIs supported on the same kernel.  So now we support read of both
	 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
	 * userspace ABI.
	 */
	if (count != sizeof(unsigned int) && count !=  sizeof(unsigned long))
		return -EINVAL;
 
	add_wait_queue(&rtc_wait, &wait);
 
	do {
		__set_current_state(TASK_INTERRUPTIBLE);
 
		/* First make it right. Then make it fast. Putting this whole
		 * block within the parentheses of a while would be too
		 * confusing. And no, xchg() is not the answer. */
		spin_lock_irq (&rtc_lock);
		data = rtc_irq_data;
		rtc_irq_data = 0;
		spin_unlock_irq (&rtc_lock);
 
		if (data != 0)
			break;
 
		if (file->f_flags & O_NONBLOCK) {
			retval = -EAGAIN;
			goto out;
		}
		if (signal_pending(current)) {
			retval = -ERESTARTSYS;
			goto out;
		}
		schedule();
	} while (1);
 
	if (count == sizeof(unsigned int))
		retval = put_user(data, (unsigned int *)buf); 
	else
		retval = put_user(data, (unsigned long *)buf);
	if (!retval)
		retval = count;
 out:
	current->state = TASK_RUNNING;
	remove_wait_queue(&rtc_wait, &wait);
 
	return retval;
#endif
}
 
static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
		     unsigned long arg)
{
	struct rtc_time wtime; 
 
#if RTC_IRQ
	if (rtc_has_irq == 0) {
		switch (cmd) {
		case RTC_AIE_OFF:
		case RTC_AIE_ON:
		case RTC_PIE_OFF:
		case RTC_PIE_ON:
		case RTC_UIE_OFF:
		case RTC_UIE_ON:
		case RTC_IRQP_READ:
		case RTC_IRQP_SET:
			return -EINVAL;
		};
	}
#endif
 
	switch (cmd) {
#if RTC_IRQ
	case RTC_AIE_OFF:	/* Mask alarm int. enab. bit	*/
	{
		mask_rtc_irq_bit(RTC_AIE);
		return 0;
	}
	case RTC_AIE_ON:	/* Allow alarm interrupts.	*/
	{
		set_rtc_irq_bit(RTC_AIE);
		return 0;
	}
	case RTC_PIE_OFF:	/* Mask periodic int. enab. bit	*/
	{
		mask_rtc_irq_bit(RTC_PIE);
		if (rtc_status & RTC_TIMER_ON) {
			spin_lock_irq (&rtc_lock);
			rtc_status &= ~RTC_TIMER_ON;
			del_timer(&rtc_irq_timer);
			spin_unlock_irq (&rtc_lock);
		}
		return 0;
	}
	case RTC_PIE_ON:	/* Allow periodic ints		*/
	{
 
		/*
		 * We don't really want Joe User enabling more
		 * than 64Hz of interrupts on a multi-user machine.
		 */
		if ((rtc_freq > rtc_max_user_freq) && 
		    (!capable(CAP_SYS_RESOURCE)))
			return -EACCES;
 
		if (!(rtc_status & RTC_TIMER_ON)) {
			spin_lock_irq (&rtc_lock);
			rtc_irq_timer.expires = jiffies + HZ/rtc_freq + 2*HZ/100;
			add_timer(&rtc_irq_timer);
			rtc_status |= RTC_TIMER_ON;
			spin_unlock_irq (&rtc_lock);
		}
		set_rtc_irq_bit(RTC_PIE);
		return 0;
	}
	case RTC_UIE_OFF:	/* Mask ints from RTC updates.	*/
	{
		mask_rtc_irq_bit(RTC_UIE);
		return 0;
	}
	case RTC_UIE_ON:	/* Allow ints for RTC updates.	*/
	{
		set_rtc_irq_bit(RTC_UIE);
		return 0;
	}
#endif
	case RTC_ALM_READ:	/* Read the present alarm time */
	{
		/*
		 * This returns a struct rtc_time. Reading >= 0xc0
		 * means "don't care" or "match all". Only the tm_hour,
		 * tm_min, and tm_sec values are filled in.
		 */
		memset(&wtime, 0, sizeof(struct rtc_time));
		get_rtc_alm_time(&wtime);
		break; 
	}
	case RTC_ALM_SET:	/* Store a time into the alarm */
	{
		/*
		 * This expects a struct rtc_time. Writing 0xff means
		 * "don't care" or "match all". Only the tm_hour,
		 * tm_min and tm_sec are used.
		 */
		unsigned char hrs, min, sec;
		struct rtc_time alm_tm;
 
