URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [drivers/] [char/] [vac-serial.c] - Rev 1765
Compare with Previous | Blame | View Log
/* * vacserial.c: VAC UART serial driver * This code stealed and adopted from linux/drivers/char/serial.c * See that for author info * * Copyright (C) 1998 Gleb Raiko & Vladimir Roganov */ #undef SERIAL_PARANOIA_CHECK #define CONFIG_SERIAL_NOPAUSE_IO #define SERIAL_DO_RESTART #ifndef CONFIG_SERIAL_SHARE_IRQ #define CONFIG_SERIAL_SHARE_IRQ #endif /* Set of debugging defines */ #undef SERIAL_DEBUG_INTR #undef SERIAL_DEBUG_OPEN #undef SERIAL_DEBUG_FLOW #undef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT #define RS_STROBE_TIME (10*HZ) #define RS_ISR_PASS_LIMIT 2 /* Beget is not a super-computer (old=256) */ #define IRQ_T(state) \ ((state->flags & ASYNC_SHARE_IRQ) ? SA_SHIRQ : SA_INTERRUPT) #define SERIAL_INLINE #if defined(MODULE) && defined(SERIAL_DEBUG_MCOUNT) #define DBG_CNT(s) baget_printk("(%s):[%x] refc=%d, serc=%d, ttyc=%d-> %s\n", \ kdevname(tty->device),(info->flags),serial_refcount,info->count,tty->count,s) #else #define DBG_CNT(s) #endif #define QUAD_UART_SPEED /* Useful for Baget */ /* * End of serial driver configuration section. */ #include <linux/config.h> #include <linux/module.h> #include <linux/errno.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/timer.h> #include <linux/interrupt.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/serial.h> #include <linux/major.h> #include <linux/string.h> #include <linux/fcntl.h> #include <linux/ptrace.h> #include <linux/ioport.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/delay.h> #ifdef CONFIG_SERIAL_CONSOLE #include <linux/console.h> #endif #include <asm/system.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/uaccess.h> #include <asm/bitops.h> #include <asm/serial.h> #include <asm/baget/baget.h> #define BAGET_VAC_UART_IRQ 0x35 /* * Implementation note: * It was descovered by means of advanced electronic tools, * if the driver works via TX_READY interrupts then VIC generates * strange self-eliminating traps. Thus, the driver is rewritten to work * via TX_EMPTY */ /* VAC-specific check/debug switches */ #undef CHECK_REG_INDEX #undef DEBUG_IO_PORT_A #ifdef SERIAL_INLINE #define _INLINE_ inline #endif static char *serial_name = "VAC Serial driver"; static char *serial_version = "4.26"; static DECLARE_TASK_QUEUE(tq_serial); static struct tty_driver serial_driver, callout_driver; static int serial_refcount; /* number of characters left in xmit buffer before we ask for more */ #define WAKEUP_CHARS 256 /* * IRQ_timeout - How long the timeout should be for each IRQ * should be after the IRQ has been active. */ static struct async_struct *IRQ_ports[NR_IRQS]; static int IRQ_timeout[NR_IRQS]; #ifdef CONFIG_SERIAL_CONSOLE static struct console sercons; #endif static void autoconfig(struct serial_state * info); static void change_speed(struct async_struct *info); static void rs_wait_until_sent(struct tty_struct *tty, int timeout); static void rs_timer(unsigned long dummy); static struct timer_list vacs_timer; /* * Here we define the default xmit fifo size used for each type of * UART */ static struct serial_uart_config uart_config[] = { { "unknown", 1, 0 }, /* Must go first -- used as unasigned */ { "VAC UART", 1, 0 } }; #define VAC_UART_TYPE 1 /* Just index in above array */ static struct serial_state rs_table[] = { /* * VAC has tricky layout for pair of his SIO registers, * so we need special function to access ones. * To identify port we use their TX offset */ { 0, 9600, VAC_UART_B_TX, BAGET_VAC_UART_IRQ, STD_COM_FLAGS }, /* VAC UART B */ { 0, 9600, VAC_UART_A_TX, BAGET_VAC_UART_IRQ, STD_COM_FLAGS } /* VAC UART A */ }; #define NR_PORTS (sizeof(rs_table)/sizeof(struct serial_state)) static struct tty_struct *serial_table[NR_PORTS]; static struct termios *serial_termios[NR_PORTS]; static struct termios *serial_termios_locked[NR_PORTS]; #ifndef MIN #define MIN(a,b) ((a) < (b) ? (a) : (b)) #endif /* * tmp_buf is used as a temporary buffer by serial_write. We need to * lock it in case the copy_from_user blocks while swapping in a page, * and some other program tries to do a serial write at the same time. * Since the lock will only come under contention when the system is * swapping and available memory is low, it makes sense to share one * buffer across all the serial ports, since it significantly saves * memory if large numbers of serial ports are open. */ static unsigned char *tmp_buf; static DECLARE_MUTEX(tmp_buf_sem); static inline int serial_paranoia_check(struct async_struct *info, kdev_t device, const char *routine) { #ifdef SERIAL_PARANOIA_CHECK static const char *badmagic = "Warning: bad magic number for serial struct (%s) in %s\n"; static const char *badinfo = "Warning: null async_struct for (%s) in %s\n"; if (!info) { printk(badinfo, kdevname(device), routine); return 1; } if (info->magic != SERIAL_MAGIC) { printk(badmagic, kdevname(device), routine); return 1; } #endif return 0; } /* To unify UART A/B access we will use following function to compute register offsets by register index. */ #define VAC_UART_MODE 0 #define VAC_UART_TX 1 #define VAC_UART_RX 2 #define VAC_UART_INT_MASK 3 #define VAC_UART_INT_STATUS 4 #define VAC_UART_REG_NR 5 static inline int uart_offset_map(unsigned long port, int reg_index) { static const unsigned int ind_to_reg[VAC_UART_REG_NR][NR_PORTS] = { { VAC_UART_B_MODE, VAC_UART_A_MODE }, { VAC_UART_B_TX, VAC_UART_A_TX }, { VAC_UART_B_RX, VAC_UART_A_RX }, { VAC_UART_B_INT_MASK, VAC_UART_A_INT_MASK }, { VAC_UART_B_INT_STATUS, VAC_UART_A_INT_STATUS } }; #ifdef CHECK_REG_INDEX if (reg_index > VAC_UART_REG_NR) panic("vacserial: bad reg_index"); #endif return ind_to_reg[reg_index][port == VAC_UART_B_TX ? 0 : 1]; } static inline unsigned int serial_inw(struct async_struct *info, int offset) { int val = vac_inw(uart_offset_map(info->port,offset)); #ifdef DEBUG_IO_PORT_A if (info->port == VAC_UART_A_TX) printk("UART_A_IN: reg = 0x%04x, val = 0x%04x\n", uart_offset_map(info->port,offset), val); #endif return val; } static inline unsigned int serial_inp(struct async_struct *info, int offset) { return serial_inw(info, offset); } static inline unsigned int serial_in(struct async_struct *info, int offset) { return serial_inw(info, offset); } static inline void serial_outw(struct async_struct *info,int offset, int value) { #ifdef DEBUG_IO_PORT_A if (info->port == VAC_UART_A_TX) printk("UART_A_OUT: offset = 0x%04x, val = 0x%04x\n", uart_offset_map(info->port,offset), value); #endif vac_outw(value, uart_offset_map(info->port,offset)); } static inline void serial_outp(struct async_struct *info,int offset, int value) { serial_outw(info,offset,value); } static inline void serial_out(struct async_struct *info,int offset, int value) { serial_outw(info,offset,value); } /* * ------------------------------------------------------------ * rs_stop() and rs_start() * * This routines are called before setting or resetting tty->stopped. * They enable or disable transmitter interrupts, as necessary. * ------------------------------------------------------------ */ static void rs_stop(struct tty_struct *tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_stop")) return; save_flags(flags); cli(); if (info->IER & VAC_UART_INT_TX_EMPTY) { info->IER &= ~VAC_UART_INT_TX_EMPTY; serial_out(info, VAC_UART_INT_MASK, info->IER); } restore_flags(flags); } static void rs_start(struct tty_struct *tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_start")) return; save_flags(flags); cli(); if (info->xmit_cnt && info->xmit_buf && !