URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [drivers/] [net/] [rcpci45.c] - Rev 1765
Compare with Previous | Blame | View Log
/* ** ** RCpci45.c ** ** ** ** --------------------------------------------------------------------- ** --- Copyright (c) 1998, 1999, RedCreek Communications Inc. --- ** --- All rights reserved. --- ** --------------------------------------------------------------------- ** ** Written by Pete Popov and Brian Moyle. ** ** Known Problems ** ** None known at this time. ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ** ** Pete Popov, Oct 2001: Fixed a few bugs to make the driver functional ** again. Note that this card is not supported or manufactured by ** RedCreek anymore. ** ** Rasmus Andersen, December 2000: Converted to new PCI API and general ** cleanup. ** ** Pete Popov, January 11,99: Fixed a couple of 2.1.x problems ** (virt_to_bus() not called), tested it under 2.2pre5 (as a module), and ** added a #define(s) to enable the use of the same file for both, the 2.0.x ** kernels as well as the 2.1.x. ** ** Ported to 2.1.x by Alan Cox 1998/12/9. ** ** Sometime in mid 1998, written by Pete Popov and Brian Moyle. ** ***************************************************************************/ #include <linux/module.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/string.h> #include <linux/ptrace.h> #include <linux/errno.h> #include <linux/in.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/timer.h> #include <asm/irq.h> /* For NR_IRQS only. */ #include <asm/bitops.h> #include <asm/uaccess.h> static char version[] __initdata = "RedCreek Communications PCI linux driver version 2.20\n"; #define RC_LINUX_MODULE #include "rclanmtl.h" #include "rcif.h" #define RUN_AT(x) (jiffies + (x)) #define NEW_MULTICAST #define MAX_ETHER_SIZE 1520 #define MAX_NMBR_RCV_BUFFERS 96 #define RC_POSTED_BUFFERS_LOW_MARK MAX_NMBR_RCV_BUFFERS-16 #define BD_SIZE 3 /* Bucket Descriptor size */ #define BD_LEN_OFFSET 2 /* Bucket Descriptor offset to length field */ /* RedCreek LAN device Target ID */ #define RC_LAN_TARGET_ID 0x10 /* RedCreek's OSM default LAN receive Initiator */ #define DEFAULT_RECV_INIT_CONTEXT 0xA17 /* minimum msg buffer size needed by the card * Note that the size of this buffer is hard code in the * ipsec card's firmware. Thus, the size MUST be a minimum * of 16K. Otherwise the card will end up using memory * that does not belong to it. */ #define MSG_BUF_SIZE 16384 static U32 DriverControlWord; static void rc_timer (unsigned long); static int RCopen (struct net_device *); static int RC_xmit_packet (struct sk_buff *, struct net_device *); static void RCinterrupt (int, void *, struct pt_regs *); static int RCclose (struct net_device *dev); static struct net_device_stats *RCget_stats (struct net_device *); static int RCioctl (struct net_device *, struct ifreq *, int); static int RCconfig (struct net_device *, struct ifmap *); static void RCxmit_callback (U32, U16, PU32, struct net_device *); static void RCrecv_callback (U32, U8, U32, PU32, struct net_device *); static void RCreset_callback (U32, U32, U32, struct net_device *); static void RCreboot_callback (U32, U32, U32, struct net_device *); static int RC_allocate_and_post_buffers (struct net_device *, int); static struct pci_device_id rcpci45_pci_table[] __devinitdata = { { PCI_VENDOR_ID_REDCREEK, PCI_DEVICE_ID_RC45, PCI_ANY_ID, PCI_ANY_ID,}, {} }; MODULE_DEVICE_TABLE (pci, rcpci45_pci_table); MODULE_LICENSE("GPL"); static void __devexit rcpci45_remove_one (struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata (pdev); PDPA pDpa = dev->priv; if (!dev) { printk (KERN_ERR "%s: remove non-existent device\n", dev->name); return; } RCResetIOP (dev); unregister_netdev (dev); free_irq (dev->irq, dev); iounmap ((void *) dev->base_addr); pci_release_regions (pdev); if (pDpa->msgbuf) kfree (pDpa->msgbuf); if (pDpa->pPab) kfree (pDpa->pPab); kfree (dev); pci_set_drvdata (pdev, NULL); } static int rcpci45_init_one (struct pci_dev *pdev, const struct pci_device_id *ent) { unsigned long *vaddr; PDPA pDpa; int error; static int card_idx = -1; struct net_device *dev; unsigned long pci_start, pci_len; card_idx++; /* * Allocate and fill new device structure. * We need enough for struct net_device plus DPA plus the LAN * API private area, which requires a minimum of 16KB. The top * of the allocated area will be assigned to struct net_device; * the next chunk will be assigned to DPA; and finally, the rest * will be assigned to the LAN API layer. */ dev = init_etherdev (NULL, sizeof (*pDpa)); if (!dev) { printk (KERN_ERR "(rcpci45 driver:) init_etherdev alloc failed\n"); error = -ENOMEM; goto err_out; } error = pci_enable_device (pdev); if (error) { printk (KERN_ERR "(rcpci45 driver:) %d: pci enable device error\n", card_idx); goto err_out; } error = -ENOMEM; pci_start = pci_resource_start (pdev, 0); pci_len = pci_resource_len (pdev, 0); printk("pci_start %lx pci_len %lx\n", pci_start, pci_len); pci_set_drvdata (pdev, dev); pDpa = dev->priv; pDpa->id = card_idx; pDpa->pci_addr = pci_start; if (!pci_start || !(pci_resource_flags (pdev, 0) & IORESOURCE_MEM)) { printk (KERN_ERR "(rcpci45 driver:) No PCI mem resources! Aborting\n"); error = -EBUSY; goto err_out_free_dev; } /* * pDpa->msgbuf is where the card will dma the I2O * messages. Thus, we need contiguous physical pages of * memory. */ pDpa->msgbuf = kmalloc (MSG_BUF_SIZE, GFP_DMA | GFP_KERNEL); if (!pDpa->msgbuf) { printk (KERN_ERR "(rcpci45 driver:) \ Could not allocate %d byte memory for the \ private msgbuf!\n", MSG_BUF_SIZE); goto err_out_free_dev; } /* * Save the starting address of the LAN API private area. We'll * pass that to RCInitI2OMsgLayer(). * */ pDpa->PLanApiPA = (void *) (((long) pDpa->msgbuf + 0xff) & ~0xff); /* The adapter is accessible through memory-access read/write, not * I/O read/write. Thus, we need to map it to some virtual address * area in order to access the registers as normal memory. */ error = pci_request_regions (pdev, dev->name); if (error) goto err_out_free_msgbuf; vaddr = (ulong *) ioremap (pci_start, pci_len); if (!vaddr) { printk (KERN_ERR "(rcpci45 driver:) \ Unable to remap address range from %lu to %lu\n", pci_start, pci_start + pci_len); goto