OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [drivers/] [net/] [e1000/] [e1000_main.c] - Rev 1765

Compare with Previous | Blame | View Log

/*******************************************************************************
 
 
  Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
 
  This program is free software; you can redistribute it and/or modify it 
  under the terms of the GNU General Public License as published by the Free 
  Software Foundation; either version 2 of the License, or (at your option) 
  any later version.
 
  This program is distributed in the hope that it will be useful, but WITHOUT 
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
  more details.
 
  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc., 59 
  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 
  The full GNU General Public License is included in this distribution in the
  file called LICENSE.
 
  Contact Information:
  Linux NICS <linux.nics@intel.com>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 
*******************************************************************************/
 
#include "e1000.h"
 
/* Change Log
 *
 * 5.2.30.1	1/29/03
 *   o Set VLAN filtering to IEEE 802.1Q after reset so we don't break
 *     SoL connections that use VLANs.
 *   o Allow 1000/Full setting for AutoNeg param for Fiber connections
 *     Jon D Mason [jonmason@us.ibm.com].
 *   o Race between Tx queue and Tx clean fixed with a spin lock.
 *   o Added netpoll support.
 *   o Fixed endianess bug causing ethtool loopback diags to fail on ppc.
 *   o Use pdev->irq rather than netdev->irq in preparation for MSI support.
 *   o Report driver message on user override of InterruptThrottleRate
 *     module parameter.
 *   o Change I/O address storage from uint32_t to unsigned long.
 *
 * 5.2.22	10/15/03
 *   o Bug fix: SERDES devices might be connected to a back-plane
 *     switch that doesn't support auto-neg, so add the capability
 *     to force 1000/Full.  Also, since forcing 1000/Full, sample
 *     RxSynchronize bit to detect link state.
 *   o Bug fix: Flow control settings for hi/lo watermark didn't
 *     consider changes in the Rx FIFO size, which could occur with
 *     Jumbo Frames or with the reduced FIFO in 82547.
 *   o Better propagation of error codes. [Janice Girouard 
 *     (janiceg@us.ibm.com)].
 *   o Bug fix: hang under heavy Tx stress when running out of Tx
 *     descriptors; wasn't clearing context descriptor when backing
 *     out of send because of no-resource condition.
 *   o Bug fix: check netif_running in dev->poll so we don't have to
 *     hang in dev->close until all polls are finished.  [Robert
 *     Ollson (robert.olsson@data.slu.se)].
 *   o Revert TxDescriptor ring size back to 256 since change to 1024
 *     wasn't accepted into the kernel.
 *
 * 5.2.16	8/8/03
 */
 
char e1000_driver_name[] = "e1000";
char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
char e1000_driver_version[] = "5.2.30.1-k1";
char e1000_copyright[] = "Copyright (c) 1999-2004 Intel Corporation.";
 
/* e1000_pci_tbl - PCI Device ID Table
 *
 * Wildcard entries (PCI_ANY_ID) should come last
 * Last entry must be all 0s
 *
 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
 *   Class, Class Mask, private data (not used) }
 */
static struct pci_device_id e1000_pci_tbl[] = {
	{0x8086, 0x1000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x1001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x1004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x1008, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x1009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x100C, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x100D, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x100E, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x100F, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x1010, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x1011, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x1012, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x1013, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x1015, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x1016, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x1017, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x1018, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x1019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x101D, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x101E, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x1026, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x1027, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x1028, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x1075, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x1076, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x1077, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x1078, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x1079, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x107A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	{0x8086, 0x107B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
	/* required last entry */
	{0,}
};
 
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
 
int e1000_up(struct e1000_adapter *adapter);
void e1000_down(struct e1000_adapter *adapter);
void e1000_reset(struct e1000_adapter *adapter);
int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
int e1000_setup_tx_resources(struct e1000_adapter *adapter);
int e1000_setup_rx_resources(struct e1000_adapter *adapter);
void e1000_free_tx_resources(struct e1000_adapter *adapter);
void e1000_free_rx_resources(struct e1000_adapter *adapter);
void e1000_update_stats(struct e1000_adapter *adapter);
 
/* Local Function Prototypes */
 
static int e1000_init_module(void);
static void e1000_exit_module(void);
static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
static void __devexit e1000_remove(struct pci_dev *pdev);
static int e1000_sw_init(struct e1000_adapter *adapter);
static int e1000_open(struct net_device *netdev);
static int e1000_close(struct net_device *netdev);
static void e1000_configure_tx(struct e1000_adapter *adapter);
static void e1000_configure_rx(struct e1000_adapter *adapter);
static void e1000_setup_rctl(struct e1000_adapter *adapter);
static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
static void e1000_set_multi(struct net_device *netdev);
static void e1000_update_phy_info(unsigned long data);
static void e1000_watchdog(unsigned long data);
static void e1000_82547_tx_fifo_stall(unsigned long data);
static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
static int e1000_set_mac(struct net_device *netdev, void *p);
static inline void e1000_irq_disable(struct e1000_adapter *adapter);
static inline void e1000_irq_enable(struct e1000_adapter *adapter);
static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
#ifdef CONFIG_E1000_NAPI
static int e1000_clean(struct net_device *netdev, int *budget);
static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
                                    int *work_done, int work_to_do);
#else
static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
#endif
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
			   int cmd);
static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
static inline void e1000_rx_checksum(struct e1000_adapter *adapter,
                                     struct e1000_rx_desc *rx_desc,
                                     struct sk_buff *skb);
static void e1000_tx_timeout(struct net_device *dev);
static void e1000_tx_timeout_task(struct net_device *dev);
static void e1000_smartspeed(struct e1000_adapter *adapter);
static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
					      struct sk_buff *skb);
 
static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
static void e1000_restore_vlan(struct e1000_adapter *adapter);
 
static int e1000_notify_reboot(struct notifier_block *, unsigned long event, void *ptr);
static int e1000_suspend(struct pci_dev *pdev, uint32_t state);
#ifdef CONFIG_PM
static int e1000_resume(struct pci_dev *pdev);
#endif
 
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void e1000_netpoll (struct net_device *dev);
#endif
 
struct notifier_block e1000_notifier_reboot = {
	.notifier_call	= e1000_notify_reboot,
	.next		= NULL,
	.priority	= 0
};
 
/* Exported from other modules */
 
extern void e1000_check_options(struct e1000_adapter *adapter);
extern int e1000_ethtool_ioctl(struct net_device *netdev, struct ifreq *ifr);
 
static struct pci_driver e1000_driver = {
	.name     = e1000_driver_name,
	.id_table = e1000_pci_tbl,
	.probe    = e1000_probe,
	.remove   = __devexit_p(e1000_remove),
	/* Power Managment Hooks */
#ifdef CONFIG_PM
	.suspend  = e1000_suspend,
	.resume   = e1000_resume
#endif
};
 
MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
 
/**
 * e1000_init_module - Driver Registration Routine
 *
 * e1000_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
 
static int __init
e1000_init_module(void)
{
	int ret;
	printk(KERN_INFO "%s - version %s\n",
	       e1000_driver_string, e1000_driver_version);
 
	printk(KERN_INFO "%s\n", e1000_copyright);
 
	ret = pci_module_init(&e1000_driver);
	if(ret >= 0) {
		register_reboot_notifier(&e1000_notifier_reboot);
	}
	return ret;
}
 
module_init(e1000_init_module);
 
/**
 * e1000_exit_module - Driver Exit Cleanup Routine
 *
 * e1000_exit_module is called just before the driver is removed
 * from memory.
 **/
 
static void __exit
e1000_exit_module(void)
{
	unregister_reboot_notifier(&e1000_notifier_reboot);
	pci_unregister_driver(&e1000_driver);
}
 
module_exit(e1000_exit_module);
 
 
int
e1000_up(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err;
 
	/* hardware has been reset, we need to reload some things */
 
	e1000_set_multi(netdev);
 
	e1000_restore_vlan(adapter);
 
	e1000_configure_tx(adapter);
	e1000_setup_rctl(adapter);
	e1000_configure_rx(adapter);
	e1000_alloc_rx_buffers(adapter);
 
	if((err = request_irq(adapter->pdev->irq, &e1000_intr,
		              SA_SHIRQ | SA_SAMPLE_RANDOM,
		              netdev->name, netdev)))
		return err;
 
	mod_timer(&adapter->watchdog_timer, jiffies);
	e1000_irq_enable(adapter);
 
	return 0;
}
 
void
e1000_down(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
 
	e1000_irq_disable(adapter);
	free_irq(adapter->pdev->irq, netdev);
	del_timer_sync(&adapter->tx_fifo_stall_timer);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);
	adapter->link_speed = 0;
	adapter->link_duplex = 0;
	netif_carrier_off(netdev);
	netif_stop_queue(netdev);
 
	e1000_reset(adapter);
	e1000_clean_tx_ring(adapter);
	e1000_clean_rx_ring(adapter);
}
 
void
e1000_reset(struct e1000_adapter *adapter)
{
	uint32_t pba;
	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
 
	if(adapter->hw.mac_type < e1000_82547) {
		if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
			pba = E1000_PBA_40K;
		else
			pba = E1000_PBA_48K;
	} else {
		if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
			pba = E1000_PBA_22K;
		else
			pba = E1000_PBA_30K;
		adapter->tx_fifo_head = 0;
		adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
		adapter->tx_fifo_size =
			(E1000_PBA_40K - pba) << E1000_TX_FIFO_SIZE_SHIFT;
		atomic_set(&adapter->tx_fifo_stall, 0);
	}
	E1000_WRITE_REG(&adapter->hw, PBA, pba);
 
