URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [drivers/] [net/] [r8169.c] - Rev 1765
Compare with Previous | Blame | View Log
/* ========================================================================= r8169.c: A RealTek RTL-8169 Gigabit Ethernet driver for Linux kernel 2.4.x. -------------------------------------------------------------------- History: Feb 4 2002 - created initially by ShuChen <shuchen@realtek.com.tw>. May 20 2002 - Add link status force-mode and TBI mode support. ========================================================================= 1. The media can be forced in 5 modes. Command: 'insmod r8169 media = SET_MEDIA' Ex: 'insmod r8169 media = 0x04' will force PHY to operate in 100Mpbs Half-duplex. SET_MEDIA can be: _10_Half = 0x01 _10_Full = 0x02 _100_Half = 0x04 _100_Full = 0x08 _1000_Full = 0x10 2. Support TBI mode. ========================================================================= VERSION 1.1 <2002/10/4> The bit4:0 of MII register 4 is called "selector field", and have to be 00001b to indicate support of IEEE std 802.3 during NWay process of exchanging Link Code Word (FLP). VERSION 1.2 <2002/11/30> - Large style cleanup - Use ether_crc in stock kernel (linux/crc32.h) - Copy mc_filter setup code from 8139cp (includes an optimization, and avoids set_bit use) */ #include <linux/module.h> #include <linux/pci.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/delay.h> #include <linux/crc32.h> #include <linux/init.h> #include <asm/io.h> #define RTL8169_VERSION "1.2" #define MODULENAME "r8169" #define RTL8169_DRIVER_NAME MODULENAME " Gigabit Ethernet driver " RTL8169_VERSION #define PFX MODULENAME ": " #ifdef RTL8169_DEBUG #define assert(expr) \ if(!(expr)) { \ printk( "Assertion failed! %s,%s,%s,line=%d\n", \ #expr,__FILE__,__FUNCTION__,__LINE__); \ } #else #define assert(expr) do {} while (0) #endif /* media options */ #define MAX_UNITS 8 static int media[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 }; /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ static int max_interrupt_work = 20; /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). The RTL chips use a 64 element hash table based on the Ethernet CRC. */ static int multicast_filter_limit = 32; /* MAC address length*/ #define MAC_ADDR_LEN 6 /* max supported gigabit ethernet frame size -- must be at least (dev->mtu+14+4).*/ #define MAX_ETH_FRAME_SIZE 1536 #define TX_FIFO_THRESH 256 /* In bytes */ #define RX_FIFO_THRESH 7 /* 7 means NO threshold, Rx buffer level before first PCI xfer. */ #define RX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */ #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */ #define EarlyTxThld 0x3F /* 0x3F means NO early transmit */ #define RxPacketMaxSize 0x0800 /* Maximum size supported is 16K-1 */ #define InterFrameGap 0x03 /* 3 means InterFrameGap = the shortest one */ #define NUM_TX_DESC 64 /* Number of Tx descriptor registers */ #define NUM_RX_DESC 64 /* Number of Rx descriptor registers */ #define RX_BUF_SIZE 1536 /* Rx Buffer size */ #define RTL_MIN_IO_SIZE 0x80 #define TX_TIMEOUT (6*HZ) /* write/read MMIO register */ #define RTL_W8(reg, val8) writeb ((val8), ioaddr + (reg)) #define RTL_W16(reg, val16) writew ((val16), ioaddr + (reg)) #define RTL_W32(reg, val32) writel ((val32), ioaddr + (reg)) #define RTL_R8(reg) readb (ioaddr + (reg)) #define RTL_R16(reg) readw (ioaddr + (reg)) #define RTL_R32(reg) ((unsigned long) readl (ioaddr + (reg))) static struct { const char *name; } board_info[] __devinitdata = { { "RealTek RTL8169 Gigabit Ethernet"},}; static struct pci_device_id rtl8169_pci_tbl[] __devinitdata = { {0x10ec, 0x8169, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, {0,}, }; MODULE_DEVICE_TABLE(pci, rtl8169_pci_tbl); enum RTL8169_registers { MAC0 = 0, /* Ethernet hardware address. */ MAR0 = 8, /* Multicast filter. */ TxDescStartAddr = 0x20, TxHDescStartAddr = 0x28, FLASH = 0x30, ERSR = 0x36, ChipCmd = 0x37, TxPoll = 0x38, IntrMask = 0x3C, IntrStatus = 0x3E, TxConfig = 0x40, RxConfig = 0x44, RxMissed = 0x4C, Cfg9346 = 0x50, Config0 = 0x51, Config1 = 0x52, Config2 = 0x53, Config3 = 0x54, Config4 = 0x55, Config5 = 0x56, MultiIntr = 0x5C, PHYAR = 0x60, TBICSR = 0x64, TBI_ANAR = 0x68, TBI_LPAR = 0x6A, PHYstatus = 0x6C, RxMaxSize = 0xDA, CPlusCmd = 0xE0, RxDescStartAddr = 0xE4, EarlyTxThres = 0xEC, FuncEvent = 0xF0, FuncEventMask = 0xF4, FuncPresetState = 0xF8, FuncForceEvent = 0xFC, }; enum RTL8169_register_content { /*InterruptStatusBits */ SYSErr = 0x8000, PCSTimeout = 0x4000, SWInt = 0x0100, TxDescUnavail = 0x80, RxFIFOOver = 0x40, RxUnderrun = 0x20, RxOverflow = 0x10, TxErr = 0x08, TxOK = 0x04, RxErr = 0x02, RxOK = 0x01, /*RxStatusDesc */ RxRES = 0x00200000, RxCRC = 0x00080000, RxRUNT = 0x00100000, RxRWT = 0x00400000, /*ChipCmdBits */ CmdReset = 0x10, CmdRxEnb = 0x08, CmdTxEnb = 0x04, RxBufEmpty = 0x01, /*Cfg9346Bits */ Cfg9346_Lock = 0x00, Cfg9346_Unlock = 0xC0, /*rx_mode_bits */ AcceptErr = 0x20, AcceptRunt = 0x10, AcceptBroadcast = 0x08, AcceptMulticast = 0x04, AcceptMyPhys = 0x02, AcceptAllPhys = 0x01, /*RxConfigBits */ RxCfgFIFOShift = 13, RxCfgDMAShift = 8, /*TxConfigBits */ TxInterFrameGapShift = 24, TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */ /*rtl8169_PHYstatus */ TBI_Enable = 0x80, TxFlowCtrl = 0x40, RxFlowCtrl = 0x20, _1000bpsF = 0x10, _100bps = 0x08, _10bps = 0x04, LinkStatus = 0x02, FullDup = 0x01, /*GIGABIT_PHY_registers */ PHY_CTRL_REG = 0, PHY_STAT_REG = 1, PHY_AUTO_NEGO_REG = 4, PHY_1000_CTRL_REG = 9, /*GIGABIT_PHY_REG_BIT */ PHY_Restart_Auto_Nego = 0x0200, PHY_Enable_Auto_Nego = 0x1000, //PHY_STAT_REG = 1; PHY_Auto_Neco_Comp = 0x0020, //PHY_AUTO_NEGO_REG = 4; PHY_Cap_10_Half = 0x0020, PHY_Cap_10_Full = 0x0040, PHY_Cap_100_Half = 0x0080, PHY_Cap_100_Full = 0x0100, //PHY_1000_CTRL_REG = 9; PHY_Cap_1000_Full = 0x0200, PHY_Cap_Null = 0x0, /*_MediaType*/ _10_Half = 0x01, _10_Full = 0x02, _100_Half = 0x04, _100_Full = 0x08, _1000_Full = 0x10, /*_TBICSRBit*/ TBILinkOK = 0x02000000, }; const static struct { const char *name; u8 version; /* depend on RTL8169 docs */ u32 RxConfigMask; /* should clear the bits supported by this chip */ } rtl_chip_info[] = { { "RTL-8169", 0x00, 0xff7e1880,},}; enum _DescStatusBit { OWNbit = 0x80000000, EORbit = 0x40000000, FSbit = 0x20000000, LSbit = 0x10000000, }; struct TxDesc { u32 status; u32 vlan_tag; u32 buf_addr; u32 buf_Haddr; }; struct RxDesc { u32 status; u32 vlan_tag; u32 buf_addr; u32 buf_Haddr; }; struct rtl8169_private { void *mmio_addr; /* memory map physical address */ struct pci_dev *pci_dev; /* Index of PCI device */ struct net_device_stats stats; /* statistics of net device */ spinlock_t