err_out_free_region; } dev->base_addr = (unsigned long) vaddr; dev->irq = pdev->irq; dev->open = &RCopen; dev->hard_start_xmit = &RC_xmit_packet; dev->stop = &RCclose; dev->get_stats = &RCget_stats; dev->do_ioctl = &RCioctl; dev->set_config = &RCconfig; return 0; /* success */ err_out_free_region: pci_release_regions (pdev); err_out_free_msgbuf: kfree (pDpa->msgbuf); err_out_free_dev: unregister_netdev (dev); kfree (dev); err_out: card_idx--; return -ENODEV; } static struct pci_driver rcpci45_driver = { name: "rcpci45", id_table: rcpci45_pci_table, probe: rcpci45_init_one, remove: __devexit_p(rcpci45_remove_one), }; static int __init rcpci_init_module (void) { int rc = pci_module_init (&rcpci45_driver); if (!rc) printk (KERN_ERR "%s", version); return rc; } static int RCopen (struct net_device *dev) { int post_buffers = MAX_NMBR_RCV_BUFFERS; PDPA pDpa = dev->priv; int count = 0; int requested = 0; int error; MOD_INC_USE_COUNT; if (pDpa->nexus) { /* This is not the first time RCopen is called. Thus, * the interface was previously opened and later closed * by RCclose(). RCclose() does a Shutdown; to wake up * the adapter, a reset is mandatory before we can post * receive buffers. However, if the adapter initiated * a reboot while the interface was closed -- and interrupts * were turned off -- we need will need to reinitialize * the adapter, rather than simply waking it up. */ printk (KERN_INFO "Waking up adapter...\n"); RCResetLANCard (dev, 0, 0, 0); } else { pDpa->nexus = 1; /* * RCInitI2OMsgLayer is done only once, unless the * adapter was sent a warm reboot */ error = RCInitI2OMsgLayer (dev, (PFNTXCALLBACK) RCxmit_callback, (PFNRXCALLBACK) RCrecv_callback, (PFNCALLBACK) RCreboot_callback); if (error) { printk (KERN_ERR "%s: Unable to init msg layer (%x)\n", dev->name, error); goto err_out; } if ((error = RCGetMAC (dev, NULL))) { printk (KERN_ERR "%s: Unable to get adapter MAC\n", dev->name); goto err_out; } } /* Request a shared interrupt line. */ error = request_irq (dev->irq, RCinterrupt, SA_SHIRQ, dev->name, dev); if (error) { printk (KERN_ERR "%s: unable to get IRQ %d\n", dev->name, dev->irq); goto err_out; } DriverControlWord |= WARM_REBOOT_CAPABLE; RCReportDriverCapability (dev, DriverControlWord); printk (KERN_INFO "%s: RedCreek Communications IPSEC VPN adapter\n", dev->name); RCEnableI2OInterrupts (dev); while (post_buffers) { if (post_buffers > MAX_NMBR_POST_BUFFERS_PER_MSG) requested = MAX_NMBR_POST_BUFFERS_PER_MSG; else requested = post_buffers; count = RC_allocate_and_post_buffers (dev, requested); if (count < requested) { /* * Check to see if we were able to post * any buffers at all. */ if (post_buffers == MAX_NMBR_RCV_BUFFERS) { printk (KERN_ERR "%s: \ unable to allocate any buffers\n", dev->name); goto err_out_free_irq; } printk (KERN_WARNING "%s: \ unable to allocate all requested buffers\n", dev->name); break; /* we'll try to post more buffers later */ } else post_buffers -= count; } pDpa->numOutRcvBuffers = MAX_NMBR_RCV_BUFFERS - post_buffers; pDpa->shutdown = 0; /* just in case */ netif_start_queue (dev); return 0; err_out_free_irq: free_irq (dev->irq, dev); err_out: MOD_DEC_USE_COUNT; return error; } static int RC_xmit_packet (struct sk_buff *skb, struct net_device *dev) { PDPA pDpa = dev->priv; singleTCB tcb; psingleTCB ptcb = &tcb; RC_RETURN status = 0; netif_stop_queue (dev); if (pDpa->shutdown || pDpa->reboot) { printk ("RC_xmit_packet: tbusy!