	/* flow control settings */
	adapter->hw.fc_high_water = pba - E1000_FC_HIGH_DIFF;
	adapter->hw.fc_low_water = pba - E1000_FC_LOW_DIFF;
	adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
	adapter->hw.fc_send_xon = 1;
	adapter->hw.fc = adapter->hw.original_fc;
 
	e1000_reset_hw(&adapter->hw);
	if(adapter->hw.mac_type >= e1000_82544)
		E1000_WRITE_REG(&adapter->hw, WUC, 0);
	e1000_init_hw(&adapter->hw);
 
	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
 
	e1000_reset_adaptive(&adapter->hw);
	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
}
 
/**
 * e1000_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in e1000_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * e1000_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
 
static int __devinit
e1000_probe(struct pci_dev *pdev,
            const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct e1000_adapter *adapter;
	static int cards_found = 0;
	unsigned long mmio_start;
	int mmio_len;
	int pci_using_dac;
	int i;
	int err;
	uint16_t eeprom_data;
 
	if((err = pci_enable_device(pdev)))
		return err;
 
	if(!(err = pci_set_dma_mask(pdev, PCI_DMA_64BIT))) {
		pci_using_dac = 1;
	} else {
		if((err = pci_set_dma_mask(pdev, PCI_DMA_32BIT))) {
			E1000_ERR("No usable DMA configuration, aborting\n");
			return err;
		}
		pci_using_dac = 0;
	}
 
	if((err = pci_request_regions(pdev, e1000_driver_name)))
		return err;
 
	pci_set_master(pdev);
 
	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
	if(!netdev) {
		err = -ENOMEM;
		goto err_alloc_etherdev;
	}
 
	SET_MODULE_OWNER(netdev);
 
	pci_set_drvdata(pdev, netdev);
	adapter = netdev->priv;
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	adapter->hw.back = adapter;
 
	mmio_start = pci_resource_start(pdev, BAR_0);
	mmio_len = pci_resource_len(pdev, BAR_0);
 
	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
	if(!adapter->hw.hw_addr) {
		err = -EIO;
		goto err_ioremap;
	}
 
	for(i = BAR_1; i <= BAR_5; i++) {
		if(pci_resource_len(pdev, i) == 0)
			continue;
		if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
			adapter->hw.io_base = pci_resource_start(pdev, i);
			break;
		}
	}
 
	netdev->open = &e1000_open;
	netdev->stop = &e1000_close;
	netdev->hard_start_xmit = &e1000_xmit_frame;
	netdev->get_stats = &e1000_get_stats;
	netdev->set_multicast_list = &e1000_set_multi;
	netdev->set_mac_address = &e1000_set_mac;
	netdev->change_mtu = &e1000_change_mtu;
	netdev->do_ioctl = &e1000_ioctl;
	netdev->tx_timeout = &e1000_tx_timeout;
	netdev->watchdog_timeo = 5 * HZ;
#ifdef CONFIG_E1000_NAPI
	netdev->poll = &e1000_clean;
	netdev->weight = 64;
#endif
	netdev->vlan_rx_register = e1000_vlan_rx_register;
	netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
	netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
#ifdef CONFIG_NET_POLL_CONTROLLER
	netdev->poll_controller = e1000_netpoll;
#endif
 
	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;
	netdev->base_addr = adapter->hw.io_base;
 
	adapter->bd_number = cards_found;
 
	/* setup the private structure */
 
	if((err = e1000_sw_init(adapter)))
		goto err_sw_init;
 
	if(adapter->hw.mac_type >= e1000_82543) {
		netdev->features = NETIF_F_SG |
				   NETIF_F_HW_CSUM |
				   NETIF_F_HW_VLAN_TX |
				   NETIF_F_HW_VLAN_RX |
				   NETIF_F_HW_VLAN_FILTER;
	} else {
		netdev->features = NETIF_F_SG;
	}
 
#ifdef NETIF_F_TSO
	if((adapter->hw.mac_type >= e1000_82544) &&
	   (adapter->hw.mac_type != e1000_82547))
		netdev->features |= NETIF_F_TSO;
#endif
 
	if(pci_using_dac)
		netdev->features |= NETIF_F_HIGHDMA;
 
	/* before reading the EEPROM, reset the controller to 
	 * put the device in a known good starting state */
 
	e1000_reset_hw(&adapter->hw);
 
	/* make sure the EEPROM is good */
 
	if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
		printk(KERN_ERR "The EEPROM Checksum Is Not Valid\n");
		err = -EIO;
		goto err_eeprom;
	}
 
	/* copy the MAC address out of the EEPROM */
 
	e1000_read_mac_addr(&adapter->hw);
	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
 
	if(!is_valid_ether_addr(netdev->dev_addr)) {
		err = -EIO;
		goto err_eeprom;
	}
 
	e1000_read_part_num(&adapter->hw, &(adapter->part_num));
 
	e1000_get_bus_info(&adapter->hw);
 
	init_timer(&adapter->tx_fifo_stall_timer);
	adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
	adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
 
	init_timer(&adapter->watchdog_timer);
	adapter->watchdog_timer.function = &e1000_watchdog;
	adapter->watchdog_timer.data = (unsigned long) adapter;
 
	init_timer(&adapter->phy_info_timer);
	adapter->phy_info_timer.function = &e1000_update_phy_info;
	adapter->phy_info_timer.data = (unsigned long) adapter;
 
	INIT_TQUEUE(&adapter->tx_timeout_task,
		(void (*)(void *))e1000_tx_timeout_task, netdev);
 
	register_netdev(netdev);
 
	/* we're going to reset, so assume we have no link for now */
 
	netif_carrier_off(netdev);
	netif_stop_queue(netdev);
 
	printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Connection\n",
	       netdev->name);
	e1000_check_options(adapter);
 
	/* Initial Wake on LAN setting
	 * If APM wake is enabled in the EEPROM,
	 * enable the ACPI Magic Packet filter
	 */
 
	switch(adapter->hw.mac_type) {
	case e1000_82542_rev2_0:
	case e1000_82542_rev2_1:
	case e1000_82543:
		break;
	case e1000_82546:
	case e1000_82546_rev_3:
		if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
		   && (adapter->hw.media_type == e1000_media_type_copper)) {
			e1000_read_eeprom(&adapter->hw,
				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
			break;
		}
		/* Fall Through */
	default:
		e1000_read_eeprom(&adapter->hw,
			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
		break;
	}
	if(eeprom_data & E1000_EEPROM_APME)
		adapter->wol |= E1000_WUFC_MAG;
 
	/* reset the hardware with the new settings */
 
	e1000_reset(adapter);
 
	cards_found++;
	return 0;
 
err_sw_init:
err_eeprom:
	iounmap(adapter->hw.hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
	pci_release_regions(pdev);
	return err;
}
 
/**
 * e1000_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * e1000_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
 
static void __devexit
e1000_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev->priv;
	uint32_t manc;
 
	if(adapter->hw.mac_type >= e1000_82540 &&
	   adapter->hw.media_type == e1000_media_type_copper) {
		manc = E1000_READ_REG(&adapter->hw, MANC);
		if(manc & E1000_MANC_SMBUS_EN) {
			manc |= E1000_MANC_ARP_EN;
			E1000_WRITE_REG(&adapter->hw, MANC, manc);
		}
	}
 
	unregister_netdev(netdev);
 
	e1000_phy_hw_reset(&adapter->hw);
 
	iounmap(adapter->hw.hw_addr);
	pci_release_regions(pdev);
 
	free_netdev(netdev);
}
 
/**
 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 * @adapter: board private structure to initialize
 *
 * e1000_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
 
static int __devinit
e1000_sw_init(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
 
	/* PCI config space info */
 
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_id = pdev->subsystem_device;
 
	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
 
	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 
	adapter->rx_buffer_len = E1000_RXBUFFER_2048;
	hw->max_frame_size = netdev->mtu +
			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 
	/* identify the MAC */
 
	if (e1000_set_mac_type(hw)) {
		E1000_ERR("Unknown MAC Type\n");
		return -EIO;
	}
 
	/* initialize eeprom parameters */
 
	e1000_init_eeprom_params(hw);
 
	if((hw->mac_type == e1000_82541) ||
	   (hw->mac_type == e1000_82547) ||
	   (hw->mac_type == e1000_82541_rev_2) ||
	   (hw->mac_type == e1000_82547_rev_2))
		hw->phy_init_script = 1;
 
	e1000_set_media_type(hw);
 
	if(hw->mac_type < e1000_82543)
		hw->report_tx_early = 0;
	else
		hw->report_tx_early = 1;
 
	hw->wait_autoneg_complete = FALSE;
	hw->tbi_compatibility_en = TRUE;
	hw->adaptive_ifs = TRUE;
 
	/* Copper options */
 
	if(hw->media_type == e1000_media_type_copper) {
		hw->mdix = AUTO_ALL_MODES;
		hw->disable_polarity_correction = FALSE;
		hw->master_slave = E1000_MASTER_SLAVE;
	}
 
	atomic_set(&adapter->irq_sem, 1);
	spin_lock_init(&adapter->stats_lock);
	spin_lock_init(&adapter->tx_lock);
 
	return 0;
}
 
/**
 * e1000_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
 
static int
e1000_open(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev->priv;
	int err;
 