lock; /* spin lock flag */ int chipset; unsigned long cur_rx; /* Index into the Rx descriptor buffer of next Rx pkt. */ unsigned long cur_tx; /* Index into the Tx descriptor buffer of next Rx pkt. */ unsigned long dirty_tx; unsigned char *TxDescArrays; /* Index of Tx Descriptor buffer */ unsigned char *RxDescArrays; /* Index of Rx Descriptor buffer */ struct TxDesc *TxDescArray; /* Index of 256-alignment Tx Descriptor buffer */ struct RxDesc *RxDescArray; /* Index of 256-alignment Rx Descriptor buffer */ unsigned char *RxBufferRings; /* Index of Rx Buffer */ unsigned char *RxBufferRing[NUM_RX_DESC]; /* Index of Rx Buffer array */ struct sk_buff *Tx_skbuff[NUM_TX_DESC]; /* Index of Transmit data buffer */ }; MODULE_AUTHOR("Realtek"); MODULE_DESCRIPTION("RealTek RTL-8169 Gigabit Ethernet driver"); MODULE_PARM(media, "1-" __MODULE_STRING(MAX_UNITS) "i"); MODULE_LICENSE("GPL"); static int rtl8169_open(struct net_device *dev); static int rtl8169_start_xmit(struct sk_buff *skb, struct net_device *dev); static void rtl8169_interrupt(int irq, void *dev_instance, struct pt_regs *regs); static void rtl8169_init_ring(struct net_device *dev); static void rtl8169_hw_start(struct net_device *dev); static int rtl8169_close(struct net_device *dev); static void rtl8169_set_rx_mode(struct net_device *dev); static void rtl8169_tx_timeout(struct net_device *dev); static struct net_device_stats *rtl8169_get_stats(struct net_device *netdev); static const u16 rtl8169_intr_mask = SYSErr | PCSTimeout | RxUnderrun | RxOverflow | RxFIFOOver | TxErr | TxOK | RxErr | RxOK; static const unsigned int rtl8169_rx_config = (RX_FIFO_THRESH << RxCfgFIFOShift) | (RX_DMA_BURST << RxCfgDMAShift); void mdio_write(void *ioaddr, int RegAddr, int value) { int i; RTL_W32(PHYAR, 0x80000000 | (RegAddr & 0xFF) << 16 | value); udelay(1000); for (i = 2000; i > 0; i--) { // Check if the RTL8169 has completed writing to the specified MII register if (!(RTL_R32(PHYAR) & 0x80000000)) { break; } else { udelay(100); } } } int mdio_read(void *ioaddr, int RegAddr) { int i, value = -1; RTL_W32(PHYAR, 0x0 | (RegAddr & 0xFF) << 16); udelay(1000); for (i = 2000; i > 0; i--) { // Check if the RTL8169 has completed retrieving data from the specified MII register if (RTL_R32(PHYAR) & 0x80000000) { value = (int) (RTL_R32(PHYAR) & 0xFFFF); break; } else { udelay(100); } } return value; } static int __devinit rtl8169_init_board(struct pci_dev *pdev, struct net_device **dev_out, void **ioaddr_out) { void *ioaddr = NULL; struct net_device *dev; struct rtl8169_private *tp; int rc, i; unsigned long mmio_start, mmio_end, mmio_flags, mmio_len; u32 tmp; assert(pdev != NULL); assert(ioaddr_out != NULL); *ioaddr_out = NULL; *dev_out = NULL; // dev zeroed in alloc_etherdev dev = alloc_etherdev(sizeof (*tp)); if (dev == NULL) { printk(KERN_ERR PFX "unable to alloc new ethernet\n"); return -ENOMEM; } SET_MODULE_OWNER(dev); tp = dev->priv; // enable device (incl. PCI PM wakeup and hotplug setup) rc = pci_enable_device(pdev); if (rc) goto err_out; mmio_start = pci_resource_start(pdev, 1); mmio_end = pci_resource_end(pdev, 1); mmio_flags = pci_resource_flags(pdev, 1); mmio_len = pci_resource_len(pdev, 1); // make sure PCI base addr 1 is MMIO if (!