\n"); return 1; } /* * The user is free to reuse the TCB after RCI2OSendPacket() * returns, since the function copies the necessary info into its * own private space. Thus, our TCB can be a local structure. * The skb, on the other hand, will be freed up in our interrupt * handler. */ ptcb->bcount = 1; /* * we'll get the context when the adapter interrupts us to tell us that * the transmission is done. At that time, we can free skb. */ ptcb->b.context = (U32) skb; ptcb->b.scount = 1; ptcb->b.size = skb->len; ptcb->b.addr = virt_to_bus ((void *) skb->data); if ((status = RCI2OSendPacket (dev, (U32) NULL, (PRCTCB) ptcb)) != RC_RTN_NO_ERROR) { printk ("%s: send error 0x%x\n", dev->name, (uint) status); return 1; } else { dev->trans_start = jiffies; netif_wake_queue (dev); } /* * That's it! */ return 0; } /* * RCxmit_callback() * * The transmit callback routine. It's called by RCProcI2OMsgQ() * because the adapter is done with one or more transmit buffers and * it's returning them to us, or we asked the adapter to return the * outstanding transmit buffers by calling RCResetLANCard() with * RC_RESOURCE_RETURN_PEND_TX_BUFFERS flag. * All we need to do is free the buffers. */ static void RCxmit_callback (U32 Status, U16 PcktCount, PU32 BufferContext, struct net_device *dev) { struct sk_buff *skb; PDPA pDpa = dev->priv; if (!pDpa) { printk (KERN_ERR "%s: Fatal Error in xmit callback, !pDpa\n", dev->name); return; } if (Status != I2O_REPLY_STATUS_SUCCESS) printk (KERN_INFO "%s: xmit_callback: Status = 0x%x\n", dev->name, (uint) Status); if (pDpa->shutdown || pDpa->reboot) printk (KERN_INFO "%s: xmit callback: shutdown||reboot\n", dev->name); while (PcktCount--) { skb = (struct sk_buff *) (BufferContext[0]); BufferContext++; dev_kfree_skb_irq (skb); } netif_wake_queue (dev); } static void RCreset_callback (U32 Status, U32 p1, U32 p2, struct net_device *dev) { PDPA pDpa = dev->priv; printk ("RCreset_callback Status 0x%x\n", (uint) Status); /* * Check to see why we were called. */ if (pDpa->shutdown) { printk (KERN_INFO "%s: shutting down interface\n", dev->name); pDpa->shutdown = 0; pDpa->reboot = 0; } else if (pDpa->reboot) { printk (KERN_INFO "%s: reboot, shutdown adapter\n", dev->name); /* * We don't set any of the flags in RCShutdownLANCard() * and we don't pass a callback routine to it. * The adapter will have already initiated the reboot by * the time the function returns. */ RCDisableI2OInterrupts (dev); RCShutdownLANCard (dev, 0, 0, 0); printk (KERN_INFO "%s: scheduling timer...