(info->IER & VAC_UART_INT_TX_EMPTY)) { info->IER |= VAC_UART_INT_TX_EMPTY; serial_out(info, VAC_UART_INT_MASK, info->IER); } restore_flags(flags); } /* * ---------------------------------------------------------------------- * * Here starts the interrupt handling routines. All of the following * subroutines are declared as inline and are folded into * rs_interrupt(). They were separated out for readability's sake. * * Note: rs_interrupt() is a "fast" interrupt, which means that it * runs with interrupts turned off. People who may want to modify * rs_interrupt() should try to keep the interrupt handler as fast as * possible. After you are done making modifications, it is not a bad * idea to do: * * gcc -S -DKERNEL -Wall -Wstrict-prototypes -O6 -fomit-frame-pointer serial.c * * and look at the resulting assemble code in serial.s. * * - Ted Ts'o (tytso@mit.edu), 7-Mar-93 * ----------------------------------------------------------------------- */ /* * This routine is used by the interrupt handler to schedule * processing in the software interrupt portion of the driver. */ static _INLINE_ void rs_sched_event(struct async_struct *info, int event) { info->event |= 1 << event; queue_task(&info->tqueue, &tq_serial); mark_bh(SERIAL_BH); } static _INLINE_ void receive_chars(struct async_struct *info, int *status) { struct tty_struct *tty = info->tty; unsigned short rx; unsigned char ch; int ignored = 0; struct async_icount *icount; icount = &info->state->icount; do { rx = serial_inw(info, VAC_UART_RX); ch = VAC_UART_RX_DATA_MASK & rx; if (tty->flip.count >= TTY_FLIPBUF_SIZE) break; *tty->flip.char_buf_ptr = ch; icount->rx++; #ifdef SERIAL_DEBUG_INTR baget_printk("DR%02x:%02x...", rx, *status); #endif *tty->flip.flag_buf_ptr = 0; if (*status & (VAC_UART_STATUS_RX_BREAK_CHANGE | VAC_UART_STATUS_RX_ERR_PARITY | VAC_UART_STATUS_RX_ERR_FRAME | VAC_UART_STATUS_RX_ERR_OVERRUN)) { /* * For statistics only */ if (*status & VAC_UART_STATUS_RX_BREAK_CHANGE) { *status &= ~(VAC_UART_STATUS_RX_ERR_FRAME | VAC_UART_STATUS_RX_ERR_PARITY); icount->brk++; } else if (*status & VAC_UART_STATUS_RX_ERR_PARITY) icount->parity++; else if (*status & VAC_UART_STATUS_RX_ERR_FRAME) icount->frame++; if (*status & VAC_UART_STATUS_RX_ERR_OVERRUN) icount->overrun++; /* * Now check to see if character should be * ignored, and mask off conditions which * should be ignored. */ if (*status & info->ignore_status_mask) { if (++ignored > 100) break; goto ignore_char; } *status &= info->read_status_mask; if (*status & (VAC_UART_STATUS_RX_BREAK_CHANGE)) { #ifdef SERIAL_DEBUG_INTR baget_printk("handling break...."); #endif *tty->flip.flag_buf_ptr = TTY_BREAK; if (info->flags & ASYNC_SAK) do_SAK(tty); } else if (*status & VAC_UART_STATUS_RX_ERR_PARITY) *tty->flip.flag_buf_ptr = TTY_PARITY; else if (*status & VAC_UART_STATUS_RX_ERR_FRAME) *tty->flip.flag_buf_ptr = TTY_FRAME; if (*status & VAC_UART_STATUS_RX_ERR_OVERRUN) { /* * Overrun is special, since it's * reported immediately, and doesn't * affect the current character */ if (tty->flip.count < TTY_FLIPBUF_SIZE) { tty->flip.count++; tty->flip.flag_buf_ptr++; tty->flip.char_buf_ptr++; *tty->flip.flag_buf_ptr = TTY_OVERRUN; } } } tty->flip.flag_buf_ptr++; tty->flip.char_buf_ptr++; tty->flip.count++; ignore_char: *status = serial_inw(info, VAC_UART_INT_STATUS); } while ((*status & VAC_UART_STATUS_RX_READY)); tty_flip_buffer_push(tty); } static _INLINE_ void transmit_chars(struct async_struct *info, int *intr_done) { int count; if (info->x_char) { serial_outw(info, VAC_UART_TX, (((unsigned short)info->x_char)<<8)); info->state->icount.tx++; info->x_char = 0; if (intr_done) *intr_done = 0; return; } if ((info->xmit_cnt <= 0) || info->tty->stopped || info->tty->hw_stopped) { info->IER &= ~VAC_UART_INT_TX_EMPTY; serial_outw(info, VAC_UART_INT_MASK, info->IER); return; } count = info->xmit_fifo_size; do { serial_out(info, VAC_UART_TX, (unsigned short)info->xmit_buf[info->xmit_tail++] \ << 8); info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1); info->state->icount.tx++; if (--info->xmit_cnt <= 0) break; } while (--count > 0); if (info->xmit_cnt < WAKEUP_CHARS) rs_sched_event(info, RS_EVENT_WRITE_WAKEUP); #ifdef SERIAL_DEBUG_INTR baget_printk("THRE..."); #endif if (intr_done) *intr_done = 0; if (info->xmit_cnt <= 0) { info->IER &= ~VAC_UART_INT_TX_EMPTY; serial_outw(info, VAC_UART_INT_MASK, info->IER); } } static _INLINE_ void check_modem_status(struct async_struct *info) { #if 0 /* VAC hasn't modem control */ wake_up_interruptible(&info->open_wait); rs_sched_event(info, RS_EVENT_WRITE_WAKEUP); #endif } #ifdef CONFIG_SERIAL_SHARE_IRQ /* * Specific functions needed for VAC UART interrupt enter/leave */ #define VAC_INT_CTRL_UART_ENABLE \ (VAC_INT_CTRL_TIMER_PIO10|VAC_INT_CTRL_UART_B_PIO7|VAC_INT_CTRL_UART_A_PIO7) #define VAC_INT_CTRL_UART_DISABLE(info) \ (VAC_INT_CTRL_TIMER_PIO10 | \ ((info->port == VAC_UART_A_TX) ? \ (VAC_INT_CTRL_UART_A_DISABLE|VAC_INT_CTRL_UART_B_PIO7) : \ (VAC_INT_CTRL_UART_A_PIO7|VAC_INT_CTRL_UART_B_DISABLE))) /* * Following two functions were proposed by Pavel Osipenko * to make VAC/VIC behaviour more regular. */ static void intr_begin(struct async_struct* info) { serial_outw(info, VAC_UART_INT_MASK, 0); } static void intr_end(struct async_struct* info) { vac_outw(VAC_INT_CTRL_UART_DISABLE(info), VAC_INT_CTRL); vac_outw(VAC_INT_CTRL_UART_ENABLE, VAC_INT_CTRL); serial_outw(info, VAC_UART_INT_MASK, info->IER); } /* * This is the serial driver's generic interrupt routine */ static void rs_interrupt(int irq, void *dev_id, struct pt_regs * regs) { int status; struct async_struct * info; int pass_counter = 0; struct async_struct *end_mark = 0; #ifdef SERIAL_DEBUG_INTR baget_printk("rs_interrupt(%d)...", irq); #endif info = IRQ_ports[irq]; if (!info) return; do { intr_begin(info); /* Mark we begin port handling */ if (!info->tty || (serial_inw (info, VAC_UART_INT_STATUS) & VAC_UART_STATUS_INTS) == 0) { if (!end_mark) end_mark = info; goto next; } end_mark = 0; info->last_active = jiffies; status = serial_inw(info, VAC_UART_INT_STATUS); #ifdef SERIAL_DEBUG_INTR baget_printk("status = %x...", status); #endif if (status & VAC_UART_STATUS_RX_READY) { receive_chars(info, &status); } check_modem_status(info); if (status & VAC_UART_STATUS_TX_EMPTY) transmit_chars(info, 0); next: intr_end(info); /* Mark this port handled */ info = info->next_port; if (!info) { info = IRQ_ports[irq]; if (pass_counter++ > RS_ISR_PASS_LIMIT) { break; /* Prevent infinite loops */ } continue; } } while (end_mark != info); #ifdef SERIAL_DEBUG_INTR baget_printk("end.\n"); #endif } #endif /* #ifdef CONFIG_SERIAL_SHARE_IRQ */ /* The original driver was simplified here: two functions were joined to reduce code */ #define rs_interrupt_single rs_interrupt /* * ------------------------------------------------------------------- * Here ends the serial interrupt routines. * ------------------------------------------------------------------- */ /* * This routine is used to handle the "bottom half" processing for the * serial driver, known also the "software interrupt" processing. * This processing is done at the kernel interrupt level, after the * rs_interrupt() has returned, BUT WITH INTERRUPTS TURNED ON. This * is where time-consuming activities which can not be done in the * interrupt driver proper are done; the interrupt driver schedules * them using rs_sched_event(), and they get done here. */ static void do_serial_bh(void) { run_task_queue(&tq_serial); } static void do_softint(void *private_) { struct async_struct *info = (struct async_struct *) private_; struct tty_struct *tty; tty = info->tty; if (!tty) return; if (test_and_clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event)) { if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); wake_up_interruptible(&tty->write_wait); } } /* * --------------------------------------------------------------- * Low level utility subroutines for the serial driver: routines to * figure out the appropriate timeout for an interrupt chain, routines * to initialize and startup a serial port, and routines to shutdown a * serial port. Useful stuff like that. * --------------------------------------------------------------- */ /* * This routine figures out the correct timeout for a particular IRQ. * It uses the smallest timeout of all of the serial ports in a * particular interrupt chain. Now only used for IRQ 0.... */ static void figure_IRQ_timeout(int irq) { struct async_struct *info; int timeout = 60*HZ; /* 60 seconds === a long time :-) */ info = IRQ_ports[irq]; if (!info) { IRQ_timeout[irq] = 60*HZ; return; } while (info) { if (info->timeout < timeout) timeout = info->timeout; info = info->next_port; } if (!irq) timeout = timeout / 2; IRQ_timeout[irq] = timeout ? timeout : 1; } static int startup(struct async_struct * info) { unsigned long flags; int retval=0; void (*handler)(int, void *, struct pt_regs *); struct serial_state *state= info->state; unsigned long page; page = get_free_page(GFP_KERNEL); if (!page) return -ENOMEM; save_flags(flags); cli(); if (info->flags & ASYNC_INITIALIZED) { free_page(page); goto errout; } if (!state->port || !state->type) { if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); free_page(page); goto errout; } if (info->xmit_buf) free_page(page); else info->xmit_buf = (unsigned char *) page; #ifdef SERIAL_DEBUG_OPEN baget_printk("starting up ttys%d (irq %d)...", info->line, state->irq); #endif if (uart_config[info->state->type].flags & UART_STARTECH) { /* Wake up UART */ serial_outp(info, VAC_UART_MODE, 