(mmio_flags & IORESOURCE_MEM)) { printk(KERN_ERR PFX "region #1 not an MMIO resource, aborting\n"); rc = -ENODEV; goto err_out_disable; } // check for weird/broken PCI region reporting if (mmio_len < RTL_MIN_IO_SIZE) { printk(KERN_ERR PFX "Invalid PCI region size(s), aborting\n"); rc = -ENODEV; goto err_out_disable; } rc = pci_request_regions(pdev, dev->name); if (rc) goto err_out_disable; // enable PCI bus-mastering pci_set_master(pdev); // ioremap MMIO region ioaddr = ioremap(mmio_start, mmio_len); if (ioaddr == NULL) { printk(KERN_ERR PFX "cannot remap MMIO, aborting\n"); rc = -EIO; goto err_out_free_res; } // Soft reset the chip. RTL_W8(ChipCmd, CmdReset); // Check that the chip has finished the reset. for (i = 1000; i > 0; i--) if ((RTL_R8(ChipCmd) & CmdReset) == 0) break; else udelay(10); // identify chip attached to board tmp = RTL_R32(TxConfig); tmp = ((tmp & 0x7c000000) + ((tmp & 0x00800000) << 2)) >> 24; for (i = ARRAY_SIZE(rtl_chip_info) - 1; i >= 0; i--) if (tmp == rtl_chip_info[i].version) { tp->chipset = i; goto match; } //if unknown chip, assume array element #0, original RTL-8169 in this case printk(KERN_DEBUG PFX "PCI device %s: unknown chip version, assuming RTL-8169\n", pdev->slot_name); printk(KERN_DEBUG PFX "PCI device %s: TxConfig = 0x%lx\n", pdev->slot_name, (unsigned long) RTL_R32(TxConfig)); tp->chipset = 0; match: *ioaddr_out = ioaddr; *dev_out = dev; return 0; err_out_free_res: pci_release_regions(pdev); err_out_disable: pci_disable_device(pdev); err_out: kfree(dev); return rc; } static int __devinit rtl8169_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *dev = NULL; struct rtl8169_private *tp = NULL; void *ioaddr = NULL; static int board_idx = -1; static int printed_version = 0; int i, rc; int option = -1, Cap10_100 = 0, Cap1000 = 0; assert(pdev != NULL); assert(ent != NULL); board_idx++; if (!printed_version) { printk(KERN_INFO RTL8169_DRIVER_NAME " loaded\n"); printed_version = 1; } rc = rtl8169_init_board(pdev, &dev, &ioaddr); if (rc) return rc; tp = dev->priv; assert(ioaddr != NULL); assert(dev != NULL); assert(tp != NULL); // Get MAC address. FIXME: read EEPROM for (i = 0; i < MAC_ADDR_LEN; i++) dev->dev_addr[i] = RTL_R8(MAC0 + i); dev->open = rtl8169_open; dev->hard_start_xmit = rtl8169_start_xmit; dev->get_stats = rtl8169_get_stats; dev->stop = rtl8169_close; dev->tx_timeout = rtl8169_tx_timeout; dev->set_multicast_list = rtl8169_set_rx_mode; dev->watchdog_timeo = TX_TIMEOUT; dev->irq = pdev->irq; dev->base_addr = (unsigned long) ioaddr; // dev->do_ioctl = mii_ioctl; tp = dev->priv; // private data // tp->pci_dev = pdev; tp->mmio_addr = ioaddr; spin_lock_init(&tp->lock); rc = register_netdev(dev); if (rc) { iounmap(ioaddr); pci_release_regions(pdev); pci_disable_device(pdev); kfree(dev); return rc; } printk(KERN_DEBUG "%s: Identified chip type is '%s'.\n", dev->name, rtl_chip_info[tp->chipset].name); pci_set_drvdata(pdev, dev); printk(KERN_INFO "%s: %s at 0x%lx, " "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x, " "IRQ %d\n", dev->name, board_info[ent->driver_data].name, dev->base_addr, dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5], dev->irq); // if TBI is not endbled if (!(RTL_R8(PHYstatus) & TBI_Enable)) { int val = mdio_read(ioaddr, PHY_AUTO_NEGO_REG); option = (board_idx >= MAX_UNITS) ? 0 : media[board_idx]; // Force RTL8169 in 10/100/1000 Full/Half mode. if (option > 0) { printk(KERN_INFO "%s: Force-mode Enabled.