URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [drivers/] [net/] [b44.c] - Rev 1765
Compare with Previous | Blame | View Log
/* b44.c: Broadcom 4400 device driver. * * Copyright (C) 2002 David S. Miller (davem@redhat.com) * Fixed by Pekka Pietikainen (pp@ee.oulu.fi) */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/types.h> #include <linux/netdevice.h> #include <linux/ethtool.h> #include <linux/mii.h> #include <linux/if_ether.h> #include <linux/etherdevice.h> #include <linux/pci.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/version.h> #include <asm/uaccess.h> #include <asm/io.h> #include <asm/irq.h> #include "b44.h" #define DRV_MODULE_NAME "b44" #define PFX DRV_MODULE_NAME ": " #define DRV_MODULE_VERSION "0.92" #define DRV_MODULE_RELDATE "Nov 4, 2003" #define B44_DEF_MSG_ENABLE \ (NETIF_MSG_DRV | \ NETIF_MSG_PROBE | \ NETIF_MSG_LINK | \ NETIF_MSG_TIMER | \ NETIF_MSG_IFDOWN | \ NETIF_MSG_IFUP | \ NETIF_MSG_RX_ERR | \ NETIF_MSG_TX_ERR) /* length of time before we decide the hardware is borked, * and dev->tx_timeout() should be called to fix the problem */ #define B44_TX_TIMEOUT (5 * HZ) /* hardware minimum and maximum for a single frame's data payload */ #define B44_MIN_MTU 60 #define B44_MAX_MTU 1500 #define B44_RX_RING_SIZE 512 #define B44_DEF_RX_RING_PENDING 200 #define B44_RX_RING_BYTES (sizeof(struct dma_desc) * \ B44_RX_RING_SIZE) #define B44_TX_RING_SIZE 512 #define B44_DEF_TX_RING_PENDING (B44_TX_RING_SIZE - 1) #define B44_TX_RING_BYTES (sizeof(struct dma_desc) * \ B44_TX_RING_SIZE) #define TX_RING_GAP(BP) \ (B44_TX_RING_SIZE - (BP)->tx_pending) #define TX_BUFFS_AVAIL(BP) \ (((BP)->tx_cons <= (BP)->tx_prod) ? \ (BP)->tx_cons + (BP)->tx_pending - (BP)->tx_prod : \ (BP)->tx_cons - (BP)->tx_prod - TX_RING_GAP(BP)) #define NEXT_TX(N) (((N) + 1) & (B44_TX_RING_SIZE - 1)) #define RX_PKT_BUF_SZ (1536 + bp->rx_offset + 64) /* minimum number of free TX descriptors required to wake up TX process */ #define B44_TX_WAKEUP_THRESH (B44_TX_RING_SIZE / 4) static char version[] __devinitdata = DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; MODULE_AUTHOR("David S. Miller (davem@redhat.com)"); MODULE_DESCRIPTION("Broadcom 4400 10/100 PCI ethernet driver"); MODULE_LICENSE("GPL"); MODULE_PARM(b44_debug, "i"); MODULE_PARM_DESC(b44_debug, "B44 bitmapped debugging message enable value"); static int b44_debug = -1; /* -1 == use B44_DEF_MSG_ENABLE as value */ static struct pci_device_id b44_pci_tbl[] = { { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_BCM4401, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, { } /* terminate list with empty entry */ }; MODULE_DEVICE_TABLE(pci, b44_pci_tbl); static void b44_halt(struct b44 *); static void b44_init_rings(struct b44 *); static int b44_init_hw(struct b44 *); static int b44_wait_bit(struct b44 *bp, unsigned long reg, u32 bit, unsigned long timeout, const int clear) { unsigned long i; for (i = 0; i < timeout; i++) { u32 val = br32(reg); if (clear && !(val & bit)) break; if (!clear && (val & bit)) break; udelay(10); } if (i == timeout) { printk(KERN_ERR PFX "%s: BUG! Timeout waiting for bit %08x of register " "%lx to %s.\n", bp->dev->name, bit, reg, (clear ? "clear" : "set")); return -ENODEV; } return 0; } /* Sonics SiliconBackplane support routines. ROFL, you should see all the * buzz words used on this company's website :-) * * All of these routines must be invoked with bp->lock held and * interrupts disabled. */ #define SBID_SDRAM 0 #define SBID_PCI_MEM 1 #define SBID_PCI_CFG 2 #define SBID_PCI_DMA 3 #define SBID_SDRAM_SWAPPED 4 #define SBID_ENUM 5 #define SBID_REG_SDRAM 6 #define SBID_REG_ILINE20 7 #define SBID_REG_EMAC 8 #define SBID_REG_CODEC 9 #define SBID_REG_USB 10 #define SBID_REG_PCI 11 #define SBID_REG_MIPS 12 #define SBID_REG_EXTIF 13 #define SBID_EXTIF 14 #define SBID_EJTAG 15 #define SBID_MAX 16 static u32 ssb_get_addr(struct b44 *bp, u32 id, u32 instance) { switch (id) { case SBID_PCI_DMA: return 0x40000000; case SBID_ENUM: return 0x18000000; case SBID_REG_EMAC: return 0x18000000; case SBID_REG_CODEC: return 0x18001000; case SBID_REG_PCI: return 0x18002000; default: return 0; }; } static u32 ssb_get_core_rev(struct b44 *bp) { return (br32(B44_SBIDHIGH) & SBIDHIGH_RC_MASK); } static u32 ssb_pci_setup(struct b44 *bp, u32 cores) { u32 bar_orig, pci_rev, val; pci_read_config_dword(bp->pdev, SSB_BAR0_WIN, &bar_orig); pci_write_config_dword(bp->pdev, SSB_BAR0_WIN, ssb_get_addr(bp, SBID_REG_PCI, 0)); pci_rev = ssb_get_core_rev(bp); val = br32(B44_SBINTVEC); val |= cores; bw32(B44_SBINTVEC, val); val = br32(SSB_PCI_TRANS_2); val |= SSB_PCI_PREF | SSB_PCI_BURST; bw32(SSB_PCI_TRANS_2, val); pci_write_config_dword(bp->pdev, SSB_BAR0_WIN, bar_orig); return pci_rev; } static void ssb_core_disable(struct b44 *bp) { if (br32(B44_SBTMSLOW) & SBTMSLOW_RESET) return; bw32(B44_SBTMSLOW, (SBTMSLOW_REJECT | SBTMSLOW_CLOCK)); b44_wait_bit(bp, B44_SBTMSLOW, SBTMSLOW_REJECT, 100000, 0); b44_wait_bit(bp, B44_SBTMSHIGH, SBTMSHIGH_BUSY, 100000, 1); bw32(B44_SBTMSLOW, (SBTMSLOW_FGC | SBTMSLOW_CLOCK | SBTMSLOW_REJECT | SBTMSLOW_RESET)); br32(B44_SBTMSLOW); udelay(1); bw32(B44_SBTMSLOW, (SBTMSLOW_REJECT | SBTMSLOW_RESET)); br32(B44_SBTMSLOW); udelay(1); } static void ssb_core_reset(struct b44 *bp) { u32 