	/* allocate transmit descriptors */
 
	if((err = e1000_setup_tx_resources(adapter)))
		goto err_setup_tx;
 
	/* allocate receive descriptors */
 
	if((err = e1000_setup_rx_resources(adapter)))
		goto err_setup_rx;
 
	if((err = e1000_up(adapter)))
		goto err_up;
 
	return 0;
 
err_up:
	e1000_free_rx_resources(adapter);
err_setup_rx:
	e1000_free_tx_resources(adapter);
err_setup_tx:
	e1000_reset(adapter);
 
	return err;
}
 
/**
 * e1000_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
 
static int
e1000_close(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev->priv;
 
	e1000_down(adapter);
 
	e1000_free_tx_resources(adapter);
	e1000_free_rx_resources(adapter);
 
	return 0;
}
 
/**
 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
 
int
e1000_setup_tx_resources(struct e1000_adapter *adapter)
{
	struct e1000_desc_ring *txdr = &adapter->tx_ring;
	struct pci_dev *pdev = adapter->pdev;
	int size;
 
	size = sizeof(struct e1000_buffer) * txdr->count;
	txdr->buffer_info = kmalloc(size, GFP_KERNEL);
	if(!txdr->buffer_info) {
		return -ENOMEM;
	}
	memset(txdr->buffer_info, 0, size);
 
	/* round up to nearest 4K */
 
	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
	E1000_ROUNDUP(txdr->size, 4096);
 
	txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
	if(!txdr->desc) {
		kfree(txdr->buffer_info);
		return -ENOMEM;
	}
	memset(txdr->desc, 0, txdr->size);
 
	txdr->next_to_use = 0;
	txdr->next_to_clean = 0;
 
	return 0;
}
 
/**
 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
 
static void
e1000_configure_tx(struct e1000_adapter *adapter)
{
	uint64_t tdba = adapter->tx_ring.dma;
	uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc);
	uint32_t tctl, tipg;
 
	E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL));
	E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32));
 
	E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen);
 
	/* Setup the HW Tx Head and Tail descriptor pointers */
 
	E1000_WRITE_REG(&adapter->hw, TDH, 0);
	E1000_WRITE_REG(&adapter->hw, TDT, 0);
 
	/* Set the default values for the Tx Inter Packet Gap timer */
 
	switch (adapter->hw.mac_type) {
	case e1000_82542_rev2_0:
	case e1000_82542_rev2_1:
		tipg = DEFAULT_82542_TIPG_IPGT;
		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
		break;
	default:
		if(adapter->hw.media_type == e1000_media_type_fiber ||
		   adapter->hw.media_type == e1000_media_type_internal_serdes)
			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
		else
			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
	}
	E1000_WRITE_REG(&adapter->hw, TIPG, tipg);
 
	/* Set the Tx Interrupt Delay register */
 
	E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay);
	if(adapter->hw.mac_type >= e1000_82540)
		E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay);
 
	/* Program the Transmit Control Register */
 
	tctl = E1000_READ_REG(&adapter->hw, TCTL);
 
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
 
	E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
 
	e1000_config_collision_dist(&adapter->hw);
 
	/* Setup Transmit Descriptor Settings for eop descriptor */
	adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
		E1000_TXD_CMD_IFCS;
 
	if(adapter->hw.report_tx_early == 1)
		adapter->txd_cmd |= E1000_TXD_CMD_RS;
	else
		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
 
	/* Cache if we're 82544 running in PCI-X because we'll
	 * need this to apply a workaround later in the send path. */
	if(adapter->hw.mac_type == e1000_82544 &&
	   adapter->hw.bus_type == e1000_bus_type_pcix)
		adapter->pcix_82544 = 1;
}
 
/**
 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
 * @adapter: board private structure
 *
 * Returns 0 on success, negative on failure
 **/
 
int
e1000_setup_rx_resources(struct e1000_adapter *adapter)
{
	struct e1000_desc_ring *rxdr = &adapter->rx_ring;
	struct pci_dev *pdev = adapter->pdev;
	int size;
 
	size = sizeof(struct e1000_buffer) * rxdr->count;
	rxdr->buffer_info = kmalloc(size, GFP_KERNEL);
	if(!rxdr->buffer_info) {
		return -ENOMEM;
	}
	memset(rxdr->buffer_info, 0, size);
 
	/* Round up to nearest 4K */
 
	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
	E1000_ROUNDUP(rxdr->size, 4096);
 
	rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
 
	if(!rxdr->desc) {
		kfree(rxdr->buffer_info);
		return -ENOMEM;
	}
	memset(rxdr->desc, 0, rxdr->size);
 
	rxdr->next_to_clean = 0;
	rxdr->next_to_use = 0;
 
	return 0;
}
 
/**
 * e1000_setup_rctl - configure the receive control register
 * @adapter: Board private structure
 **/
 
static void
e1000_setup_rctl(struct e1000_adapter *adapter)
{
	uint32_t rctl;
 
	rctl = E1000_READ_REG(&adapter->hw, RCTL);
 
	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
 
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
		(adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
 
	if(adapter->hw.tbi_compatibility_on == 1)
		rctl |= E1000_RCTL_SBP;
	else
		rctl &= ~E1000_RCTL_SBP;
 
	rctl &= ~(E1000_RCTL_SZ_4096);
	switch (adapter->rx_buffer_len) {
	case E1000_RXBUFFER_2048:
	default:
		rctl |= E1000_RCTL_SZ_2048;
		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
		break;
	case E1000_RXBUFFER_4096:
		rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
		break;
	case E1000_RXBUFFER_8192:
		rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
		break;
	case E1000_RXBUFFER_16384:
		rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
		break;
	}
 
	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
}
 
/**
 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
 
static void
e1000_configure_rx(struct e1000_adapter *adapter)
{
	uint64_t rdba = adapter->rx_ring.dma;
	uint32_t rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
	uint32_t rctl;
	uint32_t rxcsum;
 
	/* make sure receives are disabled while setting up the descriptors */
 
	rctl = E1000_READ_REG(&adapter->hw, RCTL);
	E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
 
	/* set the Receive Delay Timer Register */
 
	E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);
 
	if(adapter->hw.mac_type >= e1000_82540) {
		E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay);
		if(adapter->itr > 1)
			E1000_WRITE_REG(&adapter->hw, ITR,
				1000000000 / (adapter->itr * 256));
	}
 
	/* Setup the Base and Length of the Rx Descriptor Ring */
 
	E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
	E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));
 
	E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen);
 
	/* Setup the HW Rx Head and Tail Descriptor Pointers */
	E1000_WRITE_REG(&adapter->hw, RDH, 0);
	E1000_WRITE_REG(&adapter->hw, RDT, 0);
 
	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
	if((adapter->hw.mac_type >= e1000_82543) &&
	   (adapter->rx_csum == TRUE)) {
		rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
		rxcsum |= E1000_RXCSUM_TUOFL;
		E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
	}
 
	/* Enable Receives */
 
	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
}
 
/**
 * e1000_free_tx_resources - Free Tx Resources
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
 
void
e1000_free_tx_resources(struct e1000_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
 
	e1000_clean_tx_ring(adapter);
 
	kfree(adapter->tx_ring.buffer_info);
	adapter->tx_ring.buffer_info = NULL;
 
	pci_free_consistent(pdev, adapter->tx_ring.size,
	                    adapter->tx_ring.desc, adapter->tx_ring.dma);
 
	adapter->tx_ring.desc = NULL;
}
 
/**
 * e1000_clean_tx_ring - Free Tx Buffers
 * @adapter: board private structure
 **/
 
static void
e1000_clean_tx_ring(struct e1000_adapter *adapter)
{
	struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
	struct e1000_buffer *buffer_info;
	struct pci_dev *pdev = adapter->pdev;
	unsigned long size;
	unsigned int i;
 
	/* Free all the Tx ring sk_buffs */
 
	for(i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
		if(buffer_info->skb) {
 
			pci_unmap_page(pdev,
			               buffer_info->dma,
			               buffer_info->length,
			               PCI_DMA_TODEVICE);
 
			dev_kfree_skb(buffer_info->skb);
 
			buffer_info->skb = NULL;
		}
	}
 
	size = sizeof(struct e1000_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);
 
	/* Zero out the descriptor ring */
 
	memset(tx_ring->desc, 0, tx_ring->size);
 
	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
 
	E1000_WRITE_REG(&adapter->hw, TDH, 0);
	E1000_WRITE_REG(&adapter->hw, TDT, 0);
}
 
/**
 * e1000_free_rx_resources - Free Rx Resources
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
 
void
e1000_free_rx_resources(struct e1000_adapter *adapter)
{
	struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
	struct pci_dev *pdev = adapter->pdev;
 
	e1000_clean_rx_ring(adapter);
 
	kfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;
 
	pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
 
	rx_ring->desc = NULL;
}
 
/**
 * e1000_clean_rx_ring - Free Rx Buffers
 * @adapter: board private structure
 **/
 
static void
e1000_clean_rx_ring(struct e1000_adapter *adapter)
{
	struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct pci_dev *pdev = adapter->pdev;
	unsigned long size;
	unsigned int i;
 