\n", dev->name); Cap10_100 = 0, Cap1000 = 0; switch (option) { case _10_Half: Cap10_100 = PHY_Cap_10_Half; Cap1000 = PHY_Cap_Null; break; case _10_Full: Cap10_100 = PHY_Cap_10_Full; Cap1000 = PHY_Cap_Null; break; case _100_Half: Cap10_100 = PHY_Cap_100_Half; Cap1000 = PHY_Cap_Null; break; case _100_Full: Cap10_100 = PHY_Cap_100_Full; Cap1000 = PHY_Cap_Null; break; case _1000_Full: Cap10_100 = PHY_Cap_Null; Cap1000 = PHY_Cap_1000_Full; break; default: break; } mdio_write(ioaddr, PHY_AUTO_NEGO_REG, Cap10_100 | (val & 0x1F)); //leave PHY_AUTO_NEGO_REG bit4:0 unchanged mdio_write(ioaddr, PHY_1000_CTRL_REG, Cap1000); } else { printk(KERN_INFO "%s: Auto-negotiation Enabled.\n", dev->name); // enable 10/100 Full/Half Mode, leave PHY_AUTO_NEGO_REG bit4:0 unchanged mdio_write(ioaddr, PHY_AUTO_NEGO_REG, PHY_Cap_10_Half | PHY_Cap_10_Full | PHY_Cap_100_Half | PHY_Cap_100_Full | (val & 0x1F)); // enable 1000 Full Mode mdio_write(ioaddr, PHY_1000_CTRL_REG, PHY_Cap_1000_Full); } // Enable auto-negotiation and restart auto-nigotiation mdio_write(ioaddr, PHY_CTRL_REG, PHY_Enable_Auto_Nego | PHY_Restart_Auto_Nego); udelay(100); // wait for auto-negotiation process for (i = 10000; i > 0; i--) { //check if auto-negotiation complete if (mdio_read(ioaddr, PHY_STAT_REG) & PHY_Auto_Neco_Comp) { udelay(100); option = RTL_R8(PHYstatus); if (option & _1000bpsF) { printk(KERN_INFO "%s: 1000Mbps Full-duplex operation.\n", dev->name); } else { printk(KERN_INFO "%s: %sMbps %s-duplex operation.\n", dev->name, (option & _100bps) ? "100" : "10", (option & FullDup) ? "Full" : "Half"); } break; } else { udelay(100); } } // end for-loop to wait for auto-negotiation process } else { udelay(100); printk(KERN_INFO "%s: 1000Mbps Full-duplex operation, TBI Link %s!\n", dev->name, (RTL_R32(TBICSR) & TBILinkOK) ? "OK" : "Failed"); } return 0; } static void __devexit rtl8169_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct rtl8169_private *tp = dev->priv; assert(dev != NULL); assert(tp != NULL); unregister_netdev(dev); iounmap(tp->mmio_addr); pci_release_regions(pdev); // poison memory before freeing memset(dev, 0xBC, sizeof (struct net_device) + sizeof (struct rtl8169_private)); pci_disable_device(pdev); kfree(dev); pci_set_drvdata(pdev, NULL); } static int rtl8169_open(struct net_device *dev) { struct rtl8169_private *tp = dev->priv; int retval; u8 diff; u32 TxPhyAddr, RxPhyAddr; retval = request_irq(dev->irq, rtl8169_interrupt, SA_SHIRQ, dev->name, dev); if (retval) { return retval; } tp->TxDescArrays = kmalloc(NUM_TX_DESC * sizeof (struct TxDesc) + 256, GFP_KERNEL); // Tx Desscriptor needs 256 bytes alignment; TxPhyAddr = virt_to_bus(tp->TxDescArrays); diff = 256 - (TxPhyAddr - ((TxPhyAddr >> 8) << 8)); TxPhyAddr += diff; tp->TxDescArray = (struct TxDesc *) (tp->TxDescArrays + diff); tp->RxDescArrays = kmalloc(NUM_RX_DESC * sizeof (struct RxDesc) + 256, GFP_KERNEL); // Rx Desscriptor needs 256 bytes alignment; RxPhyAddr = virt_to_bus(tp->RxDescArrays); diff = 256 - (RxPhyAddr - ((RxPhyAddr >> 8) << 8)); RxPhyAddr += diff; tp->RxDescArray = (struct RxDesc *) (tp->RxDescArrays + diff); if (tp->TxDescArrays == NULL || tp->RxDescArrays == NULL) { printk(KERN_INFO "Allocate RxDescArray or TxDescArray failed\n"); free_irq(dev->irq, dev); if (tp->TxDescArrays) kfree(tp->TxDescArrays); if (tp->RxDescArrays) kfree(tp->RxDescArrays); return -ENOMEM; } tp->RxBufferRings = kmalloc(RX_BUF_SIZE * NUM_RX_DESC, GFP_KERNEL); if (tp->RxBufferRings == NULL) { printk(KERN_INFO "Allocate RxBufferRing failed\n"); } rtl8169_init_ring(dev); rtl8169_hw_start(dev); return 0; } static void rtl8169_hw_start(struct net_device *dev) { struct rtl8169_private *tp = dev->priv; void *ioaddr = tp->mmio_addr; u32 i; /* Soft reset the chip. */ RTL_W8(ChipCmd, CmdReset); /* Check that the chip has finished the reset. */ for (i = 1000; i > 0; i--) { if ((RTL_R8(ChipCmd) & CmdReset) == 0) break; else udelay(10); } RTL_W8(Cfg9346, Cfg9346_Unlock); RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb); RTL_W8(EarlyTxThres, EarlyTxThld); // For gigabit rtl8169 RTL_W16(RxMaxSize, RxPacketMaxSize); // Set Rx Config register i = rtl8169_rx_config | (RTL_R32(RxConfig) & rtl_chip_info[tp->chipset]. RxConfigMask); RTL_W32(RxConfig, i); /* Set DMA burst size and Interframe Gap Time */ RTL_W32(TxConfig, (TX_DMA_BURST << TxDMAShift) | (InterFrameGap << TxInterFrameGapShift)); tp->cur_rx = 0; RTL_W32(TxDescStartAddr, virt_to_bus(tp->TxDescArray)); RTL_W32(RxDescStartAddr, virt_to_bus(tp->RxDescArray)); RTL_W8(Cfg9346, Cfg9346_Lock); udelay(10); RTL_W32(RxMissed, 0); rtl8169_set_rx_mode(dev); /* no early-rx interrupts */ RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000); /* Enable all known interrupts by setting the interrupt mask. */ RTL_W16(IntrMask, rtl8169_intr_mask); netif_start_queue(dev); } static void rtl8169_init_ring(struct net_device *dev) { struct rtl8169_private *tp = dev->priv; int i; tp->cur_rx = 0; tp->cur_tx = 0; tp->dirty_tx = 0; memset(tp->TxDescArray, 0x0, NUM_TX_DESC * sizeof (struct TxDesc)); memset(tp->RxDescArray, 0x0, NUM_RX_DESC * sizeof (struct RxDesc)); for (i = 0; i < NUM_TX_DESC; i++) { tp->Tx_skbuff[i] = NULL; } for (i = 0; i < NUM_RX_DESC; i++) { if (i == (NUM_RX_DESC - 1)) tp->RxDescArray[i].status = (OWNbit | EORbit) + RX_BUF_SIZE; else tp->RxDescArray[i].status = OWNbit + RX_BUF_SIZE; tp->RxBufferRing[i] = &(tp->RxBufferRings[i * RX_BUF_SIZE]); tp->RxDescArray[i].buf_addr = virt_to_bus(tp->RxBufferRing[i]); } } static void rtl8169_tx_clear(struct rtl8169_private *tp) { int i; tp->cur_tx = 0; for (i = 0; i < NUM_TX_DESC; i++) { if (tp->Tx_skbuff[i] != NULL) { dev_kfree_skb(tp->Tx_skbuff[i]); tp->Tx_skbuff[i] = NULL; tp->stats.tx_dropped++; } } } static void rtl8169_tx_timeout(struct net_device *dev) { struct rtl8169_private *tp = dev->priv; void *ioaddr = tp->mmio_addr; u8 tmp8; /* disable Tx, if not already */ tmp8 = RTL_R8(ChipCmd); if (tmp8 & CmdTxEnb) RTL_W8(ChipCmd, tmp8 & ~CmdTxEnb); /* Disable interrupts by clearing the interrupt mask. */ RTL_W16(IntrMask, 0x0000); /* Stop a shared interrupt from scavenging while we are. */ spin_lock_irq(&tp->lock); rtl8169_tx_clear(tp); spin_unlock_irq(&tp->lock); /* ...and finally, reset everything */ rtl8169_hw_start(dev); netif_wake_queue(dev); } static int rtl8169_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct rtl8169_private *tp = dev->priv; void *ioaddr = tp->mmio_addr; int entry = tp->cur_tx % NUM_TX_DESC; if (skb->len < ETH_ZLEN) { skb = skb_padto(skb, ETH_ZLEN); if (skb == NULL) return 0; } spin_lock_irq(&tp->lock); if ((tp->TxDescArray[entry].status & OWNbit) == 