\n", dev->name); init_timer (&pDpa->timer); pDpa->timer.expires = RUN_AT ((40 * HZ) / 10); /* 4 sec. */ pDpa->timer.data = (unsigned long) dev; pDpa->timer.function = &rc_timer; /* timer handler */ add_timer (&pDpa->timer); } } static void RCreboot_callback (U32 Status, U32 p1, U32 p2, struct net_device *dev) { PDPA pDpa = dev->priv; printk (KERN_INFO "%s: reboot: rcv buffers outstanding = %d\n", dev->name, (uint) pDpa->numOutRcvBuffers); if (pDpa->shutdown) { printk (KERN_INFO "%s: skip reboot, shutdown initiated\n", dev->name); return; } pDpa->reboot = 1; /* * OK, we reset the adapter and ask it to return all * outstanding transmit buffers as well as the posted * receive buffers. When the adapter is done returning * those buffers, it will call our RCreset_callback() * routine. In that routine, we'll call RCShutdownLANCard() * to tell the adapter that it's OK to start the reboot and * schedule a timer callback routine to execute 3 seconds * later; this routine will reinitialize the adapter at that time. */ RCResetLANCard (dev, RC_RESOURCE_RETURN_POSTED_RX_BUCKETS | RC_RESOURCE_RETURN_PEND_TX_BUFFERS, 0, (PFNCALLBACK) RCreset_callback); } int broadcast_packet (unsigned char *address) { int i; for (i = 0; i < 6; i++) if (address[i] != 0xff) return 0; return 1; } /* * RCrecv_callback() * * The receive packet callback routine. This is called by * RCProcI2OMsgQ() after the adapter posts buffers which have been * filled (one ethernet packet per buffer). */ static void RCrecv_callback (U32 Status, U8 PktCount, U32 BucketsRemain, PU32 PacketDescBlock, struct net_device *dev) { U32 len, count; PDPA pDpa = dev->priv; struct sk_buff *skb; singleTCB tcb; psingleTCB ptcb = &tcb; ptcb->bcount = 1; if ((pDpa->shutdown || pDpa->reboot) && !Status) printk (KERN_INFO "%s: shutdown||reboot && !Status (%d)\n", dev->name, PktCount); if ((Status != I2O_REPLY_STATUS_SUCCESS) || pDpa->shutdown) { /* * Free whatever buffers the adapter returned, but don't * pass them to the kernel. */ if (!pDpa->shutdown && !pDpa->reboot) printk (KERN_INFO "%s: recv error status = 0x%x\n", dev->name, (uint) Status); else printk (KERN_DEBUG "%s: Returning %d buffs stat 0x%x\n", dev->name, PktCount, (uint) Status); /* * TO DO: check the nature of the failure and put the * adapter in failed mode if it's a hard failure. * Send a reset to the adapter and free all outstanding memory. */ if (PacketDescBlock) { while (PktCount--) { skb = (struct sk_buff *) PacketDescBlock[0]; dev_kfree_skb (skb); pDpa->numOutRcvBuffers--; /* point to next context field */ PacketDescBlock += BD_SIZE; } } return; } else { while (PktCount--) { skb = (struct sk_buff *) PacketDescBlock[0]; len = PacketDescBlock[2]; skb->dev = dev; skb_put (skb, len); /* adjust length and tail */ skb->protocol = eth_type_trans (skb, dev); netif_rx (skb); /* send the packet to the kernel */ dev->last_rx = jiffies; pDpa->numOutRcvBuffers--; /* point to next context field */ PacketDescBlock += BD_SIZE; } } /* * Replenish the posted receive buffers. * DO NOT replenish buffers if the driver has already * initiated a reboot or shutdown! */ if (!pDpa->shutdown && !pDpa->reboot) { count = RC_allocate_and_post_buffers (dev, MAX_NMBR_RCV_BUFFERS - pDpa->numOutRcvBuffers); pDpa->numOutRcvBuffers += count; } } /* * RCinterrupt() * * Interrupt handler. * This routine sets up a couple of pointers and calls * RCProcI2OMsgQ(), which