val; ssb_core_disable(bp); bw32(B44_SBTMSLOW, (SBTMSLOW_RESET | SBTMSLOW_CLOCK | SBTMSLOW_FGC)); br32(B44_SBTMSLOW); udelay(1); /* Clear SERR if set, this is a hw bug workaround. */ if (br32(B44_SBTMSHIGH) & SBTMSHIGH_SERR) bw32(B44_SBTMSHIGH, 0); val = br32(B44_SBIMSTATE); if (val & (SBIMSTATE_IBE | SBIMSTATE_TO)) bw32(B44_SBIMSTATE, val & ~(SBIMSTATE_IBE | SBIMSTATE_TO)); bw32(B44_SBTMSLOW, (SBTMSLOW_CLOCK | SBTMSLOW_FGC)); br32(B44_SBTMSLOW); udelay(1); bw32(B44_SBTMSLOW, (SBTMSLOW_CLOCK)); br32(B44_SBTMSLOW); udelay(1); } static int ssb_core_unit(struct b44 *bp) { #if 0 u32 val = br32(B44_SBADMATCH0); u32 base; type = val & SBADMATCH0_TYPE_MASK; switch (type) { case 0: base = val & SBADMATCH0_BS0_MASK; break; case 1: base = val & SBADMATCH0_BS1_MASK; break; case 2: default: base = val & SBADMATCH0_BS2_MASK; break; }; #endif return 0; } static int ssb_is_core_up(struct b44 *bp) { return ((br32(B44_SBTMSLOW) & (SBTMSLOW_RESET | SBTMSLOW_REJECT | SBTMSLOW_CLOCK)) == SBTMSLOW_CLOCK); } static void __b44_cam_write(struct b44 *bp, unsigned char *data, int index) { u32 val; val = ((u32) data[2]) << 24; val |= ((u32) data[3]) << 16; val |= ((u32) data[4]) << 8; val |= ((u32) data[5]) << 0; bw32(B44_CAM_DATA_LO, val); val = (CAM_DATA_HI_VALID | (((u32) data[0]) << 8) | (((u32) data[1]) << 0)); bw32(B44_CAM_DATA_HI, val); bw32(B44_CAM_CTRL, (CAM_CTRL_WRITE | (index << CAM_CTRL_INDEX_SHIFT))); b44_wait_bit(bp, B44_CAM_CTRL, CAM_CTRL_BUSY, 100, 1); } static inline void __b44_disable_ints(struct b44 *bp) { bw32(B44_IMASK, 0); } static void b44_disable_ints(struct b44 *bp) { __b44_disable_ints(bp); /* Flush posted writes. */ br32(B44_IMASK); } static void b44_enable_ints(struct b44 *bp) { bw32(B44_IMASK, bp->imask); } static int b44_readphy(struct b44 *bp, int reg, u32 *val) { int err; bw32(B44_EMAC_ISTAT, EMAC_INT_MII); bw32(B44_MDIO_DATA, (MDIO_DATA_SB_START | (MDIO_OP_READ << MDIO_DATA_OP_SHIFT) | (bp->phy_addr << MDIO_DATA_PMD_SHIFT) | (reg << MDIO_DATA_RA_SHIFT) | (MDIO_TA_VALID << MDIO_DATA_TA_SHIFT))); err = b44_wait_bit(bp, B44_EMAC_ISTAT, EMAC_INT_MII, 100, 0); *val = br32(B44_MDIO_DATA) & MDIO_DATA_DATA; return err; } static int b44_writephy(struct b44 *bp, int reg, u32 val) { bw32(B44_EMAC_ISTAT, EMAC_INT_MII); bw32(B44_MDIO_DATA, (MDIO_DATA_SB_START | (MDIO_OP_WRITE << MDIO_DATA_OP_SHIFT) | (bp->phy_addr << MDIO_DATA_PMD_SHIFT) | (reg << MDIO_DATA_RA_SHIFT) | (MDIO_TA_VALID << MDIO_DATA_TA_SHIFT) | (val & MDIO_DATA_DATA))); return b44_wait_bit(bp, B44_EMAC_ISTAT, EMAC_INT_MII, 100, 0); } static int b44_phy_reset(struct b44 *bp) { u32 val; int err; err = b44_writephy(bp, MII_BMCR, BMCR_RESET); if (err) return err; udelay(100); err = b44_readphy(bp, MII_BMCR, &val); if (!err) { if (val & BMCR_RESET) { printk(KERN_ERR PFX "%s: PHY Reset would not complete.\n", bp->dev->name); err = -ENODEV; } } return 0; } static void __b44_set_flow_ctrl(struct b44 *bp, u32 pause_flags) { u32 val; bp->flags &= ~(B44_FLAG_TX_PAUSE | B44_FLAG_RX_PAUSE); bp->flags |= pause_flags; val = br32(B44_RXCONFIG); if (pause_flags & B44_FLAG_RX_PAUSE) val |= RXCONFIG_FLOW; else val &= ~RXCONFIG_FLOW; bw32(B44_RXCONFIG, val); val = br32(B44_MAC_FLOW); if (pause_flags & B44_FLAG_TX_PAUSE) val |= (MAC_FLOW_PAUSE_ENAB | (0xc0 & MAC_FLOW_RX_HI_WATER)); else val &= ~MAC_FLOW_PAUSE_ENAB; bw32(B44_MAC_FLOW, val); } static void b44_set_flow_ctrl(struct b44 *bp, u32 local, u32 remote) { u32 pause_enab = bp->flags & (B44_FLAG_TX_PAUSE | B44_FLAG_RX_PAUSE); if (local & ADVERTISE_PAUSE_CAP) { if (local & ADVERTISE_PAUSE_ASYM) { if (remote & LPA_PAUSE_CAP) pause_enab |= (B44_FLAG_TX_PAUSE | B44_FLAG_RX_PAUSE); else if (remote & LPA_PAUSE_ASYM) pause_enab |= B44_FLAG_RX_PAUSE; } else { if (remote & LPA_PAUSE_CAP) pause_enab |= (B44_FLAG_TX_PAUSE | B44_FLAG_RX_PAUSE); } } else if (local & ADVERTISE_PAUSE_ASYM) { if ((remote & LPA_PAUSE_CAP) && (remote & LPA_PAUSE_ASYM)) pause_enab |= B44_FLAG_TX_PAUSE; } __b44_set_flow_ctrl(bp, pause_enab); } static int b44_setup_phy(struct b44 *bp) { u32 val; int err; if ((err = b44_readphy(bp, B44_MII_ALEDCTRL, &val)) != 0) goto out; if ((err = b44_writephy(bp, B44_MII_ALEDCTRL, val & MII_ALEDCTRL_ALLMSK)) != 0) goto out; if ((err = b44_readphy(bp, B44_MII_TLEDCTRL, &val)) != 0) goto out; if ((err = b44_writephy(bp, B44_MII_TLEDCTRL, val | MII_TLEDCTRL_ENABLE)) != 0) goto out; if (!(bp->flags & B44_FLAG_FORCE_LINK)) { u32 adv = ADVERTISE_CSMA; if (bp->flags & B44_FLAG_ADV_10HALF) adv |= ADVERTISE_10HALF; if (bp->flags & B44_FLAG_ADV_10FULL) adv |= ADVERTISE_10FULL; if (bp->flags & B44_FLAG_ADV_100HALF) adv |= ADVERTISE_100HALF; if (bp->flags & B44_FLAG_ADV_100FULL) adv |= ADVERTISE_100FULL; if (bp->flags & B44_FLAG_PAUSE_AUTO) adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; if ((err = b44_writephy(bp, MII_ADVERTISE, adv)) != 0) goto out; if ((err = b44_writephy(bp, MII_BMCR, (BMCR_ANENABLE | BMCR_ANRESTART))) != 0) goto out; } else { u32 bmcr; if ((err = b44_readphy(bp, MII_BMCR, &bmcr)) != 0) goto out; bmcr &= ~(BMCR_FULLDPLX | BMCR_ANENABLE | BMCR_SPEED100); if (bp->flags & B44_FLAG_100_BASE_T) bmcr |= BMCR_SPEED100; if (bp->flags & B44_FLAG_FULL_DUPLEX) bmcr |= BMCR_FULLDPLX; if ((err = b44_writephy(bp, MII_BMCR, bmcr)) != 0) goto out; /* Since we will not be negotiating there is no safe way * to determine if the link partner supports flow control * or not. So just disable it completely in this case. */ b44_set_flow_ctrl(bp, 0, 0); } out: return err; } static void b44_stats_update(struct b44 *bp) { unsigned long reg; u32 *val; val = &bp->hw_stats.tx_good_octets; for (reg = B44_TX_GOOD_O; reg <= B44_TX_PAUSE; reg += 4UL) { *val++ += br32(reg); } val = &bp->hw_stats.rx_good_octets; for (reg = B44_RX_GOOD_O; reg <= B44_RX_NPAUSE; reg += 4UL) { *val++ += br32(reg); } } static void b44_link_report(struct b44 *bp) { if (!netif_carrier_ok(bp->dev)) { printk(KERN_INFO PFX "%s: Link is down.