	/* Free all the Rx ring sk_buffs */
 
	for(i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if(buffer_info->skb) {
 
			pci_unmap_single(pdev,
			                 buffer_info->dma,
			                 buffer_info->length,
			                 PCI_DMA_FROMDEVICE);
 
			dev_kfree_skb(buffer_info->skb);
 
			buffer_info->skb = NULL;
		}
	}
 
	size = sizeof(struct e1000_buffer) * rx_ring->count;
	memset(rx_ring->buffer_info, 0, size);
 
	/* Zero out the descriptor ring */
 
	memset(rx_ring->desc, 0, rx_ring->size);
 
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
 
	E1000_WRITE_REG(&adapter->hw, RDH, 0);
	E1000_WRITE_REG(&adapter->hw, RDT, 0);
}
 
/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
 * and memory write and invalidate disabled for certain operations
 */
static void
e1000_enter_82542_rst(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	uint32_t rctl;
 
	e1000_pci_clear_mwi(&adapter->hw);
 
	rctl = E1000_READ_REG(&adapter->hw, RCTL);
	rctl |= E1000_RCTL_RST;
	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
	E1000_WRITE_FLUSH(&adapter->hw);
	mdelay(5);
 
	if(netif_running(netdev))
		e1000_clean_rx_ring(adapter);
}
 
static void
e1000_leave_82542_rst(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	uint32_t rctl;
 
	rctl = E1000_READ_REG(&adapter->hw, RCTL);
	rctl &= ~E1000_RCTL_RST;
	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
	E1000_WRITE_FLUSH(&adapter->hw);
	mdelay(5);
 
	if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
		e1000_pci_set_mwi(&adapter->hw);
 
	if(netif_running(netdev)) {
		e1000_configure_rx(adapter);
		e1000_alloc_rx_buffers(adapter);
	}
}
 
/**
 * e1000_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
 
static int
e1000_set_mac(struct net_device *netdev, void *p)
{
	struct e1000_adapter *adapter = netdev->priv;
	struct sockaddr *addr = p;
 
	if(!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;
 
	/* 82542 2.0 needs to be in reset to write receive address registers */
 
	if(adapter->hw.mac_type == e1000_82542_rev2_0)
		e1000_enter_82542_rst(adapter);
 
	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
	memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
 
	e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
 
	if(adapter->hw.mac_type == e1000_82542_rev2_0)
		e1000_leave_82542_rst(adapter);
 
	return 0;
}
 
/**
 * e1000_set_multi - Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_multi entry point is called whenever the multicast address
 * list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper multicast,
 * promiscuous mode, and all-multi behavior.
 **/
 
static void
e1000_set_multi(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev->priv;
	struct e1000_hw *hw = &adapter->hw;
	struct dev_mc_list *mc_ptr;
	uint32_t rctl;
	uint32_t hash_value;
	int i;
 
	/* Check for Promiscuous and All Multicast modes */
 
	rctl = E1000_READ_REG(hw, RCTL);
 
	if(netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
	} else if(netdev->flags & IFF_ALLMULTI) {
		rctl |= E1000_RCTL_MPE;
		rctl &= ~E1000_RCTL_UPE;
	} else {
		rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
	}
 
	E1000_WRITE_REG(hw, RCTL, rctl);
 
	/* 82542 2.0 needs to be in reset to write receive address registers */
 
	if(hw->mac_type == e1000_82542_rev2_0)
		e1000_enter_82542_rst(adapter);
 
	/* load the first 14 multicast address into the exact filters 1-14
	 * RAR 0 is used for the station MAC adddress
	 * if there are not 14 addresses, go ahead and clear the filters
	 */
	mc_ptr = netdev->mc_list;
 
	for(i = 1; i < E1000_RAR_ENTRIES; i++) {
		if(mc_ptr) {
			e1000_rar_set(hw, mc_ptr->dmi_addr, i);
			mc_ptr = mc_ptr->next;
		} else {
			E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
			E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
		}
	}
 
	/* clear the old settings from the multicast hash table */
 
	for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
 
	/* load any remaining addresses into the hash table */
 
	for(; mc_ptr; mc_ptr = mc_ptr->next) {
		hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
		e1000_mta_set(hw, hash_value);
	}
 
	if(hw->mac_type == e1000_82542_rev2_0)
		e1000_leave_82542_rst(adapter);
}
 
/* need to wait a few seconds after link up to get diagnostic information from the phy */
 
static void
e1000_update_phy_info(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
}
 
/**
 * e1000_82547_tx_fifo_stall - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
 
static void
e1000_82547_tx_fifo_stall(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
	struct net_device *netdev = adapter->netdev;
	uint32_t tctl;
 
	if(atomic_read(&adapter->tx_fifo_stall)) {
		if((E1000_READ_REG(&adapter->hw, TDT) ==
		    E1000_READ_REG(&adapter->hw, TDH)) &&
		   (E1000_READ_REG(&adapter->hw, TDFT) ==
		    E1000_READ_REG(&adapter->hw, TDFH)) &&
		   (E1000_READ_REG(&adapter->hw, TDFTS) ==
		    E1000_READ_REG(&adapter->hw, TDFHS))) {
			tctl = E1000_READ_REG(&adapter->hw, TCTL);
			E1000_WRITE_REG(&adapter->hw, TCTL,
					tctl & ~E1000_TCTL_EN);
			E1000_WRITE_REG(&adapter->hw, TDFT,
					adapter->tx_head_addr);
			E1000_WRITE_REG(&adapter->hw, TDFH,
					adapter->tx_head_addr);
			E1000_WRITE_REG(&adapter->hw, TDFTS,
					adapter->tx_head_addr);
			E1000_WRITE_REG(&adapter->hw, TDFHS,
					adapter->tx_head_addr);
			E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
			E1000_WRITE_FLUSH(&adapter->hw);
 
			adapter->tx_fifo_head = 0;
			atomic_set(&adapter->tx_fifo_stall, 0);
			netif_wake_queue(netdev);
		} else {
			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
		}
	}
}
 
/**
 * e1000_watchdog - Timer Call-back
 * @data: pointer to netdev cast into an unsigned long
 **/
 
static void
e1000_watchdog(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
	struct net_device *netdev = adapter->netdev;
	struct e1000_desc_ring *txdr = &adapter->tx_ring;
	unsigned int i;
	uint32_t link;
 
	e1000_check_for_link(&adapter->hw);
 
	if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
	   !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
		link = !adapter->hw.serdes_link_down;
	else
		link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
 
	if(link) {
		if(!netif_carrier_ok(netdev)) {
			e1000_get_speed_and_duplex(&adapter->hw,
			                           &adapter->link_speed,
			                           &adapter->link_duplex);
 
			printk(KERN_INFO
			       "e1000: %s NIC Link is Up %d Mbps %s\n",
			       netdev->name, adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
			       "Full Duplex" : "Half Duplex");
 
			netif_carrier_on(netdev);
			netif_wake_queue(netdev);
			mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
			adapter->smartspeed = 0;
		}
	} else {
		if(netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
			printk(KERN_INFO
			       "e1000: %s NIC Link is Down\n",
			       netdev->name);
			netif_carrier_off(netdev);
			netif_stop_queue(netdev);
			mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
		}
 
		e1000_smartspeed(adapter);
	}
 
	e1000_update_stats(adapter);
 
	adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
	adapter->tpt_old = adapter->stats.tpt;
	adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
	adapter->colc_old = adapter->stats.colc;
 
	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
	adapter->gorcl_old = adapter->stats.gorcl;
	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
	adapter->gotcl_old = adapter->stats.gotcl;
 
	e1000_update_adaptive(&adapter->hw);
 
	if(!netif_carrier_ok(netdev)) {
		if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
			schedule_task(&adapter->tx_timeout_task);
		}
	}
 
	/* Dynamic mode for Interrupt Throttle Rate (ITR) */
	if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
		/* Symmetric Tx/Rx gets a reduced ITR=2000; Total
		 * asymmetrical Tx or Rx gets ITR=8000; everyone
		 * else is between 2000-8000. */
		uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
		uint32_t dif = (adapter->gotcl > adapter->gorcl ? 
			adapter->gotcl - adapter->gorcl :
			adapter->gorcl - adapter->gotcl) / 10000;
		uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
		E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
	}
 
	/* Cause software interrupt to ensure rx ring is cleaned */
	E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
 
	/* Early detection of hung controller */
	i = txdr->next_to_clean;
	if(txdr->buffer_info[i].dma &&
	   time_after(jiffies, txdr->buffer_info[i].time_stamp + HZ) &&
	   !(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF))
		netif_stop_queue(netdev);
 
	/* Reset the timer */
	mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
}
 
#define E1000_TX_FLAGS_CSUM		0x00000001
#define E1000_TX_FLAGS_VLAN		0x00000002
#define E1000_TX_FLAGS_TSO		0x00000004
#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT	16
 
static inline boolean_t
e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
{
#ifdef NETIF_F_TSO
	struct e1000_context_desc *context_desc;
	unsigned int i;
	uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
	uint16_t ipcse, tucse, mss;
 
	if(skb_shinfo(skb)->tso_size) {
		hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
		mss = skb_shinfo(skb)->tso_size;
		skb->nh.iph->tot_len = 0;
		skb->nh.iph->check = 0;
		skb->h.th->check = ~csum_tcpudp_magic(skb->nh.iph->saddr,
		                                      skb->nh.iph->daddr,
		                                      0,
		                                      IPPROTO_TCP,
		                                      0);
		ipcss = skb->nh.raw - skb->data;
		ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
		ipcse = skb->h.raw - skb->data - 1;
		tucss = skb->h.raw - skb->data;
		tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
		tucse = 0;
 
		i = adapter->tx_ring.next_to_use;
		context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
 