0) { tp->Tx_skbuff[entry] = skb; tp->TxDescArray[entry].buf_addr = virt_to_bus(skb->data); if (entry != (NUM_TX_DESC - 1)) tp->TxDescArray[entry].status = (OWNbit | FSbit | LSbit) | ((skb->len > ETH_ZLEN) ? skb->len : ETH_ZLEN); else tp->TxDescArray[entry].status = (OWNbit | EORbit | FSbit | LSbit) | ((skb->len > ETH_ZLEN) ? skb->len : ETH_ZLEN); RTL_W8(TxPoll, 0x40); //set polling bit dev->trans_start = jiffies; tp->cur_tx++; } spin_unlock_irq(&tp->lock); if ((tp->cur_tx - NUM_TX_DESC) == tp->dirty_tx) { netif_stop_queue(dev); } return 0; } static void rtl8169_tx_interrupt(struct net_device *dev, struct rtl8169_private *tp, void *ioaddr) { unsigned long dirty_tx, tx_left = 0; assert(dev != NULL); assert(tp != NULL); assert(ioaddr != NULL); dirty_tx = tp->dirty_tx; tx_left = tp->cur_tx - dirty_tx; while (tx_left > 0) { int entry = dirty_tx % NUM_TX_DESC; if ((tp->TxDescArray[entry].status & OWNbit) == 0) { struct sk_buff *skb = tp->Tx_skbuff[entry]; tp->stats.tx_bytes += skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN; tp->stats.tx_packets++; dev_kfree_skb_irq(skb); tp->Tx_skbuff[entry] = NULL; dirty_tx++; tx_left--; } } if (tp->dirty_tx != dirty_tx) { tp->dirty_tx = dirty_tx; if (netif_queue_stopped(dev)) netif_wake_queue(dev); } } static void rtl8169_rx_interrupt(struct net_device *dev, struct rtl8169_private *tp, void *ioaddr) { int cur_rx; struct sk_buff *skb; int pkt_size = 0; assert(dev != NULL); assert(tp != NULL); assert(ioaddr != NULL); cur_rx = tp->cur_rx; while ((tp->RxDescArray[cur_rx].status & OWNbit) == 0) { if (tp->RxDescArray[cur_rx].status & RxRES) { printk(KERN_INFO "%s: Rx ERROR!!!\n", dev->name); tp->stats.rx_errors++; if (tp->RxDescArray[cur_rx].status & (RxRWT | RxRUNT)) tp->stats.rx_length_errors++; if (tp->RxDescArray[cur_rx].status & RxCRC) tp->stats.rx_crc_errors++; } else { pkt_size = (int) (tp->RxDescArray[cur_rx]. status & 0x00001FFF) - 4; skb = dev_alloc_skb(pkt_size + 2); if (skb != NULL) { skb->dev = dev; skb_reserve(skb, 2); // 16 byte align the IP fields. // eth_copy_and_sum(skb, tp->RxBufferRing[cur_rx], pkt_size, 0); skb_put(skb, pkt_size); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); if (cur_rx == (NUM_RX_DESC - 1)) tp->RxDescArray[cur_rx].status = (OWNbit | EORbit) + RX_BUF_SIZE; else tp->RxDescArray[cur_rx].status = OWNbit + RX_BUF_SIZE; tp->RxDescArray[cur_rx].buf_addr = virt_to_bus(tp->RxBufferRing[cur_rx]); dev->last_rx = jiffies; tp->stats.rx_bytes += pkt_size; tp->stats.rx_packets++; } else { printk(KERN_WARNING "%s: Memory squeeze, deferring packet.\n", dev->name); /* We should check that some rx space is free. If not, free one and mark stats->rx_dropped++. */ tp->stats.rx_dropped++; } } cur_rx = (cur_rx + 1) % NUM_RX_DESC; } tp->cur_rx = cur_rx; } /* The interrupt handler does all of the Rx thread work and cleans up after the Tx thread. */ static void rtl8169_interrupt(int irq, void *dev_instance, struct pt_regs *regs) { struct net_device *dev = (struct net_device *) dev_instance; struct rtl8169_private *tp = dev->priv; int boguscnt = max_interrupt_work; void *ioaddr = tp->mmio_addr; int status = 0; do { status = RTL_R16(IntrStatus); /* h/w no longer present (hotplug?) or major error, bail */ if (status == 0xFFFF) break; /* if (status & RxUnderrun) link_changed = RTL_R16 (CSCR) & CSCR_LinkChangeBit; */ RTL_W16(IntrStatus, (status & RxFIFOOver) ? (status | RxOverflow) : status); if ((status & (SYSErr | PCSTimeout | RxUnderrun | RxOverflow | RxFIFOOver | TxErr | TxOK | RxErr | RxOK)) == 0) break; // Rx interrupt if (status & (RxOK | RxUnderrun | RxOverflow | RxFIFOOver)) { rtl8169_rx_interrupt(dev, tp, ioaddr); } // Tx interrupt if (status & (TxOK | TxErr)) { spin_lock(&tp->lock); rtl8169_tx_interrupt(dev, tp, ioaddr); spin_unlock(&tp->lock); } boguscnt--; } while (boguscnt > 0); if (boguscnt <= 0) { printk(KERN_WARNING "%s: Too much work at interrupt!\n", dev->name); /* Clear all interrupt sources. */ RTL_W16(IntrStatus, 0xffff); } } static int rtl8169_close(struct net_device *dev) { struct rtl8169_private *tp = dev->priv; void *ioaddr = tp->mmio_addr; int i; netif_stop_queue(dev); spin_lock_irq(&tp->lock); /* Stop the chip's Tx and Rx DMA processes. */ RTL_W8(ChipCmd, 0x00); /* Disable interrupts by clearing the interrupt mask. */ RTL_W16(IntrMask, 0x0000); /* Update the error counts. */ tp->stats.rx_missed_errors += RTL_R32(RxMissed); RTL_W32(RxMissed, 0); spin_unlock_irq(&tp->lock); synchronize_irq(); free_irq(dev->irq, dev); rtl8169_tx_clear(tp); kfree(tp->TxDescArrays); kfree(tp->RxDescArrays); tp->TxDescArrays = NULL; tp->RxDescArrays = NULL; tp->TxDescArray = NULL; tp->RxDescArray = NULL; kfree(tp->RxBufferRings); for (i = 0; i < NUM_RX_DESC; i++) { tp->RxBufferRing[i] = NULL; } return 0; } static void rtl8169_set_rx_mode(struct net_device *dev) { struct rtl8169_private *tp = dev->priv; void *ioaddr = tp->mmio_addr; unsigned long flags; u32 mc_filter[2]; /* Multicast hash filter */ int i, rx_mode; u32 tmp = 0; if (dev->flags & IFF_PROMISC) { /* Unconditionally log net taps. */ printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name); rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys | AcceptAllPhys; mc_filter[1] = mc_filter[0] = 0xffffffff; } else if ((dev->mc_count > multicast_filter_limit) || (dev->flags & IFF_ALLMULTI)) { /* Too many to filter perfectly -- accept all multicasts. */ rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys; mc_filter[1] = mc_filter[0] = 0xffffffff; } else { struct dev_mc_list *mclist; rx_mode = AcceptBroadcast | AcceptMyPhys; mc_filter[1] = mc_filter[0] = 0; for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) { int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26; mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); rx_mode |= AcceptMulticast; } } spin_lock_irqsave(&tp->lock, flags); tmp = rtl8169_rx_config | rx_mode | (RTL_R32(RxConfig) & rtl_chip_info[tp->chipset]. RxConfigMask); RTL_W32(RxConfig, tmp); RTL_W32(MAR0 + 0, mc_filter[0]); RTL_W32(MAR0 + 4, mc_filter[1]); spin_unlock_irqrestore(&tp->lock, flags); } struct net_device_stats * rtl8169_get_stats(struct net_device *dev) { struct rtl8169_private *tp = dev->priv; return &tp->stats; } static struct pci_driver rtl8169_pci_driver = { .name = MODULENAME, .id_table = rtl8169_pci_tbl, .probe = rtl8169_init_one, .remove = __devexit_p(rtl8169_remove_one), .suspend = NULL, .resume = NULL, }; static int __init rtl8169_init_module(void) { return pci_module_init(&rtl8169_pci_driver); } static void __exit rtl8169_cleanup_module(void) { pci_unregister_driver(&rtl8169_pci_driver); } module_init(rtl8169_init_module); module_exit(rtl8169_cleanup_module);