0); serial_outp(info, VAC_UART_INT_MASK, 0); } /* * Allocate the IRQ if necessary */ if (state->irq && (!IRQ_ports[state->irq] || !IRQ_ports[state->irq]->next_port)) { if (IRQ_ports[state->irq]) { #ifdef CONFIG_SERIAL_SHARE_IRQ free_irq(state->irq, NULL); handler = rs_interrupt; #else retval = -EBUSY; goto errout; #endif /* CONFIG_SERIAL_SHARE_IRQ */ } else handler = rs_interrupt_single; retval = request_irq(state->irq, handler, IRQ_T(state), "serial", NULL); if (retval) { if (capable(CAP_SYS_ADMIN)) { if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); retval = 0; } goto errout; } } /* * Insert serial port into IRQ chain. */ info->prev_port = 0; info->next_port = IRQ_ports[state->irq]; if (info->next_port) info->next_port->prev_port = info; IRQ_ports[state->irq] = info; figure_IRQ_timeout(state->irq); /* * Clear the interrupt registers. */ /* (void) serial_inw(info, VAC_UART_INT_STATUS); */ /* (see above) */ (void) serial_inw(info, VAC_UART_RX); /* * Now, initialize the UART */ serial_outp(info, VAC_UART_MODE, VAC_UART_MODE_INITIAL); /*reset DLAB*/ /* * Finally, enable interrupts */ info->IER = VAC_UART_INT_RX_BREAK_CHANGE | VAC_UART_INT_RX_ERRS | \ VAC_UART_INT_RX_READY; serial_outp(info, VAC_UART_INT_MASK, info->IER); /*enable interrupts*/ /* * And clear the interrupt registers again for luck. */ (void)serial_inp(info, VAC_UART_INT_STATUS); (void)serial_inp(info, VAC_UART_RX); if (info->tty) clear_bit(TTY_IO_ERROR, &info->tty->flags); info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; /* * Set up serial timers... */ mod_timer(&vacs_timer, jiffies + 2*HZ/100); /* * and set the speed of the serial port */ change_speed(info); info->flags |= ASYNC_INITIALIZED; restore_flags(flags); return 0; errout: restore_flags(flags); return retval; } /* * This routine will shutdown a serial port; interrupts are disabled, and * DTR is dropped if the hangup on close termio flag is on. */ static void shutdown(struct async_struct * info) { unsigned long flags; struct serial_state *state; int retval; if (!(info->flags & ASYNC_INITIALIZED)) return; state = info->state; #ifdef SERIAL_DEBUG_OPEN baget_printk("Shutting down serial port %d (irq %d)....", info->line, state->irq); #endif save_flags(flags); cli(); /* Disable interrupts */ /* * clear delta_msr_wait queue to avoid mem leaks: we may free the irq * here so the queue might never be waken up */ wake_up_interruptible(&info->delta_msr_wait); /* * First unlink the serial port from the IRQ chain... */ if (info->next_port) info->next_port->prev_port = info->prev_port; if (info->prev_port) info->prev_port->next_port = info->next_port; else IRQ_ports[state->irq] = info->next_port; figure_IRQ_timeout(state->irq); /* * Free the IRQ, if necessary */ if (state->irq && (!IRQ_ports[state->irq] || !IRQ_ports[state->irq]->next_port)) { if (IRQ_ports[state->irq]) { free_irq(state->irq, NULL); retval = request_irq(state->irq, rs_interrupt_single, IRQ_T(state), "serial", NULL); if (retval) printk("serial shutdown: request_irq: error %d" " Couldn't reacquire IRQ.\n", retval); } else free_irq(state->irq, NULL); } if (info->xmit_buf) { free_page((unsigned long) info->xmit_buf); info->xmit_buf = 0; } info->IER = 0; serial_outp(info, VAC_UART_INT_MASK, 0x00); /* disable all intrs */ /* disable break condition */ serial_out(info, VAC_UART_MODE, serial_inp(info, VAC_UART_MODE) & \ ~VAC_UART_MODE_SEND_BREAK); if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); info->flags &= ~ASYNC_INITIALIZED; restore_flags(flags); } /* * When we set line mode, we call this function * for Baget-specific adjustments. */ static inline unsigned short vac_uart_mode_fixup (unsigned short cval) { #ifdef QUAD_UART_SPEED /* * When we are using 4-x advantage in speed: * * Disadvantage : can't support 75, 150 bauds * Advantage : can support 19200, 38400 bauds */ char speed = 7 & (cval >> 10); cval &= ~(7 << 10); cval |= VAC_UART_MODE_BAUD(speed-2); #endif /* * In general, we have Tx and Rx ON all time * and use int mask flag for their disabling. */ cval |= VAC_UART_MODE_RX_ENABLE; cval |= VAC_UART_MODE_TX_ENABLE; cval |= VAC_UART_MODE_CHAR_RX_ENABLE; cval |= VAC_UART_MODE_CHAR_TX_ENABLE; /* Low 4 bits are not used in UART */ cval &= ~0xf; return cval; } /* * This routine is called to set the UART divisor registers to match * the specified baud rate for a serial port. */ static void change_speed(struct async_struct *info) { unsigned short port; int quot = 0, baud_base, baud; unsigned cflag, cval; int bits; unsigned long flags; if (!info->tty || !info->tty->termios) return; cflag = info->tty->termios->c_cflag; if (!(port = info->port)) return; /* byte size and parity */ switch (cflag & CSIZE) { case CS7: cval = 0x0; bits = 9; break; case CS8: cval = VAC_UART_MODE_8BIT_CHAR; bits = 10; break; /* Never happens, but GCC is too dumb to figure it out */ case CS5: case CS6: default: cval = 0x0; bits = 9; break; } cval &= ~VAC_UART_MODE_PARITY_ENABLE; if (cflag & PARENB) { cval |= VAC_UART_MODE_PARITY_ENABLE; bits++; } if (cflag & PARODD) cval |= VAC_UART_MODE_PARITY_ODD; /* Determine divisor based on baud rate */ baud = tty_get_baud_rate(info->tty); if (!baud) baud = 9600; /* B0 transition handled in rs_set_termios */ baud_base = info->state->baud_base; if (baud == 38400 && ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)) quot = info->state->custom_divisor; else { if (baud == 134) /* Special case since 134 is really 134.5 */ quot = (2*baud_base / 269); else if (baud) quot = baud_base / baud; } /* If the quotient is ever zero, default to 9600 bps */ if (!quot) quot = baud_base / 9600; info->quot = quot; info->timeout = ((info->xmit_fifo_size*HZ*bits*quot) / baud_base); info->timeout += HZ/50; /* Add .02 seconds of slop */ serial_out(info, VAC_UART_INT_MASK, info->IER); /* * Set up parity check flag */ #define RELEVANT_IFLAG(iflag) (iflag & (IGNBRK|BRKINT|IGNPAR|PARMRK|INPCK)) info->read_status_mask = VAC_UART_STATUS_RX_ERR_OVERRUN | \ VAC_UART_STATUS_TX_EMPTY | VAC_UART_STATUS_RX_READY; if (I_INPCK(info->tty)) info->read_status_mask |= VAC_UART_STATUS_RX_ERR_FRAME | \ VAC_UART_STATUS_RX_ERR_PARITY; if (I_BRKINT(info->tty) || I_PARMRK(info->tty)) info->read_status_mask |= VAC_UART_STATUS_RX_BREAK_CHANGE; /* * Characters to ignore */ info->ignore_status_mask = 0; if (I_IGNPAR(info->tty)) info->ignore_status_mask |= VAC_UART_STATUS_RX_ERR_PARITY | \ VAC_UART_STATUS_RX_ERR_FRAME; if (I_IGNBRK(info->tty)) { info->ignore_status_mask |= VAC_UART_STATUS_RX_BREAK_CHANGE; /* * If we're ignore parity and break indicators, ignore * overruns too. (For real raw support). */ if (I_IGNPAR(info->tty)) info->ignore_status_mask |= \ VAC_UART_STATUS_RX_ERR_OVERRUN; } /* * !!! ignore all characters if CREAD is not set */ if ((cflag & CREAD) == 0) info->ignore_status_mask |= VAC_UART_STATUS_RX_READY; save_flags(flags); cli(); switch (baud) { default: case 9600: cval |= VAC_UART_MODE_BAUD(7); break; case 4800: cval |= VAC_UART_MODE_BAUD(6); break; case 2400: cval |= VAC_UART_MODE_BAUD(5); break; case 1200: cval |= VAC_UART_MODE_BAUD(4); break; case 600: cval |= VAC_UART_MODE_BAUD(3); break; case 300: cval |= VAC_UART_MODE_BAUD(2); break; #ifndef QUAD_UART_SPEED case 150: #else case 38400: #endif cval |= VAC_UART_MODE_BAUD(1); break; #ifndef QUAD_UART_SPEED case 75: #else case 19200: #endif cval |= VAC_UART_MODE_BAUD(0); break; } /* Baget VAC need some adjustments for computed value */ cval = vac_uart_mode_fixup(cval); serial_outp(info, VAC_UART_MODE, cval); restore_flags(flags); } static void rs_put_char(struct tty_struct *tty, unsigned char ch) { struct async_struct *info = (struct async_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_put_char")) return; if (!tty || !info->xmit_buf) return; save_flags(flags); cli(); if (info->xmit_cnt >= SERIAL_XMIT_SIZE - 1) { restore_flags(flags); return; } info->xmit_buf[info->xmit_head++] = ch; info->xmit_head &= SERIAL_XMIT_SIZE-1; info->xmit_cnt++; restore_flags(flags); } static void rs_flush_chars(struct tty_struct *tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_flush_chars")) return; if (info->xmit_cnt <= 0 || tty->stopped || tty->hw_stopped || !info->xmit_buf) return; save_flags(flags); cli(); info->IER |= VAC_UART_INT_TX_EMPTY; serial_out(info, VAC_UART_INT_MASK, info->IER); restore_flags(flags); } static int rs_write(struct tty_struct * tty, int from_user, const unsigned char *buf, int count) { int c, ret = 0; struct async_struct *info = (struct async_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_write")) return 0; if (!tty || !info->xmit_buf || !tmp_buf) return 0; save_flags(flags); if (from_user) { down(&tmp_buf_sem); while (1) { c = MIN(count, MIN(SERIAL_XMIT_SIZE - info->xmit_cnt - 1, SERIAL_XMIT_SIZE - info->xmit_head)); if (c <= 0) break; c -= copy_from_user(tmp_buf, buf, c); if (!c) { if (!ret) ret = -EFAULT; break; } cli(); c = MIN(c, MIN(SERIAL_XMIT_SIZE - info->xmit_cnt - 1, SERIAL_XMIT_SIZE - info->xmit_head)); memcpy(info->xmit_buf + info->xmit_head, tmp_buf, c); info->xmit_head = ((info->xmit_head + c) & (SERIAL_XMIT_SIZE-1)); info->xmit_cnt += c; restore_flags(flags); buf += c; count -= c; ret += c; } up(&tmp_buf_sem); } else { while (1) { cli(); c = MIN(count, MIN(SERIAL_XMIT_SIZE - info->xmit_cnt - 1, SERIAL_XMIT_SIZE - info->xmit_head)); if (c <= 0) { restore_flags(flags); break; } memcpy(info->xmit_buf + info->xmit_head, buf, c); info->xmit_head = ((info->xmit_head + c) & (SERIAL_XMIT_SIZE-1)); info->xmit_cnt += c; restore_flags(flags); buf += c; count -= c; ret += c; } } if (info->xmit_cnt && !tty->stopped && !tty->hw_stopped && !