		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
		context_desc->upper_setup.tcp_fields.tucss = tucss;
		context_desc->upper_setup.tcp_fields.tucso = tucso;
		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
		context_desc->cmd_and_length = cpu_to_le32(
			E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
			E1000_TXD_CMD_IP | E1000_TXD_CMD_TCP |
			(skb->len - (hdr_len)));
 
		if(++i == adapter->tx_ring.count) i = 0;
		adapter->tx_ring.next_to_use = i;
 
		return TRUE;
	}
#endif
 
	return FALSE;
}
 
static inline boolean_t
e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
{
	struct e1000_context_desc *context_desc;
	unsigned int i;
	uint8_t css, cso;
 
	if(skb->ip_summed == CHECKSUM_HW) {
		css = skb->h.raw - skb->data;
		cso = (skb->h.raw + skb->csum) - skb->data;
 
		i = adapter->tx_ring.next_to_use;
		context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
 
		context_desc->upper_setup.tcp_fields.tucss = css;
		context_desc->upper_setup.tcp_fields.tucso = cso;
		context_desc->upper_setup.tcp_fields.tucse = 0;
		context_desc->tcp_seg_setup.data = 0;
		context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
 
		if(++i == adapter->tx_ring.count) i = 0;
		adapter->tx_ring.next_to_use = i;
 
		return TRUE;
	}
 
	return FALSE;
}
 
#define E1000_MAX_TXD_PWR	12
#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
 
static inline int
e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
	unsigned int first)
{
	struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
	struct e1000_tx_desc *tx_desc;
	struct e1000_buffer *buffer_info;
	unsigned int len = skb->len, max_per_txd = E1000_MAX_DATA_PER_TXD;
	unsigned int offset = 0, size, count = 0, i;
#ifdef NETIF_F_TSO
	unsigned int mss;
#endif
	unsigned int nr_frags;
	unsigned int f;
 
#ifdef NETIF_F_TSO
	mss = skb_shinfo(skb)->tso_size;
	/* The controller does a simple calculation to 
	 * make sure there is enough room in the FIFO before
	 * initiating the DMA for each buffer.  The calc is:
	 * 4 = ceil(buffer len/mss).  To make sure we don't
	 * overrun the FIFO, adjust the max buffer len if mss
	 * drops. */
	if(mss)
		max_per_txd = min(mss << 2, max_per_txd);
#endif
	nr_frags = skb_shinfo(skb)->nr_frags;
	len -= skb->data_len;
 
	i = tx_ring->next_to_use;
 
	while(len) {
		buffer_info = &tx_ring->buffer_info[i];
		size = min(len, max_per_txd);
#ifdef NETIF_F_TSO
		/* Workaround for premature desc write-backs
		 * in TSO mode.  Append 4-byte sentinel desc */
		if(mss && !nr_frags && size == len && size > 8)
			size -= 4;
#endif
		/* Workaround for potential 82544 hang in PCI-X.  Avoid
		 * terminating buffers within evenly-aligned dwords. */
		if(adapter->pcix_82544 &&
		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
		   size > 4)
			size -= 4;
 
		buffer_info->length = size;
		buffer_info->dma =
			pci_map_single(adapter->pdev,
				skb->data + offset,
				size,
				PCI_DMA_TODEVICE);
		buffer_info->time_stamp = jiffies;
 
		len -= size;
		offset += size;
		count++;
		if(++i == tx_ring->count) i = 0;
	}
 
	for(f = 0; f < nr_frags; f++) {
		struct skb_frag_struct *frag;
 
		frag = &skb_shinfo(skb)->frags[f];
		len = frag->size;
		offset = frag->page_offset;
 
		while(len) {
			buffer_info = &tx_ring->buffer_info[i];
			size = min(len, max_per_txd);
#ifdef NETIF_F_TSO
			/* Workaround for premature desc write-backs
			 * in TSO mode.  Append 4-byte sentinel desc */
			if(mss && f == (nr_frags-1) && size == len && size > 8)
				size -= 4;
#endif
			/* Workaround for potential 82544 hang in PCI-X.
			 * Avoid terminating buffers within evenly-aligned
			 * dwords. */
			if(adapter->pcix_82544 &&
			   !((unsigned long)(frag->page+offset+size-1) & 4) &&
			   size > 4)
				size -= 4;
 
			buffer_info->length = size;
			buffer_info->dma =
				pci_map_page(adapter->pdev,
					frag->page,
					offset,
					size,
					PCI_DMA_TODEVICE);
			buffer_info->time_stamp = jiffies;
 
			len -= size;
			offset += size;
			count++;
			if(++i == tx_ring->count) i = 0;
		}
	}
 
	if(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2) {
 
		/* There aren't enough descriptors available to queue up
		 * this send (need: count + 1 context desc + 1 desc gap
		 * to keep tail from touching head), so undo the mapping
		 * and abort the send.  We could have done the check before
		 * we mapped the skb, but because of all the workarounds
		 * (above), it's too difficult to predict how many we're
		 * going to need.*/
		i = adapter->tx_ring.next_to_use;
 
		if(i == first) {
			/* Cleanup after e1000_tx_[csum|tso] scribbling
			 * on descriptors. */
			tx_desc = E1000_TX_DESC(*tx_ring, first);
			tx_desc->buffer_addr = 0;
			tx_desc->lower.data = 0;
			tx_desc->upper.data = 0;
		}
 
		while(count--) {
			buffer_info = &tx_ring->buffer_info[i];
 
			if(buffer_info->dma) {
				pci_unmap_page(adapter->pdev,
					       buffer_info->dma,
					       buffer_info->length,
					       PCI_DMA_TODEVICE);
				buffer_info->dma = 0;
			}
 
			if(++i == tx_ring->count) i = 0;
		}
 
		adapter->tx_ring.next_to_use = first;
 
		return 0;
	}
 
	i = (i == 0) ? tx_ring->count - 1 : i - 1;
	tx_ring->buffer_info[i].skb = skb;
	tx_ring->buffer_info[first].next_to_watch = i;
 
	return count;
}
 
static inline void
e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
{
	struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
	struct e1000_tx_desc *tx_desc = NULL;
	struct e1000_buffer *buffer_info;
	uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
	unsigned int i;
 
	if(tx_flags & E1000_TX_FLAGS_TSO) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
		             E1000_TXD_CMD_TSE;
		txd_upper |= (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
	}
 
	if(tx_flags & E1000_TX_FLAGS_CSUM) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
	}
 
	if(tx_flags & E1000_TX_FLAGS_VLAN) {
		txd_lower |= E1000_TXD_CMD_VLE;
		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
	}
 
	i = tx_ring->next_to_use;
 
	while(count--) {
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->lower.data =
			cpu_to_le32(txd_lower | buffer_info->length);
		tx_desc->upper.data = cpu_to_le32(txd_upper);
		if(++i == tx_ring->count) i = 0;
	}
 
	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
 
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64). */
	wmb();
 
	tx_ring->next_to_use = i;
	E1000_WRITE_REG(&adapter->hw, TDT, i);
}
 
/**
 * 82547 workaround to avoid controller hang in half-duplex environment.
 * The workaround is to avoid queuing a large packet that would span
 * the internal Tx FIFO ring boundary by notifying the stack to resend
 * the packet at a later time.  This gives the Tx FIFO an opportunity to
 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
 * to the beginning of the Tx FIFO.
 **/
 
#define E1000_FIFO_HDR			0x10
#define E1000_82547_PAD_LEN		0x3E0
 
static inline int
e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
{
	uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
	uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
 
	E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
 
	if(adapter->link_duplex != HALF_DUPLEX)
		goto no_fifo_stall_required;
 
	if(atomic_read(&adapter->tx_fifo_stall))
		return 1;
 
	if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
		atomic_set(&adapter->tx_fifo_stall, 1);
		return 1;
	}
 
no_fifo_stall_required:
	adapter->tx_fifo_head += skb_fifo_len;
	if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
		adapter->tx_fifo_head -= adapter->tx_fifo_size;
	return 0;
}
 
static int
e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev->priv;
	unsigned int first;
	unsigned int tx_flags = 0;
	unsigned long flags;
	int count;
 
	if(skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return 0;
	}
 
	spin_lock_irqsave(&adapter->tx_lock, flags);
 
	if(adapter->hw.mac_type == e1000_82547) {
		if(e1000_82547_fifo_workaround(adapter, skb)) {
			netif_stop_queue(netdev);
			mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
			spin_unlock_irqrestore(&adapter->tx_lock, flags);
			return 1;
		}
	}
 
	if(adapter->vlgrp && vlan_tx_tag_present(skb)) {
		tx_flags |= E1000_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
	}
 
	first = adapter->tx_ring.next_to_use;
 
	if(e1000_tso(adapter, skb))
		tx_flags |= E1000_TX_FLAGS_TSO;
	else if(e1000_tx_csum(adapter, skb))
		tx_flags |= E1000_TX_FLAGS_CSUM;
 
	if((count = e1000_tx_map(adapter, skb, first)))
		e1000_tx_queue(adapter, count, tx_flags);
	else {
		netif_stop_queue(netdev);
		spin_unlock_irqrestore(&adapter->tx_lock, flags);
		return 1;
	}
 
	netdev->trans_start = jiffies;
 
	spin_unlock_irqrestore(&adapter->tx_lock, flags);
 
	return 0;
}
 
/**
 * e1000_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
 
static void
e1000_tx_timeout(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev->priv;
 