		if (copy_from_user(&alm_tm, (struct rtc_time*)arg,
				   sizeof(struct rtc_time)))
			return -EFAULT;
 
		hrs = alm_tm.tm_hour;
		min = alm_tm.tm_min;
		sec = alm_tm.tm_sec;
 
		spin_lock_irq(&rtc_lock);
		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
		    RTC_ALWAYS_BCD)
		{
			if (sec < 60) BIN_TO_BCD(sec);
			else sec = 0xff;
 
			if (min < 60) BIN_TO_BCD(min);
			else min = 0xff;
 
			if (hrs < 24) BIN_TO_BCD(hrs);
			else hrs = 0xff;
		}
		CMOS_WRITE(hrs, RTC_HOURS_ALARM);
		CMOS_WRITE(min, RTC_MINUTES_ALARM);
		CMOS_WRITE(sec, RTC_SECONDS_ALARM);
		spin_unlock_irq(&rtc_lock);
 
		return 0;
	}
	case RTC_RD_TIME:	/* Read the time/date from RTC	*/
	{
		memset(&wtime, 0, sizeof(struct rtc_time));
		get_rtc_time(&wtime);
		break;
	}
	case RTC_SET_TIME:	/* Set the RTC */
	{
		struct rtc_time rtc_tm;
		unsigned char mon, day, hrs, min, sec, leap_yr;
		unsigned char save_control, save_freq_select;
		unsigned int yrs;
#ifdef CONFIG_DECSTATION
		unsigned int real_yrs;
#endif
 
		if (!capable(CAP_SYS_TIME))
			return -EACCES;
 
		if (copy_from_user(&rtc_tm, (struct rtc_time*)arg,
				   sizeof(struct rtc_time)))
			return -EFAULT;
 
		yrs = rtc_tm.tm_year + 1900;
		mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
		day = rtc_tm.tm_mday;
		hrs = rtc_tm.tm_hour;
		min = rtc_tm.tm_min;
		sec = rtc_tm.tm_sec;
 
		if (yrs < 1970)
			return -EINVAL;
 
		leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
 
		if ((mon > 12) || (day == 0))
			return -EINVAL;
 
		if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
			return -EINVAL;
 
		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
			return -EINVAL;
 
		if ((yrs -= epoch) > 255)    /* They are unsigned */
			return -EINVAL;
 
		spin_lock_irq(&rtc_lock);
#ifdef CONFIG_DECSTATION
		real_yrs = yrs;
		yrs = 72;
 
		/*
		 * We want to keep the year set to 73 until March
		 * for non-leap years, so that Feb, 29th is handled
		 * correctly.
		 */
		if (!leap_yr && mon < 3) {
			real_yrs--;
			yrs = 73;
		}
#endif
		/* These limits and adjustments are independant of
		 * whether the chip is in binary mode or not.
		 */
		if (yrs > 169) {
			spin_unlock_irq(&rtc_lock);
			return -EINVAL;
		}
		if (yrs >= 100)
			yrs -= 100;
 
		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
		    || RTC_ALWAYS_BCD) {
			BIN_TO_BCD(sec);
			BIN_TO_BCD(min);
			BIN_TO_BCD(hrs);
			BIN_TO_BCD(day);
			BIN_TO_BCD(mon);
			BIN_TO_BCD(yrs);
		}
 
		save_control = CMOS_READ(RTC_CONTROL);
		CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
		save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
		CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
 
