URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [drivers/] [net/] [cirrus.c] - Rev 1765
Compare with Previous | Blame | View Log
/* * linux/drivers/net/cirrus.c * * Author: Abraham van der Merwe <abraham@2d3d.co.za> * * A Cirrus Logic CS8900A driver for Linux * based on the cs89x0 driver written by Russell Nelson, * Donald Becker, and others. * * This source code is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. */ /* * At the moment the driver does not support memory mode operation. * It is trivial to implement this, but not worth the effort. */ /* * TODO: * * 1. If !ready in send_start(), queue buffer and send it in interrupt handler * when we receive a BufEvent with Rdy4Tx, send it again. dangerous! * 2. how do we prevent interrupt handler destroying integrity of get_stats()? * 3. Change reset code to check status. * 4. Implement set_mac_address and remove fake mac address * 5. Link status detection stuff * 6. Write utility to write EEPROM, do self testing, etc. * 7. Implement DMA routines (I need a board w/ DMA support for that) * 8. Power management * 9. Add support for multiple ethernet chips * 10. Add support for other cs89xx chips (need hardware for that) */ #include <linux/config.h> #include <linux/version.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/init.h> #include <linux/delay.h> #include <asm/irq.h> #include <asm/hardware.h> #include <asm/io.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include "cirrus.h" /* #define DEBUG */ /* #define FULL_DUPLEX */ #ifdef CONFIG_SA1100_FRODO # define CIRRUS_DEFAULT_IO FRODO_ETH_IO + 0x300 # define CIRRUS_DEFAULT_IRQ FRODO_ETH_IRQ #elif CONFIG_SA1100_CERF # define CIRRUS_DEFAULT_IO CERF_ETH_IO + 0x300 # define CIRRUS_DEFAULT_IRQ CERF_ETH_IRQ #elif CONFIG_ARCH_CDB89712 # define CIRRUS_DEFAULT_IO ETHER_BASE + 0x300 # define CIRRUS_DEFAULT_IRQ IRQ_EINT3 #else # define CIRRUS_DEFAULT_IO 0 # define CIRRUS_DEFAULT_IRQ 0 #endif /* #ifdef CONFIG_SA1100_CERF */ typedef struct { struct net_device_stats stats; u16 txlen; } cirrus_t; typedef struct { u16 io_base; /* I/O Base Address */ u16 irq; /* Interrupt Number */ u16 dma; /* DMA Channel Numbers */ u32 mem_base; /* Memory Base Address */ u32 rom_base; /* Boot PROM Base Address */ u32 rom_mask; /* Boot PROM Address Mask */ u8 mac[6]; /* Individual Address */ } cirrus_eeprom_t; /* * I/O routines */ static inline u16 cirrus_read (struct net_device *dev,u16 reg) { outw (reg,dev->base_addr + PP_Address); return (inw (dev->base_addr + PP_Data)); } static inline void cirrus_write (struct net_device *dev,u16 reg,u16 value) { outw (reg,dev->base_addr + PP_Address); outw (value,dev->base_addr + PP_Data); } static inline void cirrus_set (struct net_device *dev,u16 reg,u16 value) { cirrus_write (dev,reg,cirrus_read (dev,reg) | value); } static inline void cirrus_clear (struct net_device *dev,u16 reg,u16 value) { cirrus_write (dev,reg,cirrus_read (dev,reg) & ~value); } static inline void cirrus_frame_read (struct net_device *dev,struct sk_buff *skb,u16 length) { insw (dev->base_addr,skb_put (skb,length),(length + 1) / 2); } static inline void cirrus_frame_write (struct net_device *dev,struct sk_buff *skb) { outsw (dev->base_addr,skb->data,(skb->len + 1) / 2); } /* * Debugging functions */ #ifdef DEBUG static inline int printable (int c) { return ((c >= 32 && c <= 126) || (c >= 174 && c <= 223) || (c >= 242 && c <= 243) || (c >= 252 && c <= 253)); } static void dump16 (struct net_device *dev,const u8 *s,size_t len) { int i; char str[128]; if (!len) return; *str = '\0'; for (i = 0; i < len; i++) { if (i && !