	/* Do the reset outside of interrupt context */
	schedule_task(&adapter->tx_timeout_task);
}
 
static void
e1000_tx_timeout_task(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev->priv;
 
	netif_device_detach(netdev);
	e1000_down(adapter);
	e1000_up(adapter);
	netif_device_attach(netdev);
}
 
/**
 * e1000_get_stats - Get System Network Statistics
 * @netdev: network interface device structure
 *
 * Returns the address of the device statistics structure.
 * The statistics are actually updated from the timer callback.
 **/
 
static struct net_device_stats *
e1000_get_stats(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev->priv;
 
	e1000_update_stats(adapter);
	return &adapter->net_stats;
}
 
/**
 * e1000_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
 
static int
e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct e1000_adapter *adapter = netdev->priv;
	int old_mtu = adapter->rx_buffer_len;
	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 
	if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
	   (max_frame > MAX_JUMBO_FRAME_SIZE)) {
		E1000_ERR("Invalid MTU setting\n");
		return -EINVAL;
	}
 
	if(max_frame <= MAXIMUM_ETHERNET_FRAME_SIZE) {
		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
 
	} else if(adapter->hw.mac_type < e1000_82543) {
		E1000_ERR("Jumbo Frames not supported on 82542\n");
		return -EINVAL;
 
	} else if(max_frame <= E1000_RXBUFFER_4096) {
		adapter->rx_buffer_len = E1000_RXBUFFER_4096;
 
	} else if(max_frame <= E1000_RXBUFFER_8192) {
		adapter->rx_buffer_len = E1000_RXBUFFER_8192;
 
	} else {
		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
	}
 
	if(old_mtu != adapter->rx_buffer_len && netif_running(netdev)) {
 
		e1000_down(adapter);
		e1000_up(adapter);
	}
 
	netdev->mtu = new_mtu;
	adapter->hw.max_frame_size = max_frame;
 
	return 0;
}
 
/**
 * e1000_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/
 
void
e1000_update_stats(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned long flags;
	uint16_t phy_tmp;
 
#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
 
	spin_lock_irqsave(&adapter->stats_lock, flags);
 
	/* these counters are modified from e1000_adjust_tbi_stats,
	 * called from the interrupt context, so they must only
	 * be written while holding adapter->stats_lock
	 */
 
	adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
	adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
	adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
	adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
	adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
	adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
	adapter->stats.roc += E1000_READ_REG(hw, ROC);
	adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
	adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
	adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
	adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
	adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
	adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
 
	/* the rest of the counters are only modified here */
 
	adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
	adapter->stats.mpc += E1000_READ_REG(hw, MPC);
	adapter->stats.scc += E1000_READ_REG(hw, SCC);
	adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
	adapter->stats.mcc += E1000_READ_REG(hw, MCC);
	adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
	adapter->stats.dc += E1000_READ_REG(hw, DC);
	adapter->stats.sec += E1000_READ_REG(hw, SEC);
	adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
	adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
	adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
	adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
	adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
	adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
	adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
	adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
	adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
	adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
	adapter->stats.ruc += E1000_READ_REG(hw, RUC);
	adapter->stats.rfc += E1000_READ_REG(hw, RFC);
	adapter->stats.rjc += E1000_READ_REG(hw, RJC);
	adapter->stats.torl += E1000_READ_REG(hw, TORL);
	adapter->stats.torh += E1000_READ_REG(hw, TORH);
	adapter->stats.totl += E1000_READ_REG(hw, TOTL);
	adapter->stats.toth += E1000_READ_REG(hw, TOTH);
	adapter->stats.tpr += E1000_READ_REG(hw, TPR);
	adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
	adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
	adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
	adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
	adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
	adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
	adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
	adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
 
	/* used for adaptive IFS */
 
	hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
	adapter->stats.tpt += hw->tx_packet_delta;
	hw->collision_delta = E1000_READ_REG(hw, COLC);
	adapter->stats.colc += hw->collision_delta;
 
	if(hw->mac_type >= e1000_82543) {
		adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
		adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
		adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
		adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
		adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
		adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
	}
 
	/* Fill out the OS statistics structure */
 
	adapter->net_stats.rx_packets = adapter->stats.gprc;
	adapter->net_stats.tx_packets = adapter->stats.gptc;
	adapter->net_stats.rx_bytes = adapter->stats.gorcl;
	adapter->net_stats.tx_bytes = adapter->stats.gotcl;
	adapter->net_stats.multicast = adapter->stats.mprc;
	adapter->net_stats.collisions = adapter->stats.colc;
 
	/* Rx Errors */
 
	adapter->net_stats.rx_errors = adapter->stats.rxerrc +
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.rlec + adapter->stats.rnbc +
		adapter->stats.mpc + adapter->stats.cexterr;
	adapter->net_stats.rx_dropped = adapter->stats.rnbc;
	adapter->net_stats.rx_length_errors = adapter->stats.rlec;
	adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
	adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
	adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
	adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
 
	/* Tx Errors */
 
	adapter->net_stats.tx_errors = adapter->stats.ecol +
	                               adapter->stats.latecol;
	adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
	adapter->net_stats.tx_window_errors = adapter->stats.latecol;
	adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
 
	/* Tx Dropped needs to be maintained elsewhere */
 
	/* Phy Stats */
 
	if(hw->media_type == e1000_media_type_copper) {
		if((adapter->link_speed == SPEED_1000) &&
		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
 
		if((hw->mac_type <= e1000_82546) &&
		   (hw->phy_type == e1000_phy_m88) &&
		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
			adapter->phy_stats.receive_errors += phy_tmp;
	}
 
	spin_unlock_irqrestore(&adapter->stats_lock, flags);
}
 
/**
 * e1000_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
 
static inline void
e1000_irq_disable(struct e1000_adapter *adapter)
{
	atomic_inc(&adapter->irq_sem);
	E1000_WRITE_REG(&adapter->hw, IMC, ~0);
	E1000_WRITE_FLUSH(&adapter->hw);
	synchronize_irq();
}
 
/**
 * e1000_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
 
static inline void
e1000_irq_enable(struct e1000_adapter *adapter)
{
	if(atomic_dec_and_test(&adapter->irq_sem)) {
		E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
		E1000_WRITE_FLUSH(&adapter->hw);
	}
}
 
/**
 * e1000_intr - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 * @pt_regs: CPU registers structure
 **/
 
static irqreturn_t
e1000_intr(int irq, void *data, struct pt_regs *regs)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev->priv;
	struct e1000_hw *hw = &adapter->hw;
	uint32_t icr = E1000_READ_REG(&adapter->hw, ICR);
#ifndef CONFIG_E1000_NAPI
	unsigned int i;
#endif
 
	if(!icr)
		return IRQ_NONE;  /* Not our interrupt */
 
	if(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->get_link_status = 1;
		mod_timer(&adapter->watchdog_timer, jiffies);
	}
 
#ifdef CONFIG_E1000_NAPI
	if(netif_rx_schedule_prep(netdev)) {
 
		/* Disable interrupts and register for poll. The flush 
		  of the posted write is intentionally left out.
		*/
 
		atomic_inc(&adapter->irq_sem);
		E1000_WRITE_REG(hw, IMC, ~0);
		__netif_rx_schedule(netdev);
	}
#else
        /* Writing IMC and IMS is needed for 82547.
	   Due to Hub Link bus being occupied, an interrupt 
	   de-assertion message is not able to be sent. 
	   When an interrupt assertion message is generated later,
	   two messages are re-ordered and sent out.
	   That causes APIC to think 82547 is in de-assertion
	   state, while 82547 is in assertion state, resulting 
	   in dead lock. Writing IMC forces 82547 into 
	   de-assertion state.
        */
	if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
		e1000_irq_disable(adapter);
 
	for(i = 0; i < E1000_MAX_INTR; i++)
		if(!e1000_clean_rx_irq(adapter) &
		   !e1000_clean_tx_irq(adapter))
			break;
 
	if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
		e1000_irq_enable(adapter);
#endif
 
	return IRQ_HANDLED;
}
 
#ifdef CONFIG_E1000_NAPI
/**
 * e1000_clean - NAPI Rx polling callback
 * @adapter: board private structure
 **/
 
static int
e1000_clean(struct net_device *netdev, int *budget)
{
	struct e1000_adapter *adapter = netdev->priv;
	int work_to_do = min(*budget, netdev->quota);
	int work_done = 0;
 
	e1000_clean_tx_irq(adapter);
	e1000_clean_rx_irq(adapter, &work_done, work_to_do);
 