#ifdef CONFIG_DECSTATION
		CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
#endif
		CMOS_WRITE(yrs, RTC_YEAR);
		CMOS_WRITE(mon, RTC_MONTH);
		CMOS_WRITE(day, RTC_DAY_OF_MONTH);
		CMOS_WRITE(hrs, RTC_HOURS);
		CMOS_WRITE(min, RTC_MINUTES);
		CMOS_WRITE(sec, RTC_SECONDS);
 
		CMOS_WRITE(save_control, RTC_CONTROL);
		CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
 
		spin_unlock_irq(&rtc_lock);
		return 0;
	}
#if RTC_IRQ
	case RTC_IRQP_READ:	/* Read the periodic IRQ rate.	*/
	{
		return put_user(rtc_freq, (unsigned long *)arg);
	}
	case RTC_IRQP_SET:	/* Set periodic IRQ rate.	*/
	{
		int tmp = 0;
		unsigned char val;
 
		/* 
		 * The max we can do is 8192Hz.
		 */
		if ((arg < 2) || (arg > 8192))
			return -EINVAL;
		/*
		 * We don't really want Joe User generating more
		 * than 64Hz of interrupts on a multi-user machine.
		 */
		if ((arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE)))
			return -EACCES;
 
		while (arg > (1<<tmp))
			tmp++;
 
		/*
		 * Check that the input was really a power of 2.
		 */
		if (arg != (1<<tmp))
			return -EINVAL;
 
		spin_lock_irq(&rtc_lock);
		rtc_freq = arg;
 
		val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
		val |= (16 - tmp);
		CMOS_WRITE(val, RTC_FREQ_SELECT);
		spin_unlock_irq(&rtc_lock);
		return 0;
	}
#endif
	case RTC_EPOCH_READ:	/* Read the epoch.	*/
	{
		return put_user (epoch, (unsigned long *)arg);
	}
	case RTC_EPOCH_SET:	/* Set the epoch.	*/
	{
		/* 
		 * There were no RTC clocks before 1900.
		 */
		if (arg < 1900)
			return -EINVAL;
 
		if (!capable(CAP_SYS_TIME))
			return -EACCES;
 
		epoch = arg;
		return 0;
	}
	default:
		return -ENOTTY;
	}
	return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
}
 
/*
 *	We enforce only one user at a time here with the open/close.
 *	Also clear the previous interrupt data on an open, and clean
 *	up things on a close.
 */
 
/* We use rtc_lock to protect against concurrent opens. So the BKL is not
 * needed here. Or anywhere else in this driver. */
static int rtc_open(struct inode *inode, struct file *file)
{
	spin_lock_irq (&rtc_lock);
 
	if(rtc_status & RTC_IS_OPEN)
		goto out_busy;
 
	rtc_status |= RTC_IS_OPEN;
 
	rtc_irq_data = 0;
	spin_unlock_irq (&rtc_lock);
	return 0;
 
out_busy:
	spin_unlock_irq (&rtc_lock);
	return -EBUSY;
}
 
static int rtc_fasync (int fd, struct file *filp, int on)
 
{
	return fasync_helper (fd, filp, on, &rtc_async_queue);
}
 
static int rtc_release(struct inode *inode, struct file *file)
{
#if RTC_IRQ
	unsigned char tmp;
 
	if (rtc_has_irq == 0)
		goto no_irq;
 
	/*
	 * Turn off all interrupts once the device is no longer
	 * in use, and clear the data.
	 */
 
	spin_lock_irq(&rtc_lock);
	tmp = CMOS_READ(RTC_CONTROL);
	tmp &=  ~RTC_PIE;
	tmp &=  ~RTC_AIE;
	tmp &=  ~RTC_UIE;
	CMOS_WRITE(tmp, RTC_CONTROL);
	CMOS_READ(RTC_INTR_FLAGS);
 
	if (rtc_status & RTC_TIMER_ON) {
		rtc_status &= ~RTC_TIMER_ON;
		del_timer(&rtc_irq_timer);
	}
	spin_unlock_irq(&rtc_lock);
 
	if (file->f_flags & FASYNC) {
		rtc_fasync (-1, file, 0);
	}
no_irq:
#endif
 
	spin_lock_irq (&rtc_lock);
	rtc_irq_data = 0;
	spin_unlock_irq (&rtc_lock);
 