\n", bp->dev->name); } else { printk(KERN_INFO PFX "%s: Link is up at %d Mbps, %s duplex.\n", bp->dev->name, (bp->flags & B44_FLAG_100_BASE_T) ? 100 : 10, (bp->flags & B44_FLAG_FULL_DUPLEX) ? "full" : "half"); printk(KERN_INFO PFX "%s: Flow control is %s for TX and " "%s for RX.\n", bp->dev->name, (bp->flags & B44_FLAG_TX_PAUSE) ? "on" : "off", (bp->flags & B44_FLAG_RX_PAUSE) ? "on" : "off"); } } static void b44_check_phy(struct b44 *bp) { u32 bmsr, aux; if (!b44_readphy(bp, MII_BMSR, &bmsr) && !b44_readphy(bp, B44_MII_AUXCTRL, &aux) && (bmsr != 0xffff)) { if (aux & MII_AUXCTRL_SPEED) bp->flags |= B44_FLAG_100_BASE_T; else bp->flags &= ~B44_FLAG_100_BASE_T; if (aux & MII_AUXCTRL_DUPLEX) bp->flags |= B44_FLAG_FULL_DUPLEX; else bp->flags &= ~B44_FLAG_FULL_DUPLEX; if (!netif_carrier_ok(bp->dev) && (bmsr & BMSR_LSTATUS)) { u32 val = br32(B44_TX_CTRL); u32 local_adv, remote_adv; if (bp->flags & B44_FLAG_FULL_DUPLEX) val |= TX_CTRL_DUPLEX; else val &= ~TX_CTRL_DUPLEX; bw32(B44_TX_CTRL, val); if (!(bp->flags & B44_FLAG_FORCE_LINK) && !b44_readphy(bp, MII_ADVERTISE, &local_adv) && !b44_readphy(bp, MII_LPA, &remote_adv)) b44_set_flow_ctrl(bp, local_adv, remote_adv); /* Link now up */ netif_carrier_on(bp->dev); b44_link_report(bp); } else if (netif_carrier_ok(bp->dev) && !(bmsr & BMSR_LSTATUS)) { /* Link now down */ netif_carrier_off(bp->dev); b44_link_report(bp); } if (bmsr & BMSR_RFAULT) printk(KERN_WARNING PFX "%s: Remote fault detected in PHY\n", bp->dev->name); if (bmsr & BMSR_JCD) printk(KERN_WARNING PFX "%s: Jabber detected in PHY\n", bp->dev->name); } } static void b44_timer(unsigned long __opaque) { struct b44 *bp = (struct b44 *) __opaque; spin_lock_irq(&bp->lock); b44_check_phy(bp); b44_stats_update(bp); spin_unlock_irq(&bp->lock); bp->timer.expires = jiffies + HZ; add_timer(&bp->timer); } static void b44_tx(struct b44 *bp) { u32 cur, cons; cur = br32(B44_DMATX_STAT) & DMATX_STAT_CDMASK; cur /= sizeof(struct dma_desc); /* XXX needs updating when NETIF_F_SG is supported */ for (cons = bp->tx_cons; cons != cur; cons = NEXT_TX(cons)) { struct ring_info *rp = &bp->tx_buffers[cons]; struct sk_buff *skb = rp->skb; if (unlikely(skb == NULL)) BUG(); pci_unmap_single(bp->pdev, pci_unmap_addr(rp, mapping), skb->len, PCI_DMA_TODEVICE); rp->skb = NULL; dev_kfree_skb_irq(skb); } bp->tx_cons = cons; if (netif_queue_stopped(bp->dev) && TX_BUFFS_AVAIL(bp) > B44_TX_WAKEUP_THRESH) netif_wake_queue(bp->dev); bw32(B44_GPTIMER, 0); } /* Works like this. This chip writes a 'struct rx_header" 30 bytes * before the DMA address you give it. So we allocate 30 more bytes * for the RX buffer, DMA map all of it, skb_reserve the 30 bytes, then * point the chip at 30 bytes past where the rx_header will go. */ static int b44_alloc_rx_skb(struct b44 *bp, int src_idx, u32 dest_idx_unmasked) { struct dma_desc *dp; struct ring_info *src_map, *map; struct rx_header *rh; struct sk_buff *skb; dma_addr_t mapping; int dest_idx; u32 ctrl; src_map = NULL; if (src_idx >= 0) src_map = &bp->rx_buffers[src_idx]; dest_idx = dest_idx_unmasked & (B44_RX_RING_SIZE - 1); map = &bp->rx_buffers[dest_idx]; skb = dev_alloc_skb(RX_PKT_BUF_SZ); if (skb == NULL) return -ENOMEM; skb->dev = bp->dev; mapping = pci_map_single(bp->pdev, skb->data, RX_PKT_BUF_SZ, PCI_DMA_FROMDEVICE); skb_reserve(skb, bp->rx_offset); rh = (struct rx_header *) (skb->data - bp->rx_offset); rh->len = 0; rh->flags = 0; map->skb = skb; pci_unmap_addr_set(map, mapping, mapping); if (src_map != NULL) src_map->skb = NULL; ctrl = (DESC_CTRL_LEN & (RX_PKT_BUF_SZ - bp->rx_offset)); if (dest_idx == (B44_RX_RING_SIZE - 1)) ctrl |= DESC_CTRL_EOT; dp = &bp->rx_ring[dest_idx]; dp->ctrl = cpu_to_le32(ctrl); dp->addr = cpu_to_le32((u32) mapping + bp->rx_offset + bp->dma_offset); return RX_PKT_BUF_SZ; } static void b44_recycle_rx(struct b44 *bp, int src_idx, u32 dest_idx_unmasked) { struct dma_desc *src_desc, *dest_desc; struct ring_info *src_map, *dest_map; struct rx_header *rh; int dest_idx; u32 ctrl; dest_idx = dest_idx_unmasked & (B44_RX_RING_SIZE - 1); dest_desc = &bp->rx_ring[dest_idx]; dest_map = &bp->rx_buffers[dest_idx]; src_desc = &bp->rx_ring[src_idx]; src_map = &bp->rx_buffers[src_idx]; dest_map->skb = src_map->skb; rh = (struct rx_header *) src_map->skb->data; rh->len = 0; rh->flags = 0; pci_unmap_addr_set(dest_map, mapping, pci_unmap_addr(src_map, mapping)); ctrl = src_desc->ctrl; if (dest_idx == (B44_RX_RING_SIZE - 1)) ctrl |= cpu_to_le32(DESC_CTRL_EOT); else ctrl &= cpu_to_le32(~DESC_CTRL_EOT); dest_desc->ctrl = ctrl; dest_desc->addr = src_desc->addr; src_map->skb = NULL; } static int b44_rx(struct b44 *bp, int budget) { int