in turn process the message and * calls one of our callback functions. */ static void RCinterrupt (int irq, void *dev_id, struct pt_regs *regs) { PDPA pDpa; struct net_device *dev = dev_id; pDpa = dev->priv; if (pDpa->shutdown) printk (KERN_DEBUG "%s: shutdown, service irq\n", dev->name); RCProcI2OMsgQ (dev); } #define REBOOT_REINIT_RETRY_LIMIT 4 static void rc_timer (unsigned long data) { struct net_device *dev = (struct net_device *) data; PDPA pDpa = dev->priv; int init_status; static int retry; int post_buffers = MAX_NMBR_RCV_BUFFERS; int count = 0; int requested = 0; if (pDpa->reboot) { init_status = RCInitI2OMsgLayer (dev, (PFNTXCALLBACK) RCxmit_callback, (PFNRXCALLBACK) RCrecv_callback, (PFNCALLBACK) RCreboot_callback); switch (init_status) { case RC_RTN_NO_ERROR: pDpa->reboot = 0; pDpa->shutdown = 0; /* just in case */ RCReportDriverCapability (dev, DriverControlWord); RCEnableI2OInterrupts (dev); if (!(dev->flags & IFF_UP)) { retry = 0; return; } while (post_buffers) { if (post_buffers > MAX_NMBR_POST_BUFFERS_PER_MSG) requested = MAX_NMBR_POST_BUFFERS_PER_MSG; else requested = post_buffers; count = RC_allocate_and_post_buffers (dev, requested); post_buffers -= count; if (count < requested) break; } pDpa->numOutRcvBuffers = MAX_NMBR_RCV_BUFFERS - post_buffers; printk ("Initialization done.\n"); netif_wake_queue (dev); retry = 0; return; case RC_RTN_FREE_Q_EMPTY: retry++; printk (KERN_WARNING "%s inbound free q empty\n", dev->name); break; default: retry++; printk (KERN_WARNING "%s bad stat after reboot: %d\n", dev->name, init_status); break; } if (retry > REBOOT_REINIT_RETRY_LIMIT) { printk (KERN_WARNING "%s unable to reinitialize adapter after reboot\n", dev->name); printk (KERN_WARNING "%s decrementing driver and closing interface\n", dev->name); RCDisableI2OInterrupts (dev); dev->flags &= ~IFF_UP; MOD_DEC_USE_COUNT; } else { printk (KERN_INFO "%s: rescheduling timer...\n", dev->name); init_timer (&pDpa->timer); pDpa->timer.expires = RUN_AT ((40 * HZ) / 10); pDpa->timer.data = (unsigned long) dev; pDpa->timer.function = &rc_timer; add_timer (&pDpa->timer); } } else printk (KERN_WARNING "%s: unexpected timer irq\n", dev->name); } static int RCclose (struct net_device *dev) { PDPA pDpa = dev->priv; printk("RCclose\n"); netif_stop_queue (dev); if (pDpa->reboot) { printk (KERN_INFO "%s skipping reset -- adapter already in reboot mode\n", dev->name); dev->flags &= ~IFF_UP; pDpa->shutdown = 1; MOD_DEC_USE_COUNT; return 0; } pDpa->shutdown = 1; /* * We can't allow the driver to be unloaded until the adapter returns * all posted receive buffers. It doesn't hurt to tell the adapter * to return all posted receive buffers and outstanding xmit buffers, * even if there are none. */ RCShutdownLANCard (dev, RC_RESOURCE_RETURN_POSTED_RX_BUCKETS | RC_RESOURCE_RETURN_PEND_TX_BUFFERS, 0, (PFNCALLBACK) RCreset_callback); dev->flags &= ~IFF_UP; MOD_DEC_USE_COUNT; return 0; } static struct net_device_stats * RCget_stats (struct net_device *dev) { RCLINKSTATS RCstats; PDPA pDpa = dev->priv; if (!pDpa) { return 0; } else if (!