	/* No need for locking -- nobody else can do anything until this rmw is
	 * committed, and no timer is running. */
	rtc_status &= ~RTC_IS_OPEN;
	return 0;
}
 
#if RTC_IRQ
/* Called without the kernel lock - fine */
static unsigned int rtc_poll(struct file *file, poll_table *wait)
{
	unsigned long l;
 
	if (rtc_has_irq == 0)
		return 0;
 
	poll_wait(file, &rtc_wait, wait);
 
	spin_lock_irq (&rtc_lock);
	l = rtc_irq_data;
	spin_unlock_irq (&rtc_lock);
 
	if (l != 0)
		return POLLIN | POLLRDNORM;
	return 0;
}
#endif
 
/*
 *	The various file operations we support.
 */
 
static struct file_operations rtc_fops = {
	owner:		THIS_MODULE,
	llseek:		no_llseek,
	read:		rtc_read,
#if RTC_IRQ
	poll:		rtc_poll,
#endif
	ioctl:		rtc_ioctl,
	open:		rtc_open,
	release:	rtc_release,
	fasync:		rtc_fasync,
};
 
static struct miscdevice rtc_dev=
{
	RTC_MINOR,
	"rtc",
	&rtc_fops
};
 
static int __init rtc_init(void)
{
#if defined(__alpha__) || defined(__mips__)
	unsigned int year, ctrl;
	unsigned long uip_watchdog;
	char *guess = NULL;
#endif
#ifdef __sparc__
	struct linux_ebus *ebus;
	struct linux_ebus_device *edev;
#ifdef __sparc_v9__
	struct isa_bridge *isa_br;
	struct isa_device *isa_dev;
#endif
#endif
#ifndef __sparc__
	void *r;
#endif
 
#ifdef __sparc__
	for_each_ebus(ebus) {
		for_each_ebusdev(edev, ebus) {
			if(strcmp(edev->prom_name, "rtc") == 0) {
				rtc_port = edev->resource[0].start;
				rtc_irq = edev->irqs[0];
				goto found;
			}
		}
	}
#ifdef __sparc_v9__
	for_each_isa(isa_br) {
		for_each_isadev(isa_dev, isa_br) {
			if (strcmp(isa_dev->prom_name, "rtc") == 0) {
				rtc_port = isa_dev->resource.start;
				rtc_irq = isa_dev->irq;
				goto found;
			}
		}
	}
#endif
	printk(KERN_ERR "rtc_init: no PC rtc found\n");
	return -EIO;
 
found:
	if (rtc_irq == PCI_IRQ_NONE) {
		rtc_has_irq = 0;
		goto no_irq;
	}
 
	/*
	 * XXX Interrupt pin #7 in Espresso is shared between RTC and
	 * PCI Slot 2 INTA# (and some INTx# in Slot 1). SA_INTERRUPT here
	 * is asking for trouble with add-on boards. Change to SA_SHIRQ.
	 */
	if (request_irq(rtc_irq, rtc_interrupt, SA_INTERRUPT, "rtc", (void *)&rtc_port)) {
		/*
		 * Standard way for sparc to print irq's is to use
		 * __irq_itoa(). I think for EBus it's ok to use %d.
		 */
		printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
		return -EIO;
	}
no_irq:
#else
	if (RTC_IOMAPPED)
		r = request_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc");
	else
		r = request_mem_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc");
	if (!r) {
		printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
		       (long)(RTC_PORT(0)));
		return -EIO;
	}
 