received; u32 cons, prod; received = 0; prod = br32(B44_DMARX_STAT) & DMARX_STAT_CDMASK; prod /= sizeof(struct dma_desc); cons = bp->rx_cons; while (cons != prod && budget > 0) { struct ring_info *rp = &bp->rx_buffers[cons]; struct sk_buff *skb = rp->skb; dma_addr_t map = pci_unmap_addr(rp, mapping); struct rx_header *rh; u16 len; pci_dma_sync_single(bp->pdev, map, RX_PKT_BUF_SZ, PCI_DMA_FROMDEVICE); rh = (struct rx_header *) skb->data; len = cpu_to_le16(rh->len); if ((len > (RX_PKT_BUF_SZ - bp->rx_offset)) || (rh->flags & cpu_to_le16(RX_FLAG_ERRORS))) { drop_it: b44_recycle_rx(bp, cons, bp->rx_prod); drop_it_no_recycle: bp->stats.rx_dropped++; goto next_pkt; } if (len == 0) { int i = 0; do { udelay(2); barrier(); len = cpu_to_le16(rh->len); } while (len == 0 && i++ < 5); if (len == 0) goto drop_it; } /* Omit CRC. */ len -= 4; if (len > RX_COPY_THRESHOLD) { int skb_size; skb_size = b44_alloc_rx_skb(bp, cons, bp->rx_prod); if (skb_size < 0) goto drop_it; pci_unmap_single(bp->pdev, map, skb_size, PCI_DMA_FROMDEVICE); /* Leave out rx_header */ skb_put(skb, len+bp->rx_offset); skb_pull(skb,bp->rx_offset); } else { struct sk_buff *copy_skb; b44_recycle_rx(bp, cons, bp->rx_prod); copy_skb = dev_alloc_skb(len + 2); if (copy_skb == NULL) goto drop_it_no_recycle; copy_skb->dev = bp->dev; skb_reserve(copy_skb, 2); skb_put(copy_skb, len); /* DMA sync done above, copy just the actual packet */ memcpy(copy_skb->data, skb->data+bp->rx_offset, len); skb = copy_skb; } skb->ip_summed = CHECKSUM_NONE; skb->protocol = eth_type_trans(skb, bp->dev); netif_receive_skb(skb); bp->dev->last_rx = jiffies; received++; budget--; next_pkt: bp->rx_prod = (bp->rx_prod + 1) & (B44_RX_RING_SIZE - 1); cons = (cons + 1) & (B44_RX_RING_SIZE - 1); } bp->rx_cons = cons; bw32(B44_DMARX_PTR, cons * sizeof(struct dma_desc)); return received; } static int b44_poll(struct net_device *netdev, int *budget) { struct b44 *bp = netdev->priv; int done; spin_lock_irq(&bp->lock); if (bp->istat & (ISTAT_TX | ISTAT_TO)) { /* spin_lock(&bp->tx_lock); */ b44_tx(bp); /* spin_unlock(&bp->tx_lock); */ } spin_unlock_irq(&bp->lock); done = 1; if (bp->istat & ISTAT_RX) { int orig_budget = *budget; int work_done; if (orig_budget > netdev->quota) orig_budget = netdev->quota; work_done = b44_rx(bp, orig_budget); *budget -= work_done; netdev->quota -= work_done; if (work_done >= orig_budget) done = 0; } if (bp->istat & ISTAT_ERRORS) { spin_lock_irq(&bp->lock); b44_halt(bp); b44_init_rings(bp); b44_init_hw(bp); netif_wake_queue(bp->dev); spin_unlock_irq(&bp->lock); done = 1; } if (done) { netif_rx_complete(netdev); b44_enable_ints(bp); } return (done ? 0 : 1); } static irqreturn_t b44_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct net_device *dev = dev_id; struct b44 *bp = dev->priv; unsigned long flags; u32 istat, imask; int handled = 0; spin_lock_irqsave(&bp->lock, flags); istat = br32(B44_ISTAT); imask = br32(B44_IMASK); /* ??? What the fuck is the purpose of the interrupt mask * ??? register if we have to mask it out by hand anyways? */ istat &= imask; if (istat) { handled = 1; if (netif_rx_schedule_prep(dev)) { /* NOTE: These writes are posted by the readback of * the ISTAT register below. */ bp->istat = istat; __b44_disable_ints(bp); __netif_rx_schedule(dev); } else { printk(KERN_ERR PFX "%s: Error, poll already scheduled\n", dev->name); } bw32(B44_ISTAT, istat); br32(B44_ISTAT); } spin_unlock_irqrestore(&bp->lock, flags); return IRQ_RETVAL(handled); } static void b44_tx_timeout(struct net_device *dev) { struct b44 *bp = dev->priv; printk(KERN_ERR PFX "%s: transmit timed out, resetting\n", dev->name); spin_lock_irq(&bp->lock); b44_halt(bp); b44_init_rings(bp); b44_init_hw(bp); spin_unlock_irq(&bp->lock); b44_enable_ints(bp); netif_wake_queue(dev); } static int b44_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct b44 *bp = dev->priv; dma_addr_t mapping; u32 len, entry, ctrl; len = skb->len; spin_lock_irq(&bp->lock); /* This is a hard error, log it. */ if (unlikely(TX_BUFFS_AVAIL(bp) < 1)) { netif_stop_queue(dev); spin_unlock_irq(&bp->lock); printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n", dev->name); return 1; } entry = bp->tx_prod; mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE); bp->tx_buffers[entry].skb = skb; pci_unmap_addr_set(&bp->tx_buffers[entry], mapping, mapping); ctrl = (len & DESC_CTRL_LEN); ctrl |= DESC_CTRL_IOC | DESC_CTRL_SOF | DESC_CTRL_EOF; if (entry == (B44_TX_RING_SIZE - 1)) ctrl |= DESC_CTRL_EOT; bp->tx_ring[entry].ctrl = cpu_to_le32(ctrl); bp->tx_ring[entry].addr = cpu_to_le32((u32) mapping+bp->dma_offset); entry = NEXT_TX(entry); bp->tx_prod = entry; wmb(); bw32(B44_DMATX_PTR, entry * sizeof(struct dma_desc)); if (bp->flags & B44_FLAG_BUGGY_TXPTR) bw32(B44_DMATX_PTR, entry * sizeof(struct dma_desc)); if (bp->flags & B44_FLAG_REORDER_BUG) br32(B44_DMATX_PTR); if (TX_BUFFS_AVAIL(bp) < 1) netif_stop_queue(dev); spin_unlock_irq(&bp->lock); dev->trans_start = jiffies; return 0; } static int b44_change_mtu(struct net_device *dev, int new_mtu) { struct b44 *bp = dev->priv; if (new_mtu < B44_MIN_MTU || new_mtu > B44_MAX_MTU) return -EINVAL; if (!netif_running(dev)) { /* We'll just catch it later when the * device is up'd. */ dev->mtu = new_mtu; return 