(i % 4)) strcat (str," "); sprintf (str,"%s%.2x ",str,s[i]); } for ( ; i < 16; i++) { if (i && !(i % 4)) strcat (str," "); strcat (str," "); } strcat (str," "); for (i = 0; i < len; i++) sprintf (str,"%s%c",str,printable (s[i]) ? s[i] : '.'); printk (KERN_DEBUG "%s: %s\n",dev->name,str); } static void hexdump (struct net_device *dev,const void *ptr,size_t size) { const u8 *s = (u8 *) ptr; int i; for (i = 0; i < size / 16; i++, s += 16) dump16 (dev,s,16); dump16 (dev,s,size % 16); } static void dump_packet (struct net_device *dev,struct sk_buff *skb,const char *type) { printk (KERN_INFO "%s: %s %d byte frame %.2x:%.2x:%.2x:%.2x:%.2x:%.2x to %.2x:%.2x:%.2x:%.2x:%.2x:%.2x type %.4x\n", dev->name, type, skb->len, skb->data[0],skb->data[1],skb->data[2],skb->data[3],skb->data[4],skb->data[5], skb->data[6],skb->data[7],skb->data[8],skb->data[9],skb->data[10],skb->data[11], (skb->data[12] << 8) | skb->data[13]); if (skb->len < 0x100) hexdump (dev,skb->data,skb->len); } #endif /* #ifdef DEBUG */ /* * Driver functions */ static void cirrus_receive (struct net_device *dev) { cirrus_t *priv = (cirrus_t *) dev->priv; struct sk_buff *skb; u16 status,length; status = cirrus_read (dev,PP_RxStatus); length = cirrus_read (dev,PP_RxLength); if (!(status & RxOK)) { priv->stats.rx_errors++; if ((status & (Runt | Extradata))) priv->stats.rx_length_errors++; if ((status & CRCerror)) priv->stats.rx_crc_errors++; return; } if ((skb = dev_alloc_skb (length + 4)) == NULL) { priv->stats.rx_dropped++; return; } skb->dev = dev; skb_reserve (skb,2); cirrus_frame_read (dev,skb,length); #ifdef DEBUG dump_packet (dev,skb,"recv"); #endif /* #ifdef DEBUG */ skb->protocol = eth_type_trans (skb,dev); netif_rx (skb); dev->last_rx = jiffies; priv->stats.rx_packets++; priv->stats.rx_bytes += length; } static int cirrus_send_start (struct sk_buff *skb,struct net_device *dev) { cirrus_t *priv = (cirrus_t *) dev->priv; u16 status; netif_stop_queue (dev); cirrus_write (dev,PP_TxCMD,TxStart (After5)); cirrus_write (dev,PP_TxLength,skb->len); status = cirrus_read (dev,PP_BusST); if ((status & TxBidErr)) { printk (KERN_WARNING "%s: Invalid frame size %d!\n",dev->name,skb->len); priv->stats.tx_errors++; priv->stats.tx_aborted_errors++; priv->txlen = 0; return (1); } if (!(status & Rdy4TxNOW)) { printk (KERN_WARNING "%s: Transmit buffer not free!\n",dev->name); priv->stats.tx_errors++; priv->txlen = 0; /* FIXME: store skb and send it in interrupt handler */ return (1); } cirrus_frame_write (dev,skb); #ifdef DEBUG dump_packet (dev,skb,"send"); #endif /* #ifdef DEBUG */ dev->trans_start = jiffies; dev_kfree_skb (skb); priv->txlen = skb->len; return (0); } static void cirrus_interrupt (int irq,void *id,struct pt_regs *regs) { struct net_device *dev = (struct net_device *) id; cirrus_t *priv; u16 status; if (dev->priv == NULL) { printk (KERN_WARNING "%s: irq %d for unknown device.