#if RTC_IRQ
	if(request_irq(RTC_IRQ, rtc_interrupt, SA_INTERRUPT, "rtc", NULL)) {
		/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
		printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
		if (RTC_IOMAPPED)
			release_region(RTC_PORT(0), RTC_IO_EXTENT);
		else
			release_mem_region(RTC_PORT(0), RTC_IO_EXTENT);
		return -EIO;
	}
#endif
 
#endif /* __sparc__ vs. others */
 
	misc_register(&rtc_dev);
	create_proc_read_entry ("driver/rtc", 0, 0, rtc_read_proc, NULL);
 
#if defined(__alpha__) || defined(__mips__)
	rtc_freq = HZ;
 
	/* Each operating system on an Alpha uses its own epoch.
	   Let's try to guess which one we are using now. */
 
	uip_watchdog = jiffies;
	if (rtc_is_updating() != 0)
		while (jiffies - uip_watchdog < 2*HZ/100) { 
			barrier();
			cpu_relax();
		}
 
	spin_lock_irq(&rtc_lock);
	year = CMOS_READ(RTC_YEAR);
	ctrl = CMOS_READ(RTC_CONTROL);
	spin_unlock_irq(&rtc_lock);
 
	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
		BCD_TO_BIN(year);       /* This should never happen... */
 
	if (year < 20) {
		epoch = 2000;
		guess = "SRM (post-2000)";
	} else if (year >= 20 && year < 48) {
		epoch = 1980;
		guess = "ARC console";
	} else if (year >= 48 && year < 72) {
		epoch = 1952;
		guess = "Digital UNIX";
#if defined(__mips__)
	} else if (year >= 72 && year < 74) {
		epoch = 2000;
		guess = "Digital DECstation";
#else
	} else if (year >= 70) {
		epoch = 1900;
		guess = "Standard PC (1900)";
#endif
	}
	if (guess)
		printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", guess, epoch);
#endif
#if RTC_IRQ
	if (rtc_has_irq == 0)
		goto no_irq2;
 
	init_timer(&rtc_irq_timer);
	rtc_irq_timer.function = rtc_dropped_irq;
	spin_lock_irq(&rtc_lock);
	/* Initialize periodic freq. to CMOS reset default, which is 1024Hz */
	CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT);
	spin_unlock_irq(&rtc_lock);
	rtc_freq = 1024;
no_irq2:
#endif
 
	(void) init_sysctl();
 
	printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
 
	return 0;
}
 
static void __exit rtc_exit (void)
{
	cleanup_sysctl();
	remove_proc_entry ("driver/rtc", NULL);
	misc_deregister(&rtc_dev);
 
#ifdef __sparc__
	if (rtc_has_irq)
		free_irq (rtc_irq, &rtc_port);
#else
	if (RTC_IOMAPPED)
		release_region(RTC_PORT(0), RTC_IO_EXTENT);
	else
		release_mem_region(RTC_PORT(0), RTC_IO_EXTENT);
#if RTC_IRQ
	if (rtc_has_irq)
		free_irq (RTC_IRQ, NULL);
#endif
#endif /* __sparc__ */
}
 
module_init(rtc_init);
module_exit(rtc_exit);
EXPORT_NO_SYMBOLS;
 
#if RTC_IRQ
/*
 * 	At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
 *	(usually during an IDE disk interrupt, with IRQ unmasking off)
 *	Since the interrupt handler doesn't get called, the IRQ status
 *	byte doesn't get read, and the RTC stops generating interrupts.
 *	A timer is set, and will call this function if/when that happens.
 *	To get it out of this stalled state, we just read the status.
 *	At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
 *	(You *really* shouldn't be trying to use a non-realtime system 
 *	for something that requires a steady > 1KHz signal anyways.)
 */
 
static void rtc_dropped_irq(unsigned long data)
{
	unsigned long freq;
 
	spin_lock_irq (&rtc_lock);
 
	/* Just in case someone disabled the timer from behind our back... */
	if (rtc_status & RTC_TIMER_ON)
		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
 
	rtc_irq_data += ((rtc_freq/HZ)<<8);
	rtc_irq_data &= ~0xff;
	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);	/* restart */
 
	freq = rtc_freq;
 
	spin_unlock_irq(&rtc_lock);
 
	printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq);
 