(dev->flags & IFF_UP)) { return 0; } memset (&RCstats, 0, sizeof (RCLINKSTATS)); if ((RCGetLinkStatistics (dev, &RCstats, (void *) 0)) == RC_RTN_NO_ERROR) { /* total packets received */ pDpa->stats.rx_packets = RCstats.Rcv_good /* total packets transmitted */; pDpa->stats.tx_packets = RCstats.TX_good; pDpa->stats.rx_errors = RCstats.Rcv_CRCerr + RCstats.Rcv_alignerr + RCstats.Rcv_reserr + RCstats.Rcv_orun + RCstats.Rcv_cdt + RCstats.Rcv_runt; pDpa->stats.tx_errors = RCstats.TX_urun + RCstats.TX_crs + RCstats.TX_def + RCstats.TX_totcol; /* * This needs improvement. */ pDpa->stats.rx_dropped = 0; /* no space in linux buffers */ pDpa->stats.tx_dropped = 0; /* no space available in linux */ pDpa->stats.multicast = 0; /* multicast packets received */ pDpa->stats.collisions = RCstats.TX_totcol; /* detailed rx_errors: */ pDpa->stats.rx_length_errors = 0; pDpa->stats.rx_over_errors = RCstats.Rcv_orun; pDpa->stats.rx_crc_errors = RCstats.Rcv_CRCerr; pDpa->stats.rx_frame_errors = 0; pDpa->stats.rx_fifo_errors = 0; pDpa->stats.rx_missed_errors = 0; /* detailed tx_errors */ pDpa->stats.tx_aborted_errors = 0; pDpa->stats.tx_carrier_errors = 0; pDpa->stats.tx_fifo_errors = 0; pDpa->stats.tx_heartbeat_errors = 0; pDpa->stats.tx_window_errors = 0; return ((struct net_device_stats *) &(pDpa->stats)); } return 0; } static int RCioctl (struct net_device *dev, struct ifreq *rq, int cmd) { RCuser_struct RCuser; PDPA pDpa = dev->priv; if (!capable (CAP_NET_ADMIN)) return -EPERM; switch (cmd) { case RCU_PROTOCOL_REV: /* * Assign user protocol revision, to tell user-level * controller program whether or not it's in sync. */ rq->ifr_ifru.ifru_data = (caddr_t) USER_PROTOCOL_REV; break; case RCU_COMMAND: { if (copy_from_user (&RCuser, rq->ifr_data, sizeof (RCuser))) return -EFAULT; dprintk ("RCioctl: RCuser_cmd = 0x%x\n", RCuser.cmd); switch (RCuser.cmd) { case RCUC_GETFWVER: RCUD_GETFWVER = &RCuser.RCUS_GETFWVER; RCGetFirmwareVer (dev, (PU8) & RCUD_GETFWVER-> FirmString, NULL); break; case RCUC_GETINFO: RCUD_GETINFO = &RCuser.RCUS_GETINFO; RCUD_GETINFO->mem_start = dev->base_addr; RCUD_GETINFO->mem_end = dev->base_addr + pDpa->pci_addr_len; RCUD_GETINFO->base_addr = pDpa->pci_addr; RCUD_GETINFO->irq = dev->irq; break; case RCUC_GETIPANDMASK: RCUD_GETIPANDMASK = &RCuser.RCUS_GETIPANDMASK; RCGetRavlinIPandMask (dev, (PU32) & RCUD_GETIPANDMASK->IpAddr, (PU32) & RCUD_GETIPANDMASK-> NetMask, NULL); break; case RCUC_GETLINKSTATISTICS: RCUD_GETLINKSTATISTICS = &RCuser.RCUS_GETLINKSTATISTICS; RCGetLinkStatistics (dev, (P_RCLINKSTATS) & RCUD_GETLINKSTATISTICS-> StatsReturn, NULL); break; case RCUC_GETLINKSTATUS: RCUD_GETLINKSTATUS = &RCuser.RCUS_GETLINKSTATUS; RCGetLinkStatus (dev, (PU32) & RCUD_GETLINKSTATUS-> ReturnStatus, NULL); break; case RCUC_GETMAC: RCUD_GETMAC = &RCuser.RCUS_GETMAC; RCGetMAC (dev, NULL); memcpy(RCUD_GETMAC, dev->dev_addr, 8); break; case RCUC_GETPROM: RCUD_GETPROM = &RCuser.RCUS_GETPROM; RCGetPromiscuousMode (dev, (PU32) & RCUD_GETPROM-> PromMode, NULL); break; case RCUC_GETBROADCAST: RCUD_GETBROADCAST = &RCuser.RCUS_GETBROADCAST; RCGetBroadcastMode (dev, (PU32) & RCUD_GETBROADCAST-> BroadcastMode, NULL); break; case RCUC_GETSPEED: if (!