(info->IER & VAC_UART_INT_TX_EMPTY)) { info->IER |= VAC_UART_INT_TX_EMPTY; serial_out(info, VAC_UART_INT_MASK, info->IER); } return ret; } static int rs_write_room(struct tty_struct *tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; int ret; if (serial_paranoia_check(info, tty->device, "rs_write_room")) return 0; ret = SERIAL_XMIT_SIZE - info->xmit_cnt - 1; if (ret < 0) ret = 0; return ret; } static int rs_chars_in_buffer(struct tty_struct *tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_chars_in_buffer")) return 0; return info->xmit_cnt; } static void rs_flush_buffer(struct tty_struct *tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_flush_buffer")) return; save_flags(flags); cli(); info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; restore_flags(flags); wake_up_interruptible(&tty->write_wait); if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); } /* * This function is used to send a high-priority XON/XOFF character to * the device */ static void rs_send_xchar(struct tty_struct *tty, char ch) { struct async_struct *info = (struct async_struct *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_send_char")) return; info->x_char = ch; if (ch) { /* Make sure transmit interrupts are on */ info->IER |= VAC_UART_INT_TX_EMPTY; serial_out(info, VAC_UART_INT_MASK, info->IER); } } /* * ------------------------------------------------------------ * rs_throttle() * * This routine is called by the upper-layer tty layer to signal that * incoming characters should be throttled. * ------------------------------------------------------------ */ static void rs_throttle(struct tty_struct * tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; baget_printk("throttle %s: %d....\n", tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "rs_throttle")) return; if (I_IXOFF(tty)) rs_send_xchar(tty, STOP_CHAR(tty)); } static void rs_unthrottle(struct tty_struct * tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; baget_printk("unthrottle %s: %d....\n", tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "rs_unthrottle")) return; if (I_IXOFF(tty)) { if (info->x_char) info->x_char = 0; else rs_send_xchar(tty, START_CHAR(tty)); } } /* * ------------------------------------------------------------ * rs_ioctl() and friends * ------------------------------------------------------------ */ static int get_serial_info(struct async_struct * info, struct serial_struct * retinfo) { struct serial_struct tmp; struct serial_state *state = info->state; if (!retinfo) return -EFAULT; memset(&tmp, 0, sizeof(tmp)); tmp.type = state->type; tmp.line = state->line; tmp.port = state->port; tmp.irq = state->irq; tmp.flags = state->flags; tmp.xmit_fifo_size = state->xmit_fifo_size; tmp.baud_base = state->baud_base; tmp.close_delay = state->close_delay; tmp.closing_wait = state->closing_wait; tmp.custom_divisor = state->custom_divisor; tmp.hub6 = state->hub6; if (copy_to_user(retinfo,&tmp,sizeof(*retinfo))) return -EFAULT; return 0; } static int set_serial_info(struct async_struct * info, struct serial_struct * new_info) { struct serial_struct new_serial; struct serial_state old_state, *state; unsigned int i,change_irq,change_port; int retval = 0; if (copy_from_user(&new_serial,new_info,sizeof(new_serial))) return -EFAULT; state = info->state; old_state = *state; change_irq = new_serial.irq != state->irq; change_port = (new_serial.port != state->port) || (new_serial.hub6 != state->hub6); if (!capable(CAP_SYS_ADMIN)) { if (change_irq || change_port || (new_serial.baud_base != state->baud_base) || (new_serial.type != state->type) || (new_serial.close_delay != state->close_delay) || (new_serial.xmit_fifo_size != state->xmit_fifo_size) || ((new_serial.flags & ~ASYNC_USR_MASK) != (state->flags & ~ASYNC_USR_MASK))) return -EPERM; state->flags = ((state->flags & ~ASYNC_USR_MASK) | (new_serial.flags & ASYNC_USR_MASK)); info->flags = ((state->flags & ~ASYNC_USR_MASK) | (info->flags & ASYNC_USR_MASK)); state->custom_divisor = new_serial.custom_divisor; goto check_and_exit; } new_serial.irq = new_serial.irq; if ((new_serial.irq >= NR_IRQS) || (new_serial.port > 0xffff) || (new_serial.baud_base == 0) || (new_serial.type < PORT_UNKNOWN) || (new_serial.type > PORT_MAX) || (new_serial.type == PORT_CIRRUS) || (new_serial.type == PORT_STARTECH)) { return -EINVAL; } if ((new_serial.type != state->type) || (new_serial.xmit_fifo_size <= 0)) new_serial.xmit_fifo_size = uart_config[state->type].dfl_xmit_fifo_size; /* Make sure address is not already in use */ if (new_serial.type) { for (i = 0 ; i < NR_PORTS; i++) if ((state != &rs_table[i]) && (rs_table[i].port == new_serial.port) && rs_table[i].type) return -EADDRINUSE; } if ((change_port || change_irq) && (state->count > 1)) return -EBUSY; /* * OK, past this point, all the error checking has been done. * At this point, we start making changes..... */ state->baud_base = new_serial.baud_base; state->flags = ((state->flags & ~ASYNC_FLAGS) | (new_serial.flags & ASYNC_FLAGS)); info->flags = ((state->flags & ~ASYNC_INTERNAL_FLAGS) | (info->flags & ASYNC_INTERNAL_FLAGS)); state->custom_divisor = new_serial.custom_divisor; state->type = new_serial.type; state->close_delay = new_serial.close_delay * HZ/100; state->closing_wait = new_serial.closing_wait * HZ/100; info->tty->low_latency = (info->flags & ASYNC_LOW_LATENCY) ? 1 : 0; info->xmit_fifo_size = state->xmit_fifo_size = new_serial.xmit_fifo_size; release_region(state->port,8); if (change_port || change_irq) { /* * We need to shutdown the serial port at the old * port/irq combination. */ shutdown(info); state->irq = new_serial.irq; info->port = state->port = new_serial.port; info->hub6 = state->hub6 = new_serial.hub6; } if (state->type != PORT_UNKNOWN) request_region(state->port,8,"serial(set)"); check_and_exit: if (!state->port || !state->type) return 0; if (info->flags & ASYNC_INITIALIZED) { if (((old_state.flags & ASYNC_SPD_MASK) != (state->flags & ASYNC_SPD_MASK)) || (old_state.custom_divisor != state->custom_divisor)) { if ((state->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI) info->tty->alt_speed = 57600; if ((state->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI) info->tty->alt_speed = 115200; if ((state->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI) info->tty->alt_speed = 230400; if ((state->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP) info->tty->alt_speed = 460800; change_speed(info); } } else retval = startup(info); return retval; } /* * get_lsr_info - get line status register info * * Purpose: Let user call ioctl() to get info when the UART physically * is emptied. On bus types like RS485, the transmitter must * release the bus after transmitting. This must be done when * the transmit shift register is empty, not be done when the * transmit holding register is empty. This functionality * allows an RS485 driver to be written in user space. */ static int get_lsr_info(struct async_struct * info, unsigned int *value) { unsigned short status; unsigned int result; unsigned long flags; save_flags(flags); cli(); status = serial_inw(info, VAC_UART_INT_STATUS); restore_flags(flags); result = ((status & VAC_UART_STATUS_TX_EMPTY) ? TIOCSER_TEMT : 0); return put_user(result,value); } static int get_modem_info(struct async_struct * info, unsigned int *value) { unsigned int result; result = TIOCM_CAR | TIOCM_DSR; return put_user(result,value); } static int set_modem_info(struct async_struct * info, unsigned int cmd, unsigned int *value) { unsigned int arg; if (get_user(arg, value)) return -EFAULT; switch (cmd) { default: return -EINVAL; } return 0; } static int do_autoconfig(struct async_struct * info) { int retval; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (info->state->count > 1) return -EBUSY; shutdown(info); autoconfig(info->state); retval = startup(info); if (retval) return retval; return 0; } /* * rs_break() --- routine which turns the break handling on or off */ static void rs_break(struct tty_struct *tty, int break_state) { struct async_struct * info = (struct async_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_break")) return; if (!info->port) return; save_flags(flags); cli(); if (break_state == -1) serial_outp(info, VAC_UART_MODE, serial_inp(info, VAC_UART_MODE) | \ VAC_UART_MODE_SEND_BREAK); else serial_outp(info, VAC_UART_MODE, serial_inp(info, VAC_UART_MODE) & \ ~VAC_UART_MODE_SEND_BREAK); restore_flags(flags); } static int rs_ioctl(struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg) { int error; struct async_struct * info = (struct async_struct *)tty->driver_data; struct async_icount cprev, cnow; /* kernel counter temps */ struct serial_icounter_struct *p_cuser; /* user space */ unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_ioctl")) return -ENODEV; if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) && (cmd != TIOCSERCONFIG) && (cmd != TIOCSERGSTRUCT) && (cmd != TIOCMIWAIT) && (cmd != TIOCGICOUNT)) { if (tty->flags & (1 << TTY_IO_ERROR)) return -EIO; } switch (cmd) { case TIOCMGET: return get_modem_info(info, (unsigned int *) arg); case TIOCMBIS: case TIOCMBIC: case TIOCMSET: return set_modem_info(info, cmd, (unsigned int *) arg); case TIOCGSERIAL: return get_serial_info(info, (struct serial_struct *) arg); case TIOCSSERIAL: return set_serial_info(info, (struct serial_struct *) arg); case TIOCSERCONFIG: return do_autoconfig(info); case TIOCSERGETLSR: /* Get line status register */ return get_lsr_info(info, (unsigned int *) arg); case TIOCSERGSTRUCT: if (copy_to_user((struct async_struct *) arg, info, sizeof(struct async_struct))) return -EFAULT; return 0; /* * Wait for any of the 4 modem inputs (DCD,RI,DSR,CTS)to change * - mask passed in arg for lines of interest * (use |'ed TIOCM_RNG/DSR/CD/CTS for masking) * Caller should use TIOCGICOUNT to see which one it was */ case TIOCMIWAIT: save_flags(flags); cli(); /* note the counters on entry */ cprev = info->state->icount; restore_flags(flags); while (1) { interruptible_sleep_on(&info->delta_msr_wait); /* see if a signal did it */ if (signal_pending(current)) return -ERESTARTSYS; save_flags(flags); cli(); cnow = info->state->icount; /* atomic copy */ restore_flags(flags); if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr && cnow.dcd == cprev.dcd && cnow.cts == cprev.cts) return -EIO; /* no change => error */ if ( ((arg & TIOCM_RNG) && (cnow.rng != cprev.rng)) || ((arg & TIOCM_DSR) && (cnow.dsr != cprev.dsr)) || ((arg & TIOCM_CD) && (cnow.dcd != cprev.dcd)) || ((arg & TIOCM_CTS) && (cnow.cts != cprev.cts)) ) { return 0; } cprev = cnow; } /* NOTREACHED */ /* * Get counter of input serial line interrupts (DCD,RI,DSR,CTS) * Return: write counters to the user passed counter struct * NB: both 1->0 and 0->1 transitions are counted except for * RI where only 0->1 is counted. */ case TIOCGICOUNT: save_flags(flags); cli(); cnow = info->state->icount; restore_flags(flags); p_cuser = (struct serial_icounter_struct *) arg; error = put_user(cnow.cts, &p_cuser->cts); if (error) return error; error = put_user(cnow.dsr, &p_cuser->dsr); if (error) return error; error = put_user(cnow.rng, &p_cuser->rng); if (error) return error; error = put_user(cnow.dcd, &p_cuser->dcd); if (error) return error; error = put_user(cnow.rx, &p_cuser->rx); if (error) return error; error = put_user(cnow.tx, &p_cuser->tx); if (error) return error; error = put_user(cnow.frame, &p_cuser->frame); if (error) return error; error = put_user(cnow.overrun, &p_cuser->overrun); if (error) return error; error = put_user(cnow.parity, &p_cuser->parity); if (error) return error; error = put_user(cnow.brk, &p_cuser->brk); if (error) return error; error = put_user(cnow.buf_overrun, &p_cuser->buf_overrun); if (error) return error; return 0; case TIOCSERGWILD: case TIOCSERSWILD: /* "setserial -W" is called in Debian boot */ printk ("TIOCSER?WILD ioctl obsolete, ignored.\n"); return 0; default: return -ENOIOCTLCMD; } return 0; } static void rs_set_termios(struct tty_struct *tty, struct termios *old_termios) { struct async_struct *info = (struct async_struct *)tty->driver_data; unsigned int cflag = tty->termios->c_cflag; if ( (cflag == old_termios->c_cflag) && ( RELEVANT_IFLAG(tty->termios->c_iflag) == RELEVANT_IFLAG(old_termios->c_iflag))) return; change_speed(info); /* Handle turning off CRTSCTS */ if ((old_termios->c_cflag & CRTSCTS) && !(cflag & CRTSCTS)) { tty->hw_stopped = 0; rs_start(tty); } } /* * ------------------------------------------------------------ * rs_close() * * This routine is called when the serial port gets closed. First, we * wait for the last remaining data to be sent. Then, we unlink its * async structure from the interrupt chain if necessary, and we free * that IRQ if nothing is left in the chain. * ------------------------------------------------------------ */ static void rs_close(struct tty_struct *tty, struct file * filp) { struct async_struct * info = (struct async_struct *)tty->driver_data; struct serial_state *state; unsigned long flags; if (!info || serial_paranoia_check(info, tty->device, "rs_close")) return; state = info->state; save_flags(flags); cli(); if (tty_hung_up_p(filp)) { DBG_CNT("before DEC-hung"); MOD_DEC_USE_COUNT; restore_flags(flags); return; } #ifdef SERIAL_DEBUG_OPEN baget_printk("rs_close ttys%d, count = %d\n", info->line, state->count); #endif if ((tty->count == 1) && (state->count != 1)) { /* * Uh, oh. tty->count is 1, which means that the tty * structure will be freed. state->count should always * be one in these conditions. If it's greater than * one, we've got real problems, since it means the * serial port won't be shutdown. */ baget_printk("rs_close: bad serial port count; " "tty->count is 1, " "state->count is %d\n", state->count); state->count = 1; } if (--state->count < 0) { baget_printk("rs_close: bad serial port count for " "ttys%d: %d\n", info->line, state->count); state->count = 0; } if (state->count) { DBG_CNT("before DEC-2"); MOD_DEC_USE_COUNT; restore_flags(flags); return; } info->flags |= ASYNC_CLOSING; /* * Save the termios structure, since this port may have * separate termios for callout and dialin. */ if (info->flags & ASYNC_NORMAL_ACTIVE) info->state->normal_termios = *tty->termios; if (info->flags & ASYNC_CALLOUT_ACTIVE) info->state->callout_termios = *tty->termios; /* * Now we wait for the transmit buffer to clear; and we notify * the line discipline to only process XON/XOFF characters. */ tty->closing = 1; if (info->closing_wait != ASYNC_CLOSING_WAIT_NONE) tty_wait_until_sent(tty, info->closing_wait); /* * At this point we stop accepting input. To do this, we * disable the receive line status interrupts, and tell the * interrupt driver to stop checking the data ready bit in the * line status register. */ info->IER &= ~(VAC_UART_INT_RX_BREAK_CHANGE | VAC_UART_INT_RX_ERRS); info->read_status_mask &= ~VAC_UART_STATUS_RX_READY; if (info->flags & ASYNC_INITIALIZED) { serial_outw(info, VAC_UART_INT_MASK, info->IER); /* * Before we drop DTR, make sure the UART transmitter * has completely drained; this is especially * important if there is a transmit FIFO! */ rs_wait_until_sent(tty, info->timeout); } shutdown(info); if (tty->driver.flush_buffer) tty->driver.flush_buffer(tty); if (tty->ldisc.flush_buffer) tty->ldisc.flush_buffer(tty); tty->closing = 0; info->event = 0; info->tty = 0; if (info->blocked_open) { if (info->close_delay) { current->state = TASK_INTERRUPTIBLE; schedule_timeout(info->close_delay); } wake_up_interruptible(&info->open_wait); } info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CALLOUT_ACTIVE| ASYNC_CLOSING); wake_up_interruptible(&info->close_wait); MOD_DEC_USE_COUNT; restore_flags(flags); } /* * rs_wait_until_sent() --- wait until the transmitter is empty */ static void rs_wait_until_sent(struct tty_struct *tty, int timeout) { struct async_struct * info = (struct async_struct *)tty->driver_data; unsigned long orig_jiffies, char_time; int lsr; if (serial_paranoia_check(info, tty->device, "rs_wait_until_sent")) return; if (info->state->type == PORT_UNKNOWN) return; if (info->xmit_fifo_size == 0) return; /* Just in case.... */ orig_jiffies = jiffies; /* * Set the check interval to be 1/5 of the estimated time to * send a single character, and make it at least 1. The check * interval should also be less than the timeout. * * Note: we have to use pretty tight timings here to satisfy * the NIST-PCTS. */ char_time = (info->timeout - HZ/50) / info->xmit_fifo_size; char_time = char_time / 5; if (char_time == 0) char_time = 1; if (timeout) char_time = MIN(char_time, timeout); #ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT baget_printk("In rs_wait_until_sent(%d) check=%lu...", timeout, char_time); baget_printk("jiff=%lu...", jiffies); #endif while (!