	/* Now we have new data */
	wake_up_interruptible(&rtc_wait);
 
	kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
}
#endif
 
/*
 *	Info exported via "/proc/driver/rtc".
 */
 
static int rtc_proc_output (char *buf)
{
#define YN(bit) ((ctrl & bit) ? "yes" : "no")
#define NY(bit) ((ctrl & bit) ? "no" : "yes")
	char *p;
	struct rtc_time tm;
	unsigned char batt, ctrl;
	unsigned long freq;
 
	spin_lock_irq(&rtc_lock);
	batt = CMOS_READ(RTC_VALID) & RTC_VRT;
	ctrl = CMOS_READ(RTC_CONTROL);
	freq = rtc_freq;
	spin_unlock_irq(&rtc_lock);
 
	p = buf;
 
	get_rtc_time(&tm);
 
	/*
	 * There is no way to tell if the luser has the RTC set for local
	 * time or for Universal Standard Time (GMT). Probably local though.
	 */
	p += sprintf(p,
		     "rtc_time\t: %02d:%02d:%02d\n"
		     "rtc_date\t: %04d-%02d-%02d\n"
	 	     "rtc_epoch\t: %04lu\n",
		     tm.tm_hour, tm.tm_min, tm.tm_sec,
		     tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
 
	get_rtc_alm_time(&tm);
 
	/*
	 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
	 * match any value for that particular field. Values that are
	 * greater than a valid time, but less than 0xc0 shouldn't appear.
	 */
	p += sprintf(p, "alarm\t\t: ");
	if (tm.tm_hour <= 24)
		p += sprintf(p, "%02d:", tm.tm_hour);
	else
		p += sprintf(p, "**:");
 
	if (tm.tm_min <= 59)
		p += sprintf(p, "%02d:", tm.tm_min);
	else
		p += sprintf(p, "**:");
 
	if (tm.tm_sec <= 59)
		p += sprintf(p, "%02d\n", tm.tm_sec);
	else
		p += sprintf(p, "**\n");
 
	p += sprintf(p,
		     "DST_enable\t: %s\n"
		     "BCD\t\t: %s\n"
		     "24hr\t\t: %s\n"
		     "square_wave\t: %s\n"
		     "alarm_IRQ\t: %s\n"
		     "update_IRQ\t: %s\n"
		     "periodic_IRQ\t: %s\n"
		     "periodic_freq\t: %ld\n"
		     "batt_status\t: %s\n",
		     YN(RTC_DST_EN),
		     NY(RTC_DM_BINARY),
		     YN(RTC_24H),
		     YN(RTC_SQWE),
		     YN(RTC_AIE),
		     YN(RTC_UIE),
		     YN(RTC_PIE),
		     freq,
		     batt ? "okay" : "dead");
 
	return  p - buf;
#undef YN
#undef NY
}
 
static int rtc_read_proc(char *page, char **start, off_t off,
                         int count, int *eof, void *data)
{
        int len = rtc_proc_output (page);
        if (len <= off+count) *eof = 1;
        *start = page + off;
        len -= off;
        if (len>count) len = count;
        if (len<0) len = 0;
        return len;
}
 
/*
 * Returns true if a clock update is in progress
 */
/* FIXME shouldn't this be above rtc_init to make it fully inlined? */
static inline unsigned char rtc_is_updating(void)
{
	unsigned char uip;
 
	spin_lock_irq(&rtc_lock);
	uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
	spin_unlock_irq(&rtc_lock);
	return uip;
}
 
static void get_rtc_time(struct rtc_time *rtc_tm)
{
	unsigned long uip_watchdog = jiffies;
	unsigned char ctrl;
#ifdef CONFIG_DECSTATION
	unsigned int real_year;
#endif
 