	*budget -= work_done;
	netdev->quota -= work_done;
 
	if(work_done < work_to_do || !netif_running(netdev)) {
		netif_rx_complete(netdev);
		e1000_irq_enable(adapter);
	}
 
	return (work_done >= work_to_do);
}
#endif
 
/**
 * e1000_clean_tx_irq - Reclaim resources after transmit completes
 * @adapter: board private structure
 **/
 
static boolean_t
e1000_clean_tx_irq(struct e1000_adapter *adapter)
{
	struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_tx_desc *tx_desc, *eop_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i, eop;
	boolean_t cleaned = FALSE;
 
	spin_lock(&adapter->tx_lock);
 
	i = tx_ring->next_to_clean;
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC(*tx_ring, eop);
 
	while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
 
		for(cleaned = FALSE; !cleaned; ) {
			tx_desc = E1000_TX_DESC(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
 
			if(buffer_info->dma) {
 
				pci_unmap_page(pdev,
					       buffer_info->dma,
					       buffer_info->length,
					       PCI_DMA_TODEVICE);
 
				buffer_info->dma = 0;
			}
 
			if(buffer_info->skb) {
 
				dev_kfree_skb_any(buffer_info->skb);
 
				buffer_info->skb = NULL;
			}
 
			tx_desc->buffer_addr = 0;
			tx_desc->lower.data = 0;
			tx_desc->upper.data = 0;
 
			cleaned = (i == eop);
			if(++i == tx_ring->count) i = 0;
		}
 
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC(*tx_ring, eop);
	}
 
	tx_ring->next_to_clean = i;
 
	if(cleaned && netif_queue_stopped(netdev) && netif_carrier_ok(netdev))
		netif_wake_queue(netdev);
 
	spin_unlock(&adapter->tx_lock);
 
	return cleaned;
}
 
/**
 * e1000_clean_rx_irq - Send received data up the network stack,
 * @adapter: board private structure
 **/
 
static boolean_t
#ifdef CONFIG_E1000_NAPI
e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done,
                   int work_to_do)
#else
e1000_clean_rx_irq(struct e1000_adapter *adapter)
#endif
{
	struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_rx_desc *rx_desc;
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned long flags;
	uint32_t length;
	uint8_t last_byte;
	unsigned int i;
	boolean_t cleaned = FALSE;
 
	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC(*rx_ring, i);
 
	while(rx_desc->status & E1000_RXD_STAT_DD) {
		buffer_info = &rx_ring->buffer_info[i];
 
#ifdef CONFIG_E1000_NAPI
		if(*work_done >= work_to_do)
			break;
 
		(*work_done)++;
#endif
 
		cleaned = TRUE;
 
		pci_unmap_single(pdev,
		                 buffer_info->dma,
		                 buffer_info->length,
		                 PCI_DMA_FROMDEVICE);
 
		skb = buffer_info->skb;
		length = le16_to_cpu(rx_desc->length);
 
		if(!(rx_desc->status & E1000_RXD_STAT_EOP)) {
 
			/* All receives must fit into a single buffer */
 
			E1000_DBG("Receive packet consumed multiple buffers\n");
 
			dev_kfree_skb_irq(skb);
			rx_desc->status = 0;
			buffer_info->skb = NULL;
 
			if(++i == rx_ring->count) i = 0;
 
			rx_desc = E1000_RX_DESC(*rx_ring, i);
			continue;
		}
 
		if(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
 
			last_byte = *(skb->data + length - 1);
 
			if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
			              rx_desc->errors, length, last_byte)) {
 
				spin_lock_irqsave(&adapter->stats_lock, flags);
 
				e1000_tbi_adjust_stats(&adapter->hw,
				                       &adapter->stats,
				                       length, skb->data);
 
				spin_unlock_irqrestore(&adapter->stats_lock,
				                       flags);
				length--;
			} else {
 
				dev_kfree_skb_irq(skb);
				rx_desc->status = 0;
				buffer_info->skb = NULL;
 
				if(++i == rx_ring->count) i = 0;
 
				rx_desc = E1000_RX_DESC(*rx_ring, i);
				continue;
			}
		}
 
		/* Good Receive */
		skb_put(skb, length - ETHERNET_FCS_SIZE);
 
		/* Receive Checksum Offload */
		e1000_rx_checksum(adapter, rx_desc, skb);
 
		skb->protocol = eth_type_trans(skb, netdev);
#ifdef CONFIG_E1000_NAPI
		if(adapter->vlgrp && (rx_desc->status & E1000_RXD_STAT_VP)) {
			vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
				le16_to_cpu(rx_desc->special &
					E1000_RXD_SPC_VLAN_MASK));
		} else {
			netif_receive_skb(skb);
		}
#else /* CONFIG_E1000_NAPI */
		if(adapter->vlgrp && (rx_desc->status & E1000_RXD_STAT_VP)) {
			vlan_hwaccel_rx(skb, adapter->vlgrp,
				le16_to_cpu(rx_desc->special &
					E1000_RXD_SPC_VLAN_MASK));
		} else {
			netif_rx(skb);
		}
#endif /* CONFIG_E1000_NAPI */
		netdev->last_rx = jiffies;
 
		rx_desc->status = 0;
		buffer_info->skb = NULL;
 
		if(++i == rx_ring->count) i = 0;
 
		rx_desc = E1000_RX_DESC(*rx_ring, i);
	}
 
	rx_ring->next_to_clean = i;
 
	e1000_alloc_rx_buffers(adapter);
 
	return cleaned;
}
 
/**
 * e1000_alloc_rx_buffers - Replace used receive buffers
 * @adapter: address of board private structure
 **/
 
static void
e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
{
	struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_rx_desc *rx_desc;
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	int reserve_len = 2;
	unsigned int i;
 
	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];
 
	while(!buffer_info->skb) {
		rx_desc = E1000_RX_DESC(*rx_ring, i);
 
		skb = dev_alloc_skb(adapter->rx_buffer_len + reserve_len);
 
		if(!skb) {
			/* Better luck next round */
			break;
		}
 
		/* Make buffer alignment 2 beyond a 16 byte boundary
		 * this will result in a 16 byte aligned IP header after
		 * the 14 byte MAC header is removed
		 */
		skb_reserve(skb, reserve_len);
 
		skb->dev = netdev;
 
		buffer_info->skb = skb;
		buffer_info->length = adapter->rx_buffer_len;
		buffer_info->dma =
			pci_map_single(pdev,
			               skb->data,
			               adapter->rx_buffer_len,
			               PCI_DMA_FROMDEVICE);
 
		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
 
		if((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i) {
			/* Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64). */
			wmb();
 
			E1000_WRITE_REG(&adapter->hw, RDT, i);
		}
 
		if(++i == rx_ring->count) i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}
 
	rx_ring->next_to_use = i;
}
 
/**
 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
 * @adapter:
 **/
 
static void
e1000_smartspeed(struct e1000_adapter *adapter)
{
	uint16_t phy_status;
	uint16_t phy_ctrl;
 
	if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
	   !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
		return;
 
	if(adapter->smartspeed == 0) {
		/* If Master/Slave config fault is asserted twice,
		 * we assume back-to-back */
		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
		if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
		if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
		if(phy_ctrl & CR_1000T_MS_ENABLE) {
			phy_ctrl &= ~CR_1000T_MS_ENABLE;
			e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
					    phy_ctrl);
			adapter->smartspeed++;
			if(!e1000_phy_setup_autoneg(&adapter->hw) &&
			   !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
				   	       &phy_ctrl)) {
				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
					     MII_CR_RESTART_AUTO_NEG);
				e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
						    phy_ctrl);
			}
		}
		return;
	} else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
		/* If still no link, perhaps using 2/3 pair cable */
		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
		phy_ctrl |= CR_1000T_MS_ENABLE;
		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
		if(!e1000_phy_setup_autoneg(&adapter->hw) &&
		   !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
				     MII_CR_RESTART_AUTO_NEG);
			e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
		}
	}
	/* Restart process after E1000_SMARTSPEED_MAX iterations */
	if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
		adapter->smartspeed = 0;
}
 
/**
 * e1000_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
 
static int
e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return e1000_mii_ioctl(netdev, ifr, cmd);
	case SIOCETHTOOL:
		return e1000_ethtool_ioctl(netdev, ifr);
	default:
		return -EOPNOTSUPP;
	}
}
 
/**
 * e1000_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
 
static int
e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct e1000_adapter *adapter = netdev->priv;
	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&ifr->ifr_data;
	int retval;
	uint16_t mii_reg;
	uint16_t spddplx;
 
	if(adapter->hw.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;
 
	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy_addr;
		break;
	case SIOCGMIIREG:
		if (!capable(CAP_NET_ADMIN))
			return -EPERM;
		if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
				   &data->val_out))
			return -EIO;
		break;
	case SIOCSMIIREG:
		if (!capable(CAP_NET_ADMIN))
			return -EPERM;
		if (data->reg_num & ~(0x1F))
			return -EFAULT;
		mii_reg = data->val_in;
		if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
					data->val_in))
			return -EIO;
		if (adapter->hw.phy_type == e1000_phy_m88) {
			switch (data->reg_num) {
			case PHY_CTRL:
				if(data->val_in & MII_CR_AUTO_NEG_EN) {
					adapter->hw.autoneg = 1;
					adapter->hw.autoneg_advertised = 0x2F;
				} else {
					if (data->val_in & 0x40)
						spddplx = SPEED_1000;
					else if (data->val_in & 0x2000)
						spddplx = SPEED_100;
					else
						spddplx = SPEED_10;
					spddplx += (data->val_in & 0x100)
						   ? FULL_DUPLEX :
						   HALF_DUPLEX;
					retval = e1000_set_spd_dplx(adapter,
								    spddplx);
					if(retval)
						return retval;
				}
				if(netif_running(adapter->netdev)) {
					e1000_down(adapter);
					e1000_up(adapter);
				} else
					e1000_reset(adapter);
				break;
			case M88E1000_PHY_SPEC_CTRL:
			case M88E1000_EXT_PHY_SPEC_CTRL:
				if (e1000_phy_reset(&adapter->hw))
					return -EIO;
				break;
			}
		}
		break;
	default:
		return -EOPNOTSUPP;
	}
	return E1000_SUCCESS;
}
 