0; } spin_lock_irq(&bp->lock); b44_halt(bp); dev->mtu = new_mtu; b44_init_rings(bp); b44_init_hw(bp); spin_unlock_irq(&bp->lock); b44_enable_ints(bp); return 0; } /* Free up pending packets in all rx/tx rings. * * The chip has been shut down and the driver detached from * the networking, so no interrupts or new tx packets will * end up in the driver. bp->lock is not held and we are not * in an interrupt context and thus may sleep. */ static void b44_free_rings(struct b44 *bp) { struct ring_info *rp; int i; for (i = 0; i < B44_RX_RING_SIZE; i++) { rp = &bp->rx_buffers[i]; if (rp->skb == NULL) continue; pci_unmap_single(bp->pdev, pci_unmap_addr(rp, mapping), RX_PKT_BUF_SZ, PCI_DMA_FROMDEVICE); dev_kfree_skb_any(rp->skb); rp->skb = NULL; } /* XXX needs changes once NETIF_F_SG is set... */ for (i = 0; i < B44_TX_RING_SIZE; i++) { rp = &bp->tx_buffers[i]; if (rp->skb == NULL) continue; pci_unmap_single(bp->pdev, pci_unmap_addr(rp, mapping), rp->skb->len, PCI_DMA_TODEVICE); dev_kfree_skb_any(rp->skb); rp->skb = NULL; } } /* Initialize tx/rx rings for packet processing. * * The chip has been shut down and the driver detached from * the networking, so no interrupts or new tx packets will * end up in the driver. bp->lock is not held and we are not * in an interrupt context and thus may sleep. */ static void b44_init_rings(struct b44 *bp) { int i; b44_free_rings(bp); memset(bp->rx_ring, 0, B44_RX_RING_BYTES); memset(bp->tx_ring, 0, B44_TX_RING_BYTES); for (i = 0; i < bp->rx_pending; i++) { if (b44_alloc_rx_skb(bp, -1, i) < 0) break; } } /* * Must not be invoked with interrupt sources disabled and * the hardware shutdown down. */ static void b44_free_consistent(struct b44 *bp) { if (bp->rx_buffers) { kfree(bp->rx_buffers); bp->rx_buffers = NULL; } if (bp->tx_buffers) { kfree(bp->tx_buffers); bp->tx_buffers = NULL; } if (bp->rx_ring) { pci_free_consistent(bp->pdev, DMA_TABLE_BYTES, bp->rx_ring, bp->rx_ring_dma); bp->rx_ring = NULL; } if (bp->tx_ring) { pci_free_consistent(bp->pdev, DMA_TABLE_BYTES, bp->tx_ring, bp->tx_ring_dma); bp->tx_ring = NULL; } } /* * Must not be invoked with interrupt sources disabled and * the hardware shutdown down. Can sleep. */ static int b44_alloc_consistent(struct b44 *bp) { int size; size = B44_RX_RING_SIZE * sizeof(struct ring_info); bp->rx_buffers = kmalloc(size, GFP_KERNEL); if (!bp->rx_buffers) goto out_err; memset(bp->rx_buffers, 0, size); size = B44_TX_RING_SIZE * sizeof(struct ring_info); bp->tx_buffers = kmalloc(size, GFP_KERNEL); if (!bp->tx_buffers) goto out_err; memset(bp->tx_buffers, 0, size); size = DMA_TABLE_BYTES; bp->rx_ring = pci_alloc_consistent(bp->pdev, size, &bp->rx_ring_dma); if (!bp->rx_ring) goto out_err; bp->tx_ring = pci_alloc_consistent(bp->pdev, size, &bp->tx_ring_dma); if (!bp->tx_ring) goto out_err; return 0; out_err: b44_free_consistent(bp); return -ENOMEM; } /* bp->lock is held. */ static void b44_clear_stats(struct b44 *bp) { unsigned long reg; bw32(B44_MIB_CTRL, MIB_CTRL_CLR_ON_READ); for (reg = B44_TX_GOOD_O; reg <= B44_TX_PAUSE; reg += 4UL) br32(reg); for (reg = B44_RX_GOOD_O; reg <= B44_RX_NPAUSE; reg += 4UL) br32(reg); } /* bp->lock is held. */ static void b44_chip_reset(struct b44 *bp) { if (ssb_is_core_up(bp)) { bw32(B44_RCV_LAZY, 0); bw32(B44_ENET_CTRL, ENET_CTRL_DISABLE); b44_wait_bit(bp, B44_ENET_CTRL, ENET_CTRL_DISABLE, 100, 1); bw32(B44_DMATX_CTRL, 0); bp->tx_prod = bp->tx_cons = 0; if (br32(B44_DMARX_STAT) & DMARX_STAT_EMASK) { b44_wait_bit(bp, B44_DMARX_STAT, DMARX_STAT_SIDLE, 100, 0); } bw32(B44_DMARX_CTRL, 0); bp->rx_prod = bp->rx_cons = 0; } else { ssb_pci_setup(bp, (bp->core_unit == 0 ? SBINTVEC_ENET0 : SBINTVEC_ENET1)); } ssb_core_reset(bp); b44_clear_stats(bp); /* Make PHY accessible. */ bw32(B44_MDIO_CTRL, (MDIO_CTRL_PREAMBLE | (0x0d & MDIO_CTRL_MAXF_MASK))); br32(B44_MDIO_CTRL); if (!(br32(B44_DEVCTRL) & DEVCTRL_IPP)) { bw32(B44_ENET_CTRL, ENET_CTRL_EPSEL); br32(B44_ENET_CTRL); bp->flags &= ~B44_FLAG_INTERNAL_PHY; } else { u32 val = br32(B44_DEVCTRL); if (val & DEVCTRL_EPR) { bw32(B44_DEVCTRL, (val & ~DEVCTRL_EPR)); br32(B44_DEVCTRL); udelay(100); } bp->flags |= B44_FLAG_INTERNAL_PHY; } } /* bp->lock is held. */ static void b44_halt(struct b44 *bp) { b44_disable_ints(bp); b44_chip_reset(bp); } /* bp->lock is held. */ static void __b44_set_mac_addr(struct b44 *bp) { bw32(B44_CAM_CTRL, 0); if (!(bp->dev->flags & IFF_PROMISC)) { u32 val; __b44_cam_write(bp, bp->dev->dev_addr, 0); val = br32(B44_CAM_CTRL); bw32(B44_CAM_CTRL, val | CAM_CTRL_ENABLE); } } static int b44_set_mac_addr(struct net_device *dev, void *p) { struct b44 *bp = dev->priv; struct sockaddr *addr = p; if (netif_running(dev)) return -EBUSY; memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); spin_lock_irq(&bp->lock); __b44_set_mac_addr(bp); spin_unlock_irq(&bp->lock); return 0; } /* Called at device open time to get the chip ready for * packet processing. Invoked with bp->lock held. */ static void __b44_set_rx_mode(struct net_device *); static int b44_init_hw(struct b44 *bp) { u32 val; b44_disable_ints(bp); b44_chip_reset(bp); b44_phy_reset(bp); b44_setup_phy(bp); val = br32(B44_MAC_CTRL); bw32(B44_MAC_CTRL, val | MAC_CTRL_CRC32_ENAB); bw32(B44_RCV_LAZY, (1 << RCV_LAZY_FC_SHIFT)); /* This sets the MAC address too. */ __b44_set_rx_mode(bp->dev); /* MTU + eth header + possible VLAN tag + struct rx_header */ bw32(B44_RXMAXLEN, bp->dev->mtu + ETH_HLEN + 8 + RX_HEADER_LEN); bw32(B44_TXMAXLEN, bp->dev->mtu + ETH_HLEN + 8 + RX_HEADER_LEN); bw32(B44_TX_WMARK, 56); /* XXX magic */ bw32(B44_DMATX_CTRL, DMATX_CTRL_ENABLE); bw32(B44_DMATX_ADDR, bp->tx_ring_dma + bp->dma_offset); bw32(B44_DMARX_CTRL, (DMARX_CTRL_ENABLE | (bp->rx_offset << DMARX_CTRL_ROSHIFT))); bw32(B44_DMARX_ADDR, bp->rx_ring_dma + bp->dma_offset); bw32(B44_DMARX_PTR, bp->rx_pending); bp->rx_prod = bp->rx_pending; bw32(B44_MIB_CTRL, MIB_CTRL_CLR_ON_READ); val = br32(B44_ENET_CTRL); bw32(B44_ENET_CTRL, (val | ENET_CTRL_ENABLE)); return 0; } static int b44_open(struct net_device *dev) { struct b44 *bp = dev->priv; int err; err = b44_alloc_consistent(bp); if (err) return err; err = request_irq(dev->irq, b44_interrupt, SA_SHIRQ, dev->name, dev); if (err) goto err_out_free; spin_lock_irq(&bp->lock); b44_init_rings(bp); err = b44_init_hw(bp); if (err) goto err_out_noinit; bp->flags |= B44_FLAG_INIT_COMPLETE; spin_unlock_irq(&bp->lock); init_timer(&bp->timer); bp->timer.expires = jiffies + HZ; bp->timer.data = (unsigned long) bp; bp->timer.function = b44_timer; add_timer(&bp->timer); b44_enable_ints(bp); return 0; err_out_noinit: b44_halt(bp); b44_free_rings(bp); spin_unlock_irq(&bp->lock); free_irq(dev->irq, dev); err_out_free: b44_free_consistent(bp); return err; } #if 0 /*static*/ void b44_dump_state(struct b44 *bp) { u32 val32, val32_2, val32_3, val32_4, val32_5; u16 val16; pci_read_config_word(bp->pdev, PCI_STATUS, &val16); printk("DEBUG: PCI status [%04x] \n", val16); } #endif static int b44_close(struct net_device *dev) { struct b44 *bp = dev->priv; netif_stop_queue(dev); del_timer_sync(&bp->timer); spin_lock_irq(&bp->lock); #if 0 b44_dump_state(bp); #endif b44_halt(bp); b44_free_rings(bp); bp->flags &= ~B44_FLAG_INIT_COMPLETE; netif_carrier_off(bp->dev); spin_unlock_irq(&bp->lock); free_irq(dev->irq, dev); b44_free_consistent(bp); return 0; } static struct net_device_stats *b44_get_stats(struct net_device *dev) { struct b44 *bp = dev->priv; struct net_device_stats *nstat = &bp->stats; struct b44_hw_stats *hwstat = &bp->hw_stats; /* Convert HW stats into netdevice stats. */ nstat->rx_packets = hwstat->rx_pkts; nstat->tx_packets = hwstat->tx_pkts; nstat->rx_bytes = hwstat->rx_octets; nstat->tx_bytes = hwstat->tx_octets; nstat->tx_errors = (hwstat->tx_jabber_pkts + hwstat->tx_oversize_pkts + hwstat->tx_underruns + hwstat->tx_excessive_cols + hwstat->tx_late_cols); nstat->multicast = hwstat->tx_multicast_pkts; nstat->collisions = hwstat->tx_total_cols; nstat->rx_length_errors = (hwstat->rx_oversize_pkts + hwstat->rx_undersize); nstat->rx_over_errors = hwstat->rx_missed_pkts; nstat->rx_frame_errors = hwstat->rx_align_errs; nstat->rx_crc_errors = hwstat->rx_crc_errs; nstat->rx_errors = (hwstat->rx_jabber_pkts + hwstat->rx_oversize_pkts + hwstat->rx_missed_pkts + hwstat->rx_crc_align_errs + hwstat->rx_undersize + hwstat->rx_crc_errs + hwstat->rx_align_errs + hwstat->rx_symbol_errs); nstat->tx_aborted_errors = hwstat->tx_underruns; nstat->tx_carrier_errors = hwstat->tx_carrier_lost; return nstat; } static void __b44_load_mcast(struct b44 *bp, struct net_device *dev) { struct dev_mc_list *mclist; int i, num_ents; num_ents = min_t(int, dev->mc_count, B44_MCAST_TABLE_SIZE); mclist = dev->mc_list; for (i = 0; mclist && i < num_ents; i++, mclist = mclist->next) { __b44_cam_write(bp, mclist->dmi_addr, i + 1); } } static void __b44_set_rx_mode(struct net_device *dev) { struct b44 *bp = dev->priv; u32 val; val = br32(B44_RXCONFIG); val &= ~(RXCONFIG_PROMISC | RXCONFIG_ALLMULTI); if (dev->flags & IFF_PROMISC) { val |= RXCONFIG_PROMISC; bw32(B44_RXCONFIG, val); } else { __b44_set_mac_addr(bp); if (dev->flags & IFF_ALLMULTI) val |= RXCONFIG_ALLMULTI; else __b44_load_mcast(bp, dev); bw32(B44_RXCONFIG, val); val = br32(B44_CAM_CTRL); bw32(B44_CAM_CTRL, val | CAM_CTRL_ENABLE); } } static void b44_set_rx_mode(struct net_device *dev) { struct b44 *bp = dev->priv; spin_lock_irq(&bp->lock); __b44_set_rx_mode(dev); spin_unlock_irq(&bp->lock); } static int b44_ethtool_ioctl (struct net_device *dev, void *useraddr) { struct b44 *bp = dev->priv; struct pci_dev *pci_dev = bp->pdev; u32 ethcmd; if (copy_from_user (ðcmd, useraddr, sizeof (ethcmd))) return -EFAULT; switch (ethcmd) { case ETHTOOL_GDRVINFO:{ struct ethtool_drvinfo info = { ETHTOOL_GDRVINFO }; strcpy (info.driver, DRV_MODULE_NAME); strcpy (info.version, DRV_MODULE_VERSION); memset(&info.fw_version, 0, sizeof(info.fw_version)); strcpy (info.bus_info, pci_name(pci_dev)); info.eedump_len = 0; info.regdump_len = 0; if (copy_to_user (useraddr, &info, sizeof (info))) return -EFAULT; return 0; } case ETHTOOL_GSET: { struct ethtool_cmd cmd = { ETHTOOL_GSET }; if (!