((lsr = serial_inp(info, VAC_UART_INT_STATUS)) & \ VAC_UART_STATUS_TX_EMPTY)) { #ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT baget_printk("lsr = %d (jiff=%lu)...", lsr, jiffies); #endif current->state = TASK_INTERRUPTIBLE; schedule_timeout(char_time); if (signal_pending(current)) break; if (timeout && time_after(jiffies, orig_jiffies + timeout)) break; } current->state = TASK_RUNNING; #ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT baget_printk("lsr = %d (jiff=%lu)...done\n", lsr, jiffies); #endif } /* * rs_hangup() --- called by tty_hangup() when a hangup is signaled. */ static void rs_hangup(struct tty_struct *tty) { struct async_struct * info = (struct async_struct *)tty->driver_data; struct serial_state *state = info->state; if (serial_paranoia_check(info, tty->device, "rs_hangup")) return; state = info->state; rs_flush_buffer(tty); shutdown(info); info->event = 0; state->count = 0; info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CALLOUT_ACTIVE); info->tty = 0; wake_up_interruptible(&info->open_wait); } /* * ------------------------------------------------------------ * rs_open() and friends * ------------------------------------------------------------ */ static int block_til_ready(struct tty_struct *tty, struct file * filp, struct async_struct *info) { DECLARE_WAITQUEUE(wait, current); struct serial_state *state = info->state; int retval; int do_clocal = 0, extra_count = 0; unsigned long flags; /* * If the device is in the middle of being closed, then block * until it's done, and then try again. */ if (tty_hung_up_p(filp) || (info->flags & ASYNC_CLOSING)) { if (info->flags & ASYNC_CLOSING) interruptible_sleep_on(&info->close_wait); #ifdef SERIAL_DO_RESTART return ((info->flags & ASYNC_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS); #else return -EAGAIN; #endif } /* * If this is a callout device, then just make sure the normal * device isn't being used. */ if (tty->driver.subtype == SERIAL_TYPE_CALLOUT) { if (info->flags & ASYNC_NORMAL_ACTIVE) return -EBUSY; if ((info->flags & ASYNC_CALLOUT_ACTIVE) && (info->flags & ASYNC_SESSION_LOCKOUT) && (info->session != current->session)) return -EBUSY; if ((info->flags & ASYNC_CALLOUT_ACTIVE) && (info->flags & ASYNC_PGRP_LOCKOUT) && (info->pgrp != current->pgrp)) return -EBUSY; info->flags |= ASYNC_CALLOUT_ACTIVE; return 0; } /* * If non-blocking mode is set, or the port is not enabled, * then make the check up front and then exit. */ if ((filp->f_flags & O_NONBLOCK) || (tty->flags & (1 << TTY_IO_ERROR))) { if (info->flags & ASYNC_CALLOUT_ACTIVE) return -EBUSY; info->flags |= ASYNC_NORMAL_ACTIVE; return 0; } if (info->flags & ASYNC_CALLOUT_ACTIVE) { if (state->normal_termios.c_cflag & CLOCAL) do_clocal = 1; } else { if (tty->termios->c_cflag & CLOCAL) do_clocal = 1; } /* * Block waiting for the carrier detect and the line to become * free (i.e., not in use by the callout). While we are in * this loop, state->count is dropped by one, so that * rs_close() knows when to free things. We restore it upon * exit, either normal or abnormal. */ retval = 0; add_wait_queue(&info->open_wait, &wait); #ifdef SERIAL_DEBUG_OPEN baget_printk("block_til_ready before block: ttys%d, count = %d\n", state->line, state->count); #endif save_flags(flags); cli(); if (!tty_hung_up_p(filp)) { extra_count = 1; state->count--; } restore_flags(flags); info->blocked_open++; while (1) { set_current_state(TASK_INTERRUPTIBLE); if (tty_hung_up_p(filp) || !(info->flags & ASYNC_INITIALIZED)) { #ifdef SERIAL_DO_RESTART if (info->flags & ASYNC_HUP_NOTIFY) retval = -EAGAIN; else retval = -ERESTARTSYS; #else retval = -EAGAIN; #endif break; } if (!(info->flags & ASYNC_CALLOUT_ACTIVE) && !(info->flags & ASYNC_CLOSING)) break; if (signal_pending(current)) { retval = -ERESTARTSYS; break; } #ifdef SERIAL_DEBUG_OPEN baget_printk("block_til_ready blocking: ttys%d, count = %d\n", info->line, state->count); #endif schedule(); } current->state = TASK_RUNNING; remove_wait_queue(&info->open_wait, &wait); if (extra_count) state->count++; info->blocked_open--; #ifdef SERIAL_DEBUG_OPEN baget_printk("block_til_ready after blocking: ttys%d, count = %d\n", info->line, state->count); #endif if (retval) return retval; info->flags |= ASYNC_NORMAL_ACTIVE; return 0; } static int get_async_struct(int line, struct async_struct **ret_info) { struct async_struct *info; struct serial_state *sstate; sstate = rs_table + line; sstate->count++; if (sstate->info) { *ret_info = sstate->info; return 0; } info = kmalloc(sizeof(struct async_struct), GFP_KERNEL); if (!info) { sstate->count--; return -ENOMEM; } memset(info, 0, sizeof(struct async_struct)); init_waitqueue_head(&info->open_wait); init_waitqueue_head(&info->close_wait); init_waitqueue_head(&info->delta_msr_wait); info->magic = SERIAL_MAGIC; info->port = sstate->port; info->flags = sstate->flags; info->xmit_fifo_size = sstate->xmit_fifo_size; info->line = line; info->tqueue.routine = do_softint; info->tqueue.data = info; info->state = sstate; if (sstate->info) { kfree(info); *ret_info = sstate->info; return 0; } *ret_info = sstate->info = info; return 0; } /* * This routine is called whenever a serial port is opened. It * enables interrupts for a serial port, linking in its async structure into * the IRQ chain. It also performs the serial-specific * initialization for the tty structure. */ static int rs_open(struct tty_struct *tty, struct file * filp) { struct async_struct *info; int retval, line; unsigned long page; MOD_INC_USE_COUNT; line = MINOR(tty->device) - tty->driver.minor_start; if ((line < 0) || (line >= NR_PORTS)) { MOD_DEC_USE_COUNT; return -ENODEV; } retval = get_async_struct(line, &info); if (retval) { MOD_DEC_USE_COUNT; return retval; } tty->driver_data = info; info->tty = tty; if (serial_paranoia_check(info, tty->device, "rs_open")) { /* MOD_DEC_USE_COUNT; "info->tty" will cause this */ return -ENODEV; } #ifdef SERIAL_DEBUG_OPEN baget_printk("rs_open %s%d, count = %d\n", tty->driver.name, info->line, info->state->count); #endif info->tty->low_latency = (info->flags & ASYNC_LOW_LATENCY) ? 1 : 0; if (!tmp_buf) { page = get_free_page(GFP_KERNEL); if (!page) { /* MOD_DEC_USE_COUNT; "info->tty" will cause this */ return -ENOMEM; } if (tmp_buf) free_page(page); else tmp_buf = (unsigned char *) page; } /* * If the port is the middle of closing, bail out now */ if (tty_hung_up_p(filp) || (info->flags & ASYNC_CLOSING)) { if (info->flags & ASYNC_CLOSING) interruptible_sleep_on(&info->close_wait); /* MOD_DEC_USE_COUNT; "info->tty" will cause this */ #ifdef SERIAL_DO_RESTART return ((info->flags & ASYNC_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS); #else return -EAGAIN; #endif } /* * Start up serial port */ retval = startup(info); if (retval) { /* MOD_DEC_USE_COUNT; "info->tty" will cause this */ return retval; } retval = block_til_ready(tty, filp, info); if (retval) { /* MOD_DEC_USE_COUNT; "info->tty" will cause this */ #ifdef SERIAL_DEBUG_OPEN baget_printk("rs_open returning after block_til_ready " "with %d\n", retval); #endif return retval; } if ((info->state->count == 1) && (info->flags & ASYNC_SPLIT_TERMIOS)) { if (tty->driver.subtype == SERIAL_TYPE_NORMAL) *tty->termios = info->state->normal_termios; else *tty->termios = info->state->callout_termios; change_speed(info); } #ifdef CONFIG_SERIAL_CONSOLE if (sercons.cflag && sercons.index == line) { tty->termios->c_cflag = sercons.cflag; sercons.cflag = 0; change_speed(info); } #endif info->session = current->session; info->pgrp = current->pgrp; #ifdef SERIAL_DEBUG_OPEN baget_printk("rs_open ttys%d successful...", info->line); #endif return 0; } /* * /proc fs routines.... */ static inline int line_info(char *buf, struct serial_state *state) { struct async_struct *info = state->info, scr_info; int ret; ret = sprintf(buf, "%d: uart:%s port:%X irq:%d", state->line, uart_config[state->type].name, state->port, state->irq); if (!state->port || (state->type == PORT_UNKNOWN)) { ret += sprintf(buf+ret, "\n"); return ret; } /* * Figure out the current RS-232 lines */ if (!info) { info = &scr_info; /* This is just for serial_{in,out} */ info->magic = SERIAL_MAGIC; info->port = state->port; info->flags = state->flags; info->quot = 0; info->tty = 0; } if (info->quot) { ret += sprintf(buf+ret, " baud:%d", state->baud_base / info->quot); } ret += sprintf(buf+ret, " tx:%d rx:%d", state->icount.tx, state->icount.rx); if (state->icount.frame) ret += sprintf(buf+ret, " fe:%d", state->icount.frame); if (state->icount.parity) ret += sprintf(buf+ret, " pe:%d", state->icount.parity); if (state->icount.brk) ret += sprintf(buf+ret, " brk:%d", state->icount.brk); if (state->icount.overrun) ret += sprintf(buf+ret, " oe:%d", state->icount.overrun); return ret; } int rs_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { int i, len = 0, l; off_t begin = 0; len += sprintf(page, "serinfo:1.0 driver:%s\n", serial_version); for (i = 0; i < NR_PORTS && len < 4000; i++) { l = line_info(page + len, &rs_table[i]); len += l; if (len+begin > off+count) goto done; if (len+begin < off) { begin += len; len = 0; } } *eof = 1; done: if (off >= len+begin) return 0; *start = page + (off-begin); return ((count < begin+len-off) ? count : begin+len-off); } /* * --------------------------------------------------------------------- * rs_init() and friends * * rs_init() is called at boot-time to initialize the serial driver. * --------------------------------------------------------------------- */ /* * This routine prints out the appropriate serial driver version * number, and identifies which options were configured into this * driver. */ static _INLINE_ void show_serial_version(void) { printk(KERN_INFO "%s version %s with", serial_name, serial_version); #ifdef CONFIG_SERIAL_SHARE_IRQ printk(" SHARE_IRQ"); #endif #define SERIAL_OPT #ifdef CONFIG_SERIAL_DETECT_IRQ printk(" DETECT_IRQ"); #endif #ifdef SERIAL_OPT printk(" enabled\n"); #else printk(" no serial options enabled\n"); #endif #undef SERIAL_OPT } /* * This routine is called by rs_init() to initialize a specific serial * port. It determines what type of UART chip this serial port is * using: 8250, 16450, 16550, 16550A. The important question is * whether or not this UART is a 16550A or not, since this will * determine whether or not we can use its FIFO features or not. */ /* * Functionality of this function is reduced: we already know we have a VAC, * but still need to perform some important actions (see code :-). */ static void autoconfig(struct serial_state * state) { struct async_struct *info, scr_info; unsigned long flags; /* Setting up important parameters */ state->type = VAC_UART_TYPE; state->xmit_fifo_size = uart_config[state->type].dfl_xmit_fifo_size; info = &scr_info; /* This is just for serial_{in,out} */ info->magic = SERIAL_MAGIC; info->port = state->port; info->flags = state->flags; save_flags(flags); cli(); /* + Flush VAC input fifo */ (void)serial_in(info, VAC_UART_RX); (void)serial_in(info, VAC_UART_RX); (void)serial_in(info, VAC_UART_RX); (void)serial_in(info, VAC_UART_RX); /* Disable interrupts */ serial_outp(info, VAC_UART_INT_MASK, 0); restore_flags(flags); } int register_serial(struct serial_struct *req); void unregister_serial(int line); EXPORT_SYMBOL(register_serial); EXPORT_SYMBOL(unregister_serial); /* * Important function for VAC UART check and reanimation. */ static void rs_timer(unsigned long dummy) { static unsigned long last_strobe = 0; struct async_struct *info; unsigned int i; unsigned long flags; if ((jiffies - last_strobe) >= RS_STROBE_TIME) { for (i=1; i < NR_IRQS; i++) { info = IRQ_ports[i]; if (!info) continue; save_flags(flags); cli(); #ifdef CONFIG_SERIAL_SHARE_IRQ if (info->next_port) { do { serial_out(info, VAC_UART_INT_MASK, 0); info->IER |= VAC_UART_INT_TX_EMPTY; serial_out(info, VAC_UART_INT_MASK, info->IER); info = info->next_port; } while (info); rs_interrupt(i, NULL, NULL); } else #endif /* CONFIG_SERIAL_SHARE_IRQ */ rs_interrupt_single(i, NULL, NULL); restore_flags(flags); } } last_strobe = jiffies; mod_timer(&vacs_timer, jiffies + RS_STROBE_TIME); /* * It looks this code for case we share IRQ with console... */ if (IRQ_ports[0]) { save_flags(flags); cli(); #ifdef CONFIG_SERIAL_SHARE_IRQ rs_interrupt(0, NULL, NULL); #else rs_interrupt_single(0, NULL, NULL); #endif restore_flags(flags); mod_timer(&vacs_timer, jiffies + IRQ_timeout[0] - 2); } } /* * The serial driver boot-time initialization code! */ int __init rs_init(void) { int i; struct serial_state * state; extern void atomwide_serial_init (void); extern void dualsp_serial_init (void); #ifdef CONFIG_ATOMWIDE_SERIAL atomwide_serial_init (); #endif #ifdef CONFIG_DUALSP_SERIAL dualsp_serial_init (); #endif init_bh(SERIAL_BH, do_serial_bh); init_timer(&vacs_timer); vacs_timer.function = rs_timer; vacs_timer.expires = 0; for (i = 0; i < NR_IRQS; i++) { IRQ_ports[i] = 0; IRQ_timeout[i] = 0; } /* * It is not a good idea to share interrupts with console, * but it looks we cannot avoid it. */ #if 0 #ifdef CONFIG_SERIAL_CONSOLE /* * The interrupt of the serial console port * can't be shared. */ if (sercons.flags & CON_CONSDEV) { for(i = 0; i < NR_PORTS; i++) if (i != sercons.index && rs_table[i].irq == rs_table[sercons.index].irq) rs_table[i].irq = 0; } #endif #endif show_serial_version(); /* Initialize the tty_driver structure */ memset(&serial_driver, 0, sizeof(struct tty_driver)); serial_driver.magic = TTY_DRIVER_MAGIC; serial_driver.driver_name = "serial"; serial_driver.name = "ttyS"; serial_driver.major = TTY_MAJOR; serial_driver.minor_start = 64; serial_driver.num = NR_PORTS; serial_driver.type = TTY_DRIVER_TYPE_SERIAL; serial_driver.subtype = SERIAL_TYPE_NORMAL; serial_driver.init_termios = tty_std_termios; serial_driver.init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL; serial_driver.flags = TTY_DRIVER_REAL_RAW; serial_driver.refcount = &serial_refcount; serial_driver.table = serial_table; serial_driver.termios = serial_termios; serial_driver.termios_locked = serial_termios_locked; serial_driver.open = rs_open; serial_driver.close = rs_close; serial_driver.write = rs_write; serial_driver.put_char = rs_put_char; serial_driver.flush_chars = rs_flush_chars; serial_driver.write_room = rs_write_room; serial_driver.chars_in_buffer = rs_chars_in_buffer; serial_driver.flush_buffer = rs_flush_buffer; serial_driver.ioctl = rs_ioctl; serial_driver.throttle = rs_throttle; serial_driver.unthrottle = rs_unthrottle; serial_driver.send_xchar = rs_send_xchar; serial_driver.set_termios = rs_set_termios; serial_driver.stop = rs_stop; serial_driver.start = rs_start; serial_driver.hangup = rs_hangup; serial_driver.break_ctl = rs_break; serial_driver.wait_until_sent = rs_wait_until_sent; serial_driver.read_proc = rs_read_proc; /* * The callout device is just like normal device except for * major number and the subtype code. */ callout_driver = serial_driver; callout_driver.name = "cua"; callout_driver.major = TTYAUX_MAJOR; callout_driver.subtype = SERIAL_TYPE_CALLOUT; callout_driver.read_proc = 0; callout_driver.proc_entry = 0; if (tty_register_driver(&serial_driver)) panic("Couldn't register serial driver"); if (tty_register_driver(&callout_driver)) panic("Couldn't register callout driver"); for (i = 0, state = rs_table; i < NR_PORTS; i++,state++) { state->magic = SSTATE_MAGIC; state->line = i; state->type = PORT_UNKNOWN; state->custom_divisor = 0; state->close_delay = 5*HZ/10; state->closing_wait = 30*HZ; state->callout_termios = callout_driver.init_termios; state->normal_termios = serial_driver.init_termios; state->icount.cts = state->icount.dsr = state->icount.rng = state->icount.dcd = 0; state->icount.rx = state->icount.tx = 0; state->icount.frame = state->icount.parity = 0; state->icount.overrun = state->icount.brk = 0; state->irq = state->irq; if (check_region(state->port,8)) continue; if (state->flags & ASYNC_BOOT_AUTOCONF) autoconfig(state); } /* * Detect the IRQ only once every port is initialised, * because some 16450 do not reset to 0 the MCR register. */ for (i = 0, state = rs_table; i < NR_PORTS; i++,state++) { if (state->type == PORT_UNKNOWN) continue; printk(KERN_INFO "ttyS%02d%s at 0x%04x (irq = %d) is a %s\n", state->line, (state->flags & ASYNC_FOURPORT) ? " FourPort" : "", state->port, state->irq, uart_config[state->type].name); } return 0; } /* * register_serial and unregister_serial allows for serial ports to be * configured at run-time, to support PCMCIA modems. */ int register_serial(struct serial_struct *req) { int i; unsigned