(dev->flags & IFF_UP)) { return -ENODATA; } RCUD_GETSPEED = &RCuser.RCUS_GETSPEED; RCGetLinkSpeed (dev, (PU32) & RCUD_GETSPEED-> LinkSpeedCode, NULL); break; case RCUC_SETIPANDMASK: RCUD_SETIPANDMASK = &RCuser.RCUS_SETIPANDMASK; RCSetRavlinIPandMask (dev, (U32) RCUD_SETIPANDMASK-> IpAddr, (U32) RCUD_SETIPANDMASK-> NetMask); break; case RCUC_SETMAC: RCSetMAC (dev, (PU8) & RCUD_SETMAC->mac); break; case RCUC_SETSPEED: RCUD_SETSPEED = &RCuser.RCUS_SETSPEED; RCSetLinkSpeed (dev, (U16) RCUD_SETSPEED-> LinkSpeedCode); break; case RCUC_SETPROM: RCUD_SETPROM = &RCuser.RCUS_SETPROM; RCSetPromiscuousMode (dev, (U16) RCUD_SETPROM-> PromMode); break; case RCUC_SETBROADCAST: RCUD_SETBROADCAST = &RCuser.RCUS_SETBROADCAST; RCSetBroadcastMode (dev, (U16) RCUD_SETBROADCAST-> BroadcastMode); break; default: RCUD_DEFAULT = &RCuser.RCUS_DEFAULT; RCUD_DEFAULT->rc = 0x11223344; break; } if (copy_to_user (rq->ifr_data, &RCuser, sizeof (RCuser))) return -EFAULT; break; } /* RCU_COMMAND */ default: rq->ifr_ifru.ifru_data = (caddr_t) 0x12345678; return -EINVAL; } return 0; } static int RCconfig (struct net_device *dev, struct ifmap *map) { /* * To be completed ... */ return 0; if (dev->flags & IFF_UP) /* can't act on a running interface */ return -EBUSY; /* Don't allow changing the I/O address */ if (map->base_addr != dev->base_addr) { printk (KERN_WARNING "%s Change I/O address not implemented\n", dev->name); return -EOPNOTSUPP; } return 0; } static void __exit rcpci_cleanup_module (void) { pci_unregister_driver (&rcpci45_driver); } module_init (rcpci_init_module); module_exit (rcpci_cleanup_module); static int RC_allocate_and_post_buffers (struct net_device *dev, int numBuffers) { int i; PU32 p; psingleB pB; struct sk_buff *skb; RC_RETURN status; U32 res; if (!numBuffers) return 0; else if (numBuffers > MAX_NMBR_POST_BUFFERS_PER_MSG) { printk (KERN_ERR "%s: Too many buffers requested!\n", dev->name); numBuffers = 32; } p = (PU32) kmalloc (sizeof (U32) + numBuffers * sizeof (singleB), GFP_DMA | GFP_ATOMIC); if (!p) { printk (KERN_WARNING "%s unable to allocate TCB\n", dev->name); return 0; } p[0] = 0; /* Buffer Count */ pB = (psingleB) ((U32) p + sizeof (U32));/* point to the first buffer */ for (i = 0; i < numBuffers; i++) { skb = dev_alloc_skb (MAX_ETHER_SIZE + 2); if (!skb) { printk (KERN_WARNING "%s: unable to allocate enough skbs!\n", dev->name); if (*p != 0) { /* did we allocate any buffers */ break; } else { kfree (p); /* Free the TCB */ return 0; } } skb_reserve (skb, 2); /* Align IP on 16 byte boundaries */ pB->context = (U32) skb; pB->scount = 1; /* segment count */ pB->size = MAX_ETHER_SIZE; pB->addr = virt_to_bus ((void *) skb->data); p[0]++; pB++; } if ((status = RCPostRecvBuffers (dev, (PRCTCB) p)) != RC_RTN_NO_ERROR) { printk (KERN_WARNING "%s: Post buffer failed, error 0x%x\n", dev->name, status); /* point to the first buffer */ pB = (psingleB) ((U32) p + sizeof (U32)); while (p[0]) { skb = (struct sk_buff *) pB->context; dev_kfree_skb (skb); p[0]--; pB++; } } res = p[0]; kfree (p); return (res); /* return the number of posted buffers */ }