/**
 * e1000_rx_checksum - Receive Checksum Offload for 82543
 * @adapter: board private structure
 * @rx_desc: receive descriptor
 * @sk_buff: socket buffer with received data
 **/
 
static inline void
e1000_rx_checksum(struct e1000_adapter *adapter,
                  struct e1000_rx_desc *rx_desc,
                  struct sk_buff *skb)
{
	/* 82543 or newer only */
	if((adapter->hw.mac_type < e1000_82543) ||
	/* Ignore Checksum bit is set */
	(rx_desc->status & E1000_RXD_STAT_IXSM) ||
	/* TCP Checksum has not been calculated */
	(!(rx_desc->status & E1000_RXD_STAT_TCPCS))) {
		skb->ip_summed = CHECKSUM_NONE;
		return;
	}
 
	/* At this point we know the hardware did the TCP checksum */
	/* now look at the TCP checksum error bit */
	if(rx_desc->errors & E1000_RXD_ERR_TCPE) {
		/* let the stack verify checksum errors */
		skb->ip_summed = CHECKSUM_NONE;
		adapter->hw_csum_err++;
	} else {
	/* TCP checksum is good */
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		adapter->hw_csum_good++;
	}
}
 
void
e1000_pci_set_mwi(struct e1000_hw *hw)
{
	struct e1000_adapter *adapter = hw->back;
 
	pci_set_mwi(adapter->pdev);
}
 
void
e1000_pci_clear_mwi(struct e1000_hw *hw)
{
	struct e1000_adapter *adapter = hw->back;
 
	pci_clear_mwi(adapter->pdev);
}
 
void
e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
{
	struct e1000_adapter *adapter = hw->back;
 
	pci_read_config_word(adapter->pdev, reg, value);
}
 
void
e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
{
	struct e1000_adapter *adapter = hw->back;
 
	pci_write_config_word(adapter->pdev, reg, *value);
}
 
uint32_t
e1000_io_read(struct e1000_hw *hw, unsigned long port)
{
	return inl(port);
}
 
void
e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
{
	outl(value, port);
}
 
static void
e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
{
	struct e1000_adapter *adapter = netdev->priv;
	uint32_t ctrl, rctl;
 
	e1000_irq_disable(adapter);
	adapter->vlgrp = grp;
 
	if(grp) {
		/* enable VLAN tag insert/strip */
 
		ctrl = E1000_READ_REG(&adapter->hw, CTRL);
		ctrl |= E1000_CTRL_VME;
		E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
 
		/* enable VLAN receive filtering */
 
		rctl = E1000_READ_REG(&adapter->hw, RCTL);
		rctl |= E1000_RCTL_VFE;
		rctl &= ~E1000_RCTL_CFIEN;
		E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
 
		ctrl = E1000_READ_REG(&adapter->hw, CTRL);
		ctrl &= ~E1000_CTRL_VME;
		E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
 
		/* disable VLAN filtering */
 
		rctl = E1000_READ_REG(&adapter->hw, RCTL);
		rctl &= ~E1000_RCTL_VFE;
		E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
	}
 
	e1000_irq_enable(adapter);
}
 
static void
e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
{
	struct e1000_adapter *adapter = netdev->priv;
	uint32_t vfta, index;
 
	/* add VID to filter table */
 
	index = (vid >> 5) & 0x7F;
	vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
	vfta |= (1 << (vid & 0x1F));
	e1000_write_vfta(&adapter->hw, index, vfta);
}
 
static void
e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
{
	struct e1000_adapter *adapter = netdev->priv;
	uint32_t vfta, index;
 
	e1000_irq_disable(adapter);
 
	if(adapter->vlgrp)
		adapter->vlgrp->vlan_devices[vid] = NULL;
 
	e1000_irq_enable(adapter);
 
	/* remove VID from filter table*/
 
	index = (vid >> 5) & 0x7F;
	vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
	vfta &= ~(1 << (vid & 0x1F));
	e1000_write_vfta(&adapter->hw, index, vfta);
}
 
static void
e1000_restore_vlan(struct e1000_adapter *adapter)
{
	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
 
	if(adapter->vlgrp) {
		uint16_t vid;
		for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
			if(!adapter->vlgrp->vlan_devices[vid])
				continue;
			e1000_vlan_rx_add_vid(adapter->netdev, vid);
		}
	}
}
 
int
e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
{
	adapter->hw.autoneg = 0;
 
	switch(spddplx) {
	case SPEED_10 + DUPLEX_HALF:
		adapter->hw.forced_speed_duplex = e1000_10_half;
		break;
	case SPEED_10 + DUPLEX_FULL:
		adapter->hw.forced_speed_duplex = e1000_10_full;
		break;
	case SPEED_100 + DUPLEX_HALF:
		adapter->hw.forced_speed_duplex = e1000_100_half;
		break;
	case SPEED_100 + DUPLEX_FULL:
		adapter->hw.forced_speed_duplex = e1000_100_full;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		adapter->hw.autoneg = 1;
		adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
		return -EINVAL;
	}
	return 0;
}
 
static int
e1000_notify_reboot(struct notifier_block *nb, unsigned long event, void *p)
{
	struct pci_dev *pdev = NULL;
 
	switch(event) {
	case SYS_DOWN:
	case SYS_HALT:
	case SYS_POWER_OFF:
		while((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
			if(pci_dev_driver(pdev) == &e1000_driver)
				e1000_suspend(pdev, 3);
		}
	}
	return NOTIFY_DONE;
}
 
static int
e1000_suspend(struct pci_dev *pdev, uint32_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev->priv;
	uint32_t ctrl, ctrl_ext, rctl, manc, status;
	uint32_t wufc = adapter->wol;
 
	netif_device_detach(netdev);
 
	if(netif_running(netdev))
		e1000_down(adapter);
 
	status = E1000_READ_REG(&adapter->hw, STATUS);
	if(status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;
 
	if(wufc) {
		e1000_setup_rctl(adapter);
		e1000_set_multi(netdev);
 
		/* turn on all-multi mode if wake on multicast is enabled */
		if(adapter->wol & E1000_WUFC_MC) {
			rctl = E1000_READ_REG(&adapter->hw, RCTL);
			rctl |= E1000_RCTL_MPE;
			E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
		}
 
		if(adapter->hw.mac_type >= e1000_82540) {
			ctrl = E1000_READ_REG(&adapter->hw, CTRL);
			/* advertise wake from D3Cold */
			#define E1000_CTRL_ADVD3WUC 0x00100000
			/* phy power management enable */
			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
			ctrl |= E1000_CTRL_ADVD3WUC |
				E1000_CTRL_EN_PHY_PWR_MGMT;
			E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
		}
 
		if(adapter->hw.media_type == e1000_media_type_fiber ||
		   adapter->hw.media_type == e1000_media_type_internal_serdes) {
			/* keep the laser running in D3 */
			ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
			E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
		}
 
		E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
		E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
		pci_enable_wake(pdev, 3, 1);
		pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
	} else {
		E1000_WRITE_REG(&adapter->hw, WUC, 0);
		E1000_WRITE_REG(&adapter->hw, WUFC, 0);
		pci_enable_wake(pdev, 3, 0);
		pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
	}
 
	pci_save_state(pdev, adapter->pci_state);
 
	if(adapter->hw.mac_type >= e1000_82540 &&
	   adapter->hw.media_type == e1000_media_type_copper) {
		manc = E1000_READ_REG(&adapter->hw, MANC);
		if(manc & E1000_MANC_SMBUS_EN) {
			manc |= E1000_MANC_ARP_EN;
			E1000_WRITE_REG(&adapter->hw, MANC, manc);
			pci_enable_wake(pdev, 3, 1);
			pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
		}
	}
 
	state = (state > 0) ? 3 : 0;
	pci_set_power_state(pdev, state);
 
	return 0;
}
 
#ifdef CONFIG_PM
static int
e1000_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev->priv;
	uint32_t manc;
 
	pci_set_power_state(pdev, 0);
	pci_restore_state(pdev, adapter->pci_state);
 
	pci_enable_wake(pdev, 3, 0);
	pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
 
	e1000_reset(adapter);
	E1000_WRITE_REG(&adapter->hw, WUS, ~0);
 
	if(netif_running(netdev))
		e1000_up(adapter);
 
	netif_device_attach(netdev);
 
	if(adapter->hw.mac_type >= e1000_82540 &&
	   adapter->hw.media_type == e1000_media_type_copper) {
		manc = E1000_READ_REG(&adapter->hw, MANC);
		manc &= ~(E1000_MANC_ARP_EN);
		E1000_WRITE_REG(&adapter->hw, MANC, manc);
	}
 
	return 0;
}
#endif
 
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
 
static void e1000_netpoll (struct net_device *dev)
{
	struct e1000_adapter *adapter = dev->priv;
	disable_irq(adapter->pdev->irq);
	e1000_intr (adapter->pdev->irq, dev, NULL);
	enable_irq(adapter->pdev->irq);
}
#endif
 
/* e1000_main.c */
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.