long flags; struct serial_state *state; save_flags(flags); cli(); for (i = 0; i < NR_PORTS; i++) { if (rs_table[i].port == req->port) break; } if (i == NR_PORTS) { for (i = 0; i < NR_PORTS; i++) if ((rs_table[i].type == PORT_UNKNOWN) && (rs_table[i].count == 0)) break; } if (i == NR_PORTS) { restore_flags(flags); return -1; } state = &rs_table[i]; if (rs_table[i].count) { restore_flags(flags); printk("Couldn't configure serial #%d (port=%d,irq=%d): " "device already open\n", i, req->port, req->irq); return -1; } state->irq = req->irq; state->port = req->port; state->flags = req->flags; autoconfig(state); if (state->type == PORT_UNKNOWN) { restore_flags(flags); printk("register_serial(): autoconfig failed\n"); return -1; } restore_flags(flags); printk(KERN_INFO "tty%02d at 0x%04x (irq = %d) is a %s\n", state->line, state->port, state->irq, uart_config[state->type].name); return state->line; } void unregister_serial(int line) { unsigned long flags; struct serial_state *state = &rs_table[line]; save_flags(flags); cli(); if (state->info && state->info->tty) tty_hangup(state->info->tty); state->type = PORT_UNKNOWN; printk(KERN_INFO "tty%02d unloaded\n", state->line); restore_flags(flags); } #ifdef MODULE int init_module(void) { return rs_init(); } void cleanup_module(void) { unsigned long flags; int e1, e2; int i; printk("Unloading %s: version %s\n", serial_name, serial_version); save_flags(flags); cli(); del_timer_sync(&vacs_timer); remove_bh(SERIAL_BH); if ((e1 = tty_unregister_driver(&serial_driver))) printk("SERIAL: failed to unregister serial driver (%d)\n", e1); if ((e2 = tty_unregister_driver(&callout_driver))) printk("SERIAL: failed to unregister callout driver (%d)\n", e2); restore_flags(flags); for (i = 0; i < NR_PORTS; i++) { if (rs_table[i].type != PORT_UNKNOWN) release_region(rs_table[i].port, 8); } if (tmp_buf) { free_page((unsigned long) tmp_buf); tmp_buf = NULL; } } #endif /* MODULE */ /* * ------------------------------------------------------------ * Serial console driver * ------------------------------------------------------------ */ #ifdef CONFIG_SERIAL_CONSOLE #define BOTH_EMPTY (VAC_UART_STATUS_TX_EMPTY | VAC_UART_STATUS_TX_EMPTY) /* * Wait for transmitter & holding register to empty */ static inline void wait_for_xmitr(struct async_struct *info) { int lsr; unsigned int tmout = 1000000; do { lsr = serial_inp(info, VAC_UART_INT_STATUS); if (--tmout == 0) break; } while ((lsr & BOTH_EMPTY) != BOTH_EMPTY); } /* * Print a string to the serial port trying not to disturb * any possible real use of the port... */ static void serial_console_write(struct console *co, const char *s, unsigned count) { struct serial_state *ser; int ier; unsigned i; struct async_struct scr_info; /* serial_{in,out} because HUB6 */ ser = rs_table + co->index; scr_info.magic = SERIAL_MAGIC; scr_info.port = ser->port; scr_info.flags = ser->flags; /* * First save the IER then disable the interrupts */ ier = serial_inp(&scr_info, VAC_UART_INT_MASK); serial_outw(&scr_info, VAC_UART_INT_MASK, 0x00); /* * Now, do each character */ for (i = 0; i < count; i++, s++) { wait_for_xmitr(&scr_info); /* * Send the character out. * If a LF, also do CR... */ serial_outp(&scr_info, VAC_UART_TX, (unsigned short)*s << 8); if (*s == 10) { wait_for_xmitr(&scr_info); serial_outp(&scr_info, VAC_UART_TX, 13 << 8); } } /* * Finally, Wait for transmitter & holding register to empty * and restore the IER */ wait_for_xmitr(&scr_info); serial_outp(&scr_info, VAC_UART_INT_MASK, ier); } static kdev_t serial_console_device(struct console *c) { return MKDEV(TTY_MAJOR, 64 + c->index); } /* * Setup initial baud/bits/parity. We do two things here: * - construct a cflag setting for the first rs_open() * - initialize the serial port * Return non-zero if we didn't find a serial port. */ static int __init serial_console_setup(struct console *co, char *options) { struct serial_state *ser; unsigned cval; int baud = 9600; int bits = 8; int parity = 'n'; int cflag = CREAD | HUPCL | CLOCAL; int quot = 0; char *s; struct async_struct scr_info; /* serial_{in,out} because HUB6 */ if (options) { baud = simple_strtoul(options, NULL, 10); s = options; while(*s >= '0' && *s <= '9') s++; if (*s) parity = *s++; if (*s) bits = *s - '0'; } /* * Now construct a cflag setting. */ switch(baud) { case 1200: cflag |= B1200; break; case 2400: cflag |= B2400; break; case 4800: cflag |= B4800; break; case 19200: cflag |= B19200; break; case 38400: cflag |= B38400; break; case 57600: cflag |= B57600; break; case 115200: cflag |= B115200; break; case 9600: default: cflag |= B9600; break; } switch(bits) { case 7: cflag |= CS7; break; default: case 8: cflag |= CS8; break; } switch(parity) { case 'o': case 'O': cflag |= PARODD; break; case 'e': case 'E': cflag |= PARENB; break; } co->cflag = cflag; /* * Divisor, bytesize and parity */ ser = rs_table + co->index; scr_info.magic = SERIAL_MAGIC; scr_info.port = ser->port; scr_info.flags = ser->flags; quot = ser->baud_base / baud; cval = cflag & (CSIZE | CSTOPB); cval >>= 4; cval &= ~VAC_UART_MODE_PARITY_ENABLE; if (cflag & PARENB) cval |= VAC_UART_MODE_PARITY_ENABLE; if (cflag & PARODD) cval |= VAC_UART_MODE_PARITY_ODD; /* * Disable UART interrupts, set DTR and RTS high * and set speed. */ switch (baud) { default: case 9600: cval |= VAC_UART_MODE_BAUD(7); break; case 4800: cval |= VAC_UART_MODE_BAUD(6); break; case 2400: cval |= VAC_UART_MODE_BAUD(5); break; case 1200: cval |= VAC_UART_MODE_BAUD(4); break; case 600: cval |= VAC_UART_MODE_BAUD(3); break; case 300: cval |= VAC_UART_MODE_BAUD(2); break; #ifndef QUAD_UART_SPEED case 150: #else case 38400: #endif cval |= VAC_UART_MODE_BAUD(1); break; #ifndef QUAD_UART_SPEED case 75: #else case 19200: #endif cval |= VAC_UART_MODE_BAUD(0); break; } /* Baget VAC need some adjustments for computed value */ cval = vac_uart_mode_fixup(cval); serial_outp(&scr_info, VAC_UART_MODE, cval); serial_outp(&scr_info, VAC_UART_INT_MASK, 0); return 0; } static struct console sercons = { .name = "ttyS", .write = serial_console_write, .device = serial_console_device, .setup = serial_console_setup, .flags = CON_PRINTBUFFER, .index = -1, }; /* * Register console. */ long __init serial_console_init(long kmem_start, long kmem_end) { register_console(&sercons); return kmem_start; } #endif #ifdef CONFIG_KGDB #undef PRINT_DEBUG_PORT_INFO /* * This is the interface to the remote debugger stub. * I've put that here to be able to control the serial * device more directly. */ static int initialized; static int rs_debug_init(struct async_struct *info) { int quot; autoconfig(info); /* autoconfigure ttyS0, whatever that is */ #ifdef PRINT_DEBUG_PORT_INFO baget_printk("kgdb debug interface:: tty%02d at 0x%04x", info->line, info->port); switch (info->type) { case PORT_8250: baget_printk(" is a 8250\n"); break; case PORT_16450: baget_printk(" is a 16450\n"); break; case PORT_16550: baget_printk(" is a 16550\n"); break; case PORT_16550A: baget_printk(" is a 16550A\n"); break; case PORT_16650: baget_printk(" is a 16650\n"); break; default: baget_printk(" is of unknown type -- unusable\n"); break; } #endif if (info->port == PORT_UNKNOWN) return -1; /* * Clear all interrupts */ (void)serial_inp(info, VAC_UART_INT_STATUS); (void)serial_inp(info, VAC_UART_RX); /* * Now, initialize the UART */ serial_outp(info,VAC_UART_MODE,VAC_UART_MODE_INITIAL); /* reset DLAB */ if (info->flags & ASYNC_FOURPORT) { info->MCR = UART_MCR_DTR | UART_MCR_RTS; info->MCR_noint = UART_MCR_DTR | UART_MCR_OUT1; } else { info->MCR = UART_MCR_DTR | UART_MCR_RTS | UART_MCR_OUT2; info->MCR_noint = UART_MCR_DTR | UART_MCR_RTS; } info->MCR = info->MCR_noint; /* no interrupts, please */ /* * and set the speed of the serial port * (currently hardwired to 9600 8N1 */ quot = info->baud_base / 9600; /* baud rate is fixed to 9600 */ /* FIXME: if rs_debug interface is needed, we need to set speed here */ return 0; } int putDebugChar(char c) { struct async_struct *info = rs_table; if (!initialized) { /* need to init device first */ if (rs_debug_init(info) == 0) initialized = 1; else return 0; } while ((serial_inw(info, VAC_UART_INT_STATUS) & \ VAC_UART_STATUS_TX_EMPTY) == 0) ; serial_out(info, VAC_UART_TX, (unsigned short)c << 8); return 1; } char getDebugChar(void) { struct async_struct *info = rs_table; if (!initialized) { /* need to init device first */ if (rs_debug_init(info) == 0) initialized = 1; else return 0; } while (!(serial_inw(info, VAC_UART_INT_STATUS) & \ VAC_UART_STATUS_RX_READY)) ; return(serial_inp(info, VAC_UART_RX)); } #endif /* CONFIG_KGDB */