\n",dev->name,irq); return; } priv = (cirrus_t *) dev->priv; while ((status = cirrus_read (dev,PP_ISQ))) { switch (RegNum (status)) { case RxEvent: cirrus_receive (dev); break; case TxEvent: priv->stats.collisions += ColCount (cirrus_read (dev,PP_TxCOL)); if (!(RegContent (status) & TxOK)) { priv->stats.tx_errors++; if ((RegContent (status) & Out_of_window)) priv->stats.tx_window_errors++; if ((RegContent (status) & Jabber)) priv->stats.tx_aborted_errors++; break; } else if (priv->txlen) { priv->stats.tx_packets++; priv->stats.tx_bytes += priv->txlen; } priv->txlen = 0; netif_wake_queue (dev); break; case BufEvent: if ((RegContent (status) & RxMiss)) { u16 missed = MissCount (cirrus_read (dev,PP_RxMISS)); priv->stats.rx_errors += missed; priv->stats.rx_missed_errors += missed; } if ((RegContent (status) & TxUnderrun)) { priv->stats.tx_errors++; priv->stats.tx_fifo_errors++; } /* FIXME: if Rdy4Tx, transmit last sent packet (if any) */ priv->txlen = 0; netif_wake_queue (dev); break; case TxCOL: priv->stats.collisions += ColCount (cirrus_read (dev,PP_TxCOL)); break; case RxMISS: status = MissCount (cirrus_read (dev,PP_RxMISS)); priv->stats.rx_errors += status; priv->stats.rx_missed_errors += status; break; } } } static void cirrus_transmit_timeout (struct net_device *dev) { cirrus_t *priv = (cirrus_t *) dev->priv; priv->stats.tx_errors++; priv->stats.tx_heartbeat_errors++; priv->txlen = 0; netif_wake_queue (dev); } static int cirrus_start (struct net_device *dev) { int result; /* valid ethernet address? */ if (!is_valid_ether_addr(dev->dev_addr)) { printk(KERN_ERR "%s: invalid ethernet MAC address\n",dev->name); return (-EINVAL); } /* install interrupt handler */ if ((result = request_irq (dev->irq,&cirrus_interrupt,0,dev->name,dev)) < 0) { printk (KERN_ERR "%s: could not register interrupt %d\n",dev->name,dev->irq); return (result); } /* enable the ethernet controller */ cirrus_set (dev,PP_RxCFG,RxOKiE | BufferCRC | CRCerroriE | RuntiE | ExtradataiE); cirrus_set (dev,PP_RxCTL,RxOKA | IndividualA | BroadcastA); cirrus_set (dev,PP_TxCFG,TxOKiE | Out_of_windowiE | JabberiE); cirrus_set (dev,PP_BufCFG,Rdy4TxiE | RxMissiE | TxUnderruniE | TxColOvfiE | MissOvfloiE); cirrus_set (dev,PP_LineCTL,SerRxON | SerTxON); cirrus_set (dev,PP_BusCTL,EnableRQ); #ifdef FULL_DUPLEX cirrus_set (dev,PP_TestCTL,FDX); #endif /* #ifdef FULL_DUPLEX */ /* start the queue */ netif_start_queue (dev); MOD_INC_USE_COUNT; return (0); } static int cirrus_stop (struct net_device *dev) { /* disable ethernet controller */ cirrus_write (dev,PP_BusCTL,0); cirrus_write (dev,PP_TestCTL,0); cirrus_write (dev,PP_SelfCTL,0); cirrus_write (dev,PP_LineCTL,0); cirrus_write (dev,PP_BufCFG,0); cirrus_write (dev,PP_TxCFG,0); cirrus_write (dev,PP_RxCTL,0); cirrus_write (dev,PP_RxCFG,0); /* uninstall interrupt handler */ free_irq (dev->irq,dev); /* stop the queue */ netif_stop_queue (dev); MOD_DEC_USE_COUNT; return (0); } static int cirrus_set_mac_address (struct net_device *dev, void *p) { struct sockaddr *addr = (struct sockaddr *)p; int i; if (netif_running(dev)) return -EBUSY; memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); /* configure MAC address */ for (i = 0; i < ETH_ALEN; i += 2) cirrus_write (dev,PP_IA + i,dev->dev_addr[i] | (dev->dev_addr[i + 1] << 8)); return 0; } static struct net_device_stats *cirrus_get_stats (struct net_device *dev) { cirrus_t *priv = (cirrus_t *) dev->priv; return (&priv->stats); } static void cirrus_set_receive_mode (struct net_device *dev) { if ((dev->flags & IFF_PROMISC)) cirrus_set (dev,PP_RxCTL,PromiscuousA); else cirrus_clear (dev,PP_RxCTL,PromiscuousA); if ((dev->flags & IFF_ALLMULTI) && dev->mc_list) cirrus_set (dev,PP_RxCTL,MulticastA); else cirrus_clear (dev,PP_RxCTL,MulticastA); } static int cirrus_eeprom_wait (struct net_device *dev) { int i; for (i = 0; i < 200; i++) { if (!(cirrus_read (dev,PP_SelfST) & SIBUSY)) return (0); udelay (1); } return (-1); } static int cirrus_eeprom_read (struct net_device *dev,u16 *value,u16 offset) { if (cirrus_eeprom_wait (dev) < 0) return (-1); cirrus_write (dev,PP_EEPROMCommand,offset | EEReadRegister); if (cirrus_eeprom_wait (dev) < 0) return (-1); *value = cirrus_read (dev,PP_EEPROMData); return (0); } static int cirrus_eeprom (struct net_device *dev,cirrus_eeprom_t *eeprom) { u16 offset,buf[16],*word; u8 checksum = 0,*byte; if (cirrus_eeprom_read (dev,buf,0) < 0) { read_timed_out: printk (KERN_DEBUG "%s: EEPROM read timed out\n",dev->name); return (-ETIMEDOUT); } if ((buf[0] >> 8) != 0xa1) { printk (KERN_DEBUG "%s: No EEPROM present\n",dev->name); return (-ENODEV); } if ((buf[0] & 0xff) < sizeof (buf)) { eeprom_too_small: printk (KERN_DEBUG "%s: EEPROM too small\n",dev->name); return (-ENODEV); } for (offset = 1; offset < (buf[0] & 0xff); offset++) { if (cirrus_eeprom_read (dev,buf + offset,offset) < 0) goto read_timed_out; if (buf[offset] == 0xffff) goto eeprom_too_small; } if (buf[1] != 0x2020) { printk (KERN_DEBUG "%s: Group Header #1 mismatch\n",dev->name); return (-EIO); } if (buf[5] != 0x502c) { printk (KERN_DEBUG "%s: Group Header #2 mismatch\n",dev->name); return (-EIO); } if (buf[12] != 0x2158) { printk (KERN_DEBUG "%s: Group Header #3 mismatch\n",dev->name); return (-EIO); } eeprom->io_base = buf[2]; eeprom->irq = buf[3]; eeprom->dma = buf[4]; eeprom->mem_base = (buf[7] << 16) | buf[6]; eeprom->rom_base = (buf[9] << 16) | buf[8]; eeprom->rom_mask = (buf[11] << 16) | buf[10]; word = (u16 *) eeprom->mac; for (offset = 0; offset < 3; offset++) word[offset] = buf[13 + offset]; byte = (u8 *) buf; for (offset = 0; offset < sizeof (buf); offset++) checksum += byte[offset]; if (cirrus_eeprom_read (dev,&offset,0x10) < 0) goto read_timed_out; if ((offset >> 8) != (u8) (0x100 - checksum)) { printk (KERN_DEBUG "%s: Checksum mismatch (expected 0x%.2x, got 0x%.2x instead\n", dev->name, (u8) (0x100 - checksum), offset >> 8); return (-EIO); } return (0); } /* * Architecture dependant code */ #ifdef CONFIG_SA1100_FRODO static void frodo_reset (struct net_device *dev) { int i; volatile u16 value; /* reset ethernet controller */ FRODO_CPLD_ETHERNET |= FRODO_ETH_RESET; mdelay (50); FRODO_CPLD_ETHERNET &= ~FRODO_ETH_RESET; mdelay (50); /* we tied SBHE to CHIPSEL, so each memory access ensure the chip is in 16-bit mode */ for (i = 0; i < 3; i++) value = cirrus_read (dev,0); /* FIXME: poll status bit */ } #endif /* #ifdef CONFIG_SA1100_FRODO */ /* * Driver initialization routines */ static int io = 0; static int irq = 0; int __init cirrus_probe (struct net_device *dev) { static cirrus_t priv; int i,result; u16 value; cirrus_eeprom_t eeprom; printk ("Cirrus Logic CS8900A driver for Linux (V0.02)\n"); memset (&priv,0,sizeof (cirrus_t)); ether_setup (dev); dev->open = cirrus_start; dev->stop = cirrus_stop; dev->hard_start_xmit = cirrus_send_start; dev->get_stats = cirrus_get_stats; dev->set_multicast_list = cirrus_set_receive_mode; dev->set_mac_address = cirrus_set_mac_address; dev->tx_timeout = cirrus_transmit_timeout; dev->watchdog_timeo = HZ; dev->dev_addr[0] = 0x00; dev->dev_addr[1] = 0x00; dev->dev_addr[2] = 0x00; dev->dev_addr[3] = 0x00; dev->dev_addr[4] = 0x00; dev->dev_addr[5] = 0x00; dev->if_port = IF_PORT_10BASET; dev->priv = (void *) &priv; SET_MODULE_OWNER (dev); dev->base_addr = CIRRUS_DEFAULT_IO; dev->irq = CIRRUS_DEFAULT_IRQ; /* module parameters override everything */ if (io > 0) dev->base_addr = io; if (irq > 0) dev->irq = irq; if (!dev->base_addr) { printk (KERN_ERR "%s: No default I/O base address defined. Use io=... or\n" "%s: define CIRRUS_DEFAULT_IO for your platform\n", dev->name,dev->name); return (-EINVAL); } if (!dev->irq) { printk (KERN_ERR "%s: No default IRQ number defined. Use irq=... or\n" "%s: define CIRRUS_DEFAULT_IRQ for your platform\n", dev->name,dev->name); return (-EINVAL); } if ((result = check_region (dev->base_addr,16))) { printk (KERN_ERR "%s: can't get I/O port address 0x%lx\n",dev->name,dev->base_addr); return (result); } if (!request_region (dev->base_addr,16,dev->name)) return -EBUSY; #ifdef CONFIG_SA1100_FRODO frodo_reset (dev); #endif /* #ifdef CONFIG_SA1100_FRODO */ /* if an EEPROM is present, use it's MAC address */ if (!cirrus_eeprom (dev,&eeprom)) for (i = 0; i < 6; i++) dev->dev_addr[i] = eeprom.mac[i]; /* verify EISA registration number for Cirrus Logic */ if ((value = cirrus_read (dev,PP_ProductID)) != EISA_REG_CODE) { printk (KERN_ERR "%s: incorrect signature 0x%.4x\n",dev->name,value); return (-ENXIO); } /* verify chip version */ value = cirrus_read (dev,PP_ProductID + 2); if (VERSION (value) != CS8900A) { printk (KERN_ERR "%s: unknown chip version 0x%.8x\n",dev->name,VERSION (value)); return (-ENXIO); } printk (KERN_INFO "%s: CS8900A rev %c detected\n",dev->name,'B' + REVISION (value) - REV_B); /* setup interrupt number */ cirrus_write (dev,PP_IntNum,0); /* configure MAC address */ for (i = 0; i < ETH_ALEN; i += 2) cirrus_write (dev,PP_IA + i,dev->dev_addr[i] | (dev->dev_addr[i + 1] << 8)); return (0); } EXPORT_NO_SYMBOLS; static struct net_device dev; static int __init cirrus_init (void) { memset (&dev,0,sizeof (struct net_device)); dev.init = cirrus_probe; return (register_netdev (&dev)); } static void __exit cirrus_cleanup (void) { release_region (dev.base_addr,16); unregister_netdev (&dev); } MODULE_AUTHOR ("Abraham van der Merwe <abraham@2d3d.co.za>"); MODULE_DESCRIPTION ("Cirrus Logic CS8900A driver for Linux (V0.02)"); MODULE_LICENSE ("GPL"); MODULE_PARM_DESC (io,"I/O Base Address"); MODULE_PARM (io,"i"); MODULE_PARM_DESC (irq,"IRQ Number"); MODULE_PARM (irq,"i"); module_init (cirrus_init); module_exit (cirrus_cleanup);