	/*
	 * read RTC once any update in progress is done. The update
	 * can take just over 2ms. We wait 10 to 20ms. There is no need to
	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
	 * If you need to know *exactly* when a second has started, enable
	 * periodic update complete interrupts, (via ioctl) and then 
	 * immediately read /dev/rtc which will block until you get the IRQ.
	 * Once the read clears, read the RTC time (again via ioctl). Easy.
	 */
 
	if (rtc_is_updating() != 0)
		while (jiffies - uip_watchdog < 2*HZ/100) {
			barrier();
			cpu_relax();
		}
 
	/*
	 * Only the values that we read from the RTC are set. We leave
	 * tm_wday, tm_yday and tm_isdst untouched. Even though the
	 * RTC has RTC_DAY_OF_WEEK, we ignore it, as it is only updated
	 * by the RTC when initially set to a non-zero value.
	 */
	spin_lock_irq(&rtc_lock);
	rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
	rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
	rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
	rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
	rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
	rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
#ifdef CONFIG_DECSTATION
	real_year = CMOS_READ(RTC_DEC_YEAR);
#endif
	ctrl = CMOS_READ(RTC_CONTROL);
	spin_unlock_irq(&rtc_lock);
 
	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
	{
		BCD_TO_BIN(rtc_tm->tm_sec);
		BCD_TO_BIN(rtc_tm->tm_min);
		BCD_TO_BIN(rtc_tm->tm_hour);
		BCD_TO_BIN(rtc_tm->tm_mday);
		BCD_TO_BIN(rtc_tm->tm_mon);
		BCD_TO_BIN(rtc_tm->tm_year);
	}
 
#ifdef CONFIG_DECSTATION
	rtc_tm->tm_year += real_year - 72;
#endif
 
	/*
	 * Account for differences between how the RTC uses the values
	 * and how they are defined in a struct rtc_time;
	 */
	if ((rtc_tm->tm_year += (epoch - 1900)) <= 69)
		rtc_tm->tm_year += 100;
 
	rtc_tm->tm_mon--;
}
 
static void get_rtc_alm_time(struct rtc_time *alm_tm)
{
	unsigned char ctrl;
 
	/*
	 * Only the values that we read from the RTC are set. That
	 * means only tm_hour, tm_min, and tm_sec.
	 */
	spin_lock_irq(&rtc_lock);
	alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
	alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
	alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
	ctrl = CMOS_READ(RTC_CONTROL);
	spin_unlock_irq(&rtc_lock);
 
	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
	{
		BCD_TO_BIN(alm_tm->tm_sec);
		BCD_TO_BIN(alm_tm->tm_min);
		BCD_TO_BIN(alm_tm->tm_hour);
	}
}
 
#if RTC_IRQ
/*
 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
 * Rumour has it that if you frob the interrupt enable/disable
 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
 * ensure you actually start getting interrupts. Probably for
 * compatibility with older/broken chipset RTC implementations.
 * We also clear out any old irq data after an ioctl() that
 * meddles with the interrupt enable/disable bits.
 */
 
static void mask_rtc_irq_bit(unsigned char bit)
{
	unsigned char val;
 
	spin_lock_irq(&rtc_lock);
	val = CMOS_READ(RTC_CONTROL);
	val &=  ~bit;
	CMOS_WRITE(val, RTC_CONTROL);
	CMOS_READ(RTC_INTR_FLAGS);
 
	rtc_irq_data = 0;
	spin_unlock_irq(&rtc_lock);
}
 
static void set_rtc_irq_bit(unsigned char bit)
{
	unsigned char val;
 
	spin_lock_irq(&rtc_lock);
	val = CMOS_READ(RTC_CONTROL);
	val |= bit;
	CMOS_WRITE(val, RTC_CONTROL);
	CMOS_READ(RTC_INTR_FLAGS);
 
	rtc_irq_data = 0;
	spin_unlock_irq(&rtc_lock);
}
#endif
 
MODULE_AUTHOR("Paul Gortmaker");
MODULE_LICENSE("GPL");
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.