(bp->flags & B44_FLAG_INIT_COMPLETE)) return -EAGAIN; cmd.supported = (SUPPORTED_Autoneg); cmd.supported |= (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_MII); cmd.advertising = 0; if (bp->flags & B44_FLAG_ADV_10HALF) cmd.advertising |= ADVERTISE_10HALF; if (bp->flags & B44_FLAG_ADV_10FULL) cmd.advertising |= ADVERTISE_10FULL; if (bp->flags & B44_FLAG_ADV_100HALF) cmd.advertising |= ADVERTISE_100HALF; if (bp->flags & B44_FLAG_ADV_100FULL) cmd.advertising |= ADVERTISE_100FULL; cmd.advertising |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; cmd.speed = (bp->flags & B44_FLAG_100_BASE_T) ? SPEED_100 : SPEED_10; cmd.duplex = (bp->flags & B44_FLAG_FULL_DUPLEX) ? DUPLEX_FULL : DUPLEX_HALF; cmd.port = 0; cmd.phy_address = bp->phy_addr; cmd.transceiver = (bp->flags & B44_FLAG_INTERNAL_PHY) ? XCVR_INTERNAL : XCVR_EXTERNAL; cmd.autoneg = (bp->flags & B44_FLAG_FORCE_LINK) ? AUTONEG_DISABLE : AUTONEG_ENABLE; cmd.maxtxpkt = 0; cmd.maxrxpkt = 0; if (copy_to_user(useraddr, &cmd, sizeof(cmd))) return -EFAULT; return 0; } case ETHTOOL_SSET: { struct ethtool_cmd cmd; if (!(bp->flags & B44_FLAG_INIT_COMPLETE)) return -EAGAIN; if (copy_from_user(&cmd, useraddr, sizeof(cmd))) return -EFAULT; /* We do not support gigabit. */ if (cmd.autoneg == AUTONEG_ENABLE) { if (cmd.advertising & (ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full)) return -EINVAL; } else if ((cmd.speed != SPEED_100 && cmd.speed != SPEED_10) || (cmd.duplex != DUPLEX_HALF && cmd.duplex != DUPLEX_FULL)) { return -EINVAL; } spin_lock_irq(&bp->lock); if (cmd.autoneg == AUTONEG_ENABLE) { bp->flags &= ~B44_FLAG_FORCE_LINK; bp->flags &= ~(B44_FLAG_ADV_10HALF | B44_FLAG_ADV_10FULL | B44_FLAG_ADV_100HALF | B44_FLAG_ADV_100FULL); if (cmd.advertising & ADVERTISE_10HALF) bp->flags |= B44_FLAG_ADV_10HALF; if (cmd.advertising & ADVERTISE_10FULL) bp->flags |= B44_FLAG_ADV_10FULL; if (cmd.advertising & ADVERTISE_100HALF) bp->flags |= B44_FLAG_ADV_100HALF; if (cmd.advertising & ADVERTISE_100FULL) bp->flags |= B44_FLAG_ADV_100FULL; } else { bp->flags |= B44_FLAG_FORCE_LINK; if (cmd.speed == SPEED_100) bp->flags |= B44_FLAG_100_BASE_T; if (cmd.duplex == DUPLEX_FULL) bp->flags |= B44_FLAG_FULL_DUPLEX; } b44_setup_phy(bp); spin_unlock_irq(&bp->lock); return 0; } case ETHTOOL_GMSGLVL: { struct ethtool_value edata = { ETHTOOL_GMSGLVL }; edata.data = bp->msg_enable; if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; } case ETHTOOL_SMSGLVL: { struct ethtool_value edata; if (copy_from_user(&edata, useraddr, sizeof(edata))) return -EFAULT; bp->msg_enable = edata.data; return 0; } case ETHTOOL_NWAY_RST: { u32 bmcr; int r; spin_lock_irq(&bp->lock); b44_readphy(bp, MII_BMCR, &bmcr); b44_readphy(bp, MII_BMCR, &bmcr); r = -EINVAL; if (bmcr & BMCR_ANENABLE) { b44_writephy(bp, MII_BMCR, bmcr | BMCR_ANRESTART); r = 0; } spin_unlock_irq(&bp->lock); return r; } case ETHTOOL_GLINK: { struct ethtool_value edata = { ETHTOOL_GLINK }; edata.data = netif_carrier_ok(bp->dev) ? 1 : 0; if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; } case ETHTOOL_GRINGPARAM: { struct ethtool_ringparam ering = { ETHTOOL_GRINGPARAM }; ering.rx_max_pending = B44_RX_RING_SIZE - 1; ering.rx_pending = bp->rx_pending; /* XXX ethtool lacks a tx_max_pending, oops... */ if (copy_to_user(useraddr, &ering, sizeof(ering))) return -EFAULT; return 0; } case ETHTOOL_SRINGPARAM: { struct ethtool_ringparam ering; if (copy_from_user(&ering, useraddr, sizeof(ering))) return -EFAULT; if ((ering.rx_pending > B44_RX_RING_SIZE - 1) || (ering.rx_mini_pending != 0) || (ering.rx_jumbo_pending != 0) || (ering.tx_pending > B44_TX_RING_SIZE - 1)) return -EINVAL; spin_lock_irq(&bp->lock); bp->rx_pending = ering.rx_pending; bp->tx_pending = ering.tx_pending; b44_halt(bp); b44_init_rings(bp); b44_init_hw(bp); netif_wake_queue(bp->dev); spin_unlock_irq(&bp->lock); b44_enable_ints(bp); return 0; } case ETHTOOL_GPAUSEPARAM: { struct ethtool_pauseparam epause = { ETHTOOL_GPAUSEPARAM }; epause.autoneg = (bp->flags & B44_FLAG_PAUSE_AUTO) != 0; epause.rx_pause = (bp->flags & B44_FLAG_RX_PAUSE) != 0; epause.tx_pause = (bp->flags & B44_FLAG_TX_PAUSE) != 0; if (copy_to_user(useraddr, &epause, sizeof(epause))) return -EFAULT; return 0; } case ETHTOOL_SPAUSEPARAM: { struct ethtool_pauseparam epause; if (copy_from_user(&epause, useraddr, sizeof(epause))) return -EFAULT; spin_lock_irq(&bp->lock); if (epause.autoneg) bp->flags |= B44_FLAG_PAUSE_AUTO; else bp->flags &= ~B44_FLAG_PAUSE_AUTO; if (epause.rx_pause) bp->flags |= B44_FLAG_RX_PAUSE; else bp->flags &= ~B44_FLAG_RX_PAUSE; if (epause.tx_pause) bp->flags |= B44_FLAG_TX_PAUSE; else bp->flags &= ~B44_FLAG_TX_PAUSE; if (bp->flags & B44_FLAG_PAUSE_AUTO) { b44_halt(bp); b44_init_rings(bp); b44_init_hw(bp); } else { __b44_set_flow_ctrl(bp, bp->flags); } spin_unlock_irq(&bp->lock); b44_enable_ints(bp); return 0; } }; return -EOPNOTSUPP; } static int b44_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct mii_ioctl_data *data = (struct mii_ioctl_data *)&ifr->ifr_data; struct b44 *bp = dev->priv; int err; switch (cmd) { case SIOCETHTOOL: return b44_ethtool_ioctl(dev, (void *) ifr->ifr_data); case SIOCGMIIPHY: data->phy_id = bp->phy_addr; /* fallthru */ case SIOCGMIIREG: { u32 mii_regval; spin_lock_irq(&bp->lock); err = b44_readphy(bp, data->reg_num & 0x1f, &mii_regval); spin_unlock_irq(&bp->lock); data->val_out = mii_regval; return err; } case SIOCSMIIREG: if (!capable(CAP_NET_ADMIN)) return -EPERM; spin_lock_irq(&bp->lock); err = b44_writephy(bp, data->reg_num & 0x1f, data->val_in); spin_unlock_irq(&bp->lock); return err; default: /* do nothing */ break; }; return -EOPNOTSUPP; } /* Read 128-bytes of EEPROM. */ static int b44_read_eeprom(struct b44 *bp, u8 *data) { long i; u16 *ptr = (u16 *) data; for (i = 0; i < 128; i += 2) ptr[i / 2] = readw(bp->regs + 4096 + i); return 0; } static int __devinit b44_get_invariants(struct b44 *bp) { u8 eeprom[128]; int err; err = b44_read_eeprom(bp, &eeprom[0]); if (err) goto out; bp->dev->dev_addr[0] = eeprom[79]; bp->dev->dev_addr[1] = eeprom[78]; bp->dev->dev_addr[2] = eeprom[81]; bp->dev->dev_addr[3] = eeprom[80]; bp->dev->dev_addr[4] = eeprom[83]; bp->dev->dev_addr[5] = eeprom[82]; bp->phy_addr = eeprom[90] & 0x1f; bp->mdc_port = (eeprom[90] >> 14) & 0x1; /* With this, plus the rx_header prepended to the data by the * hardware, we'll land the ethernet header on a 2-byte boundary. */ bp->rx_offset = 30; bp->imask = IMASK_DEF; bp->core_unit = ssb_core_unit(bp); bp->dma_offset = ssb_get_addr(bp, SBID_PCI_DMA, 0); /* XXX - really required? bp->flags |= B44_FLAG_BUGGY_TXPTR; */ out: return err; } static int __devinit b44_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { static int b44_version_printed = 0; unsigned long b44reg_base, b44reg_len; struct net_device *dev; struct b44 *bp; int err, i; if (b44_version_printed++ == 0) printk(KERN_INFO "%s", version); err = pci_enable_device(pdev); if (err) { printk(KERN_ERR PFX "Cannot enable PCI device, " "aborting.\n"); return err; } if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { printk(KERN_ERR PFX "Cannot find proper PCI device " "base address, aborting.\n"); err = -ENODEV; goto err_out_disable_pdev; } err = pci_request_regions(pdev, DRV_MODULE_NAME); if (err) { printk(KERN_ERR PFX "Cannot obtain PCI resources, " "aborting.\n"); goto err_out_disable_pdev; } pci_set_master(pdev); err = pci_set_dma_mask(pdev, (u64) 0xffffffff); if (err) { printk(KERN_ERR PFX "No usable DMA configuration, " "aborting.\n"); goto err_out_free_res; } b44reg_base = pci_resource_start(pdev, 0); b44reg_len = pci_resource_len(pdev, 0); dev = alloc_etherdev(sizeof(*bp)); if (!dev) { printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n"); err = -ENOMEM; goto err_out_free_res; } SET_MODULE_OWNER(dev); /* No interesting netdevice features in this card... */ dev->features |= 0; bp = dev->priv; bp->pdev = pdev; bp->dev = dev; if (b44_debug >= 0) bp->msg_enable = (1 << b44_debug) - 1; else bp->msg_enable = B44_DEF_MSG_ENABLE; spin_lock_init(&bp->lock); bp->regs = (unsigned long) ioremap(b44reg_base, b44reg_len); if (bp->regs == 0UL) { printk(KERN_ERR PFX "Cannot map device registers, " "aborting.\n"); err = -ENOMEM; goto err_out_free_dev; } bp->rx_pending = B44_DEF_RX_RING_PENDING; bp->tx_pending = B44_DEF_TX_RING_PENDING; dev->open = b44_open; dev->stop = b44_close; dev->hard_start_xmit = b44_start_xmit; dev->get_stats = b44_get_stats; dev->set_multicast_list = b44_set_rx_mode; dev->set_mac_address = b44_set_mac_addr; dev->do_ioctl = b44_ioctl; dev->tx_timeout = b44_tx_timeout; dev->poll = b44_poll; dev->weight = 64; dev->watchdog_timeo = B44_TX_TIMEOUT; dev->change_mtu = b44_change_mtu; dev->irq = pdev->irq; err = b44_get_invariants(bp); if (err) { printk(KERN_ERR PFX "Problem fetching invariants of chip, " "aborting.\n"); goto err_out_iounmap; } /* By default, advertise all speed/duplex settings. */ bp->flags |= (B44_FLAG_ADV_10HALF | B44_FLAG_ADV_10FULL | B44_FLAG_ADV_100HALF | B44_FLAG_ADV_100FULL); /* By default, auto-negotiate PAUSE. */ bp->flags |= B44_FLAG_PAUSE_AUTO; err = register_netdev(dev); if (err) { printk(KERN_ERR PFX "Cannot register net device, " "aborting.\n"); goto err_out_iounmap; } pci_set_drvdata(pdev, dev); pci_save_state(bp->pdev, bp->pci_cfg_state); printk(KERN_INFO "%s: Broadcom 4400 10/100BaseT Ethernet ", dev->name); for (i = 0; i < 6; i++) printk("%2.2x%c", dev->dev_addr[i], i == 5 ? '\n' : ':'); return 0; err_out_iounmap: iounmap((void *) bp->regs); err_out_free_dev: free_netdev(dev); err_out_free_res: pci_release_regions(pdev); err_out_disable_pdev: pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); return err; } static void __devexit b44_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); if (dev) { unregister_netdev(dev); iounmap((void *) ((struct b44 *)(dev->priv))->regs); free_netdev(dev); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); } } static int b44_suspend(struct pci_dev *pdev, u32 state) { struct net_device *dev = pci_get_drvdata(pdev); struct b44 *bp = dev->priv; if (!netif_running(dev)) return 0; del_timer_sync(&bp->timer); spin_lock_irq(&bp->lock); b44_halt(bp); netif_carrier_off(bp->dev); netif_device_detach(bp->dev); b44_free_rings(bp); spin_unlock_irq(&bp->lock); return 0; } static int b44_resume(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct b44 *bp = dev->priv; if (!netif_running(dev)) return 0; spin_lock_irq(&bp->lock); b44_init_rings(bp); b44_init_hw(bp); netif_device_attach(bp->dev); spin_unlock_irq(&bp->lock); bp->timer.expires = jiffies + HZ; add_timer(&bp->timer); b44_enable_ints(bp); return 0; } static struct pci_driver b44_driver = { .name = DRV_MODULE_NAME, .id_table = b44_pci_tbl, .probe = b44_init_one, .remove = __devexit_p(b44_remove_one), .suspend = b44_suspend, .resume = b44_resume, }; static int __init b44_init(void) { return pci_module_init(&b44_driver); } static void __exit b44_cleanup(void) { pci_unregister_driver(&b44_driver); } module_init(b44_init); module_exit(b44_cleanup);