OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [drivers/] [net/] [tulip/] [tulip_core.c] - Rev 1765

Compare with Previous | Blame | View Log

/* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux. */
 
/*
	Maintained by Jeff Garzik <jgarzik@pobox.com>
	Copyright 2000-2002  The Linux Kernel Team
	Written/copyright 1994-2001 by Donald Becker.
 
	This software may be used and distributed according to the terms
	of the GNU General Public License, incorporated herein by reference.
 
	Please refer to Documentation/DocBook/tulip.{pdf,ps,html}
	for more information on this driver, or visit the project
	Web page at http://sourceforge.net/projects/tulip/
 
*/
 
#define DRV_NAME	"tulip"
#define DRV_VERSION	"0.9.15-pre12"
#define DRV_RELDATE	"Aug 9, 2002"
 
#include <linux/config.h>
#include <linux/module.h>
#include "tulip.h"
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/crc32.h>
#include <asm/unaligned.h>
#include <asm/uaccess.h>
 
#ifdef __sparc__
#include <asm/pbm.h>
#endif
 
static char version[] __devinitdata =
	"Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n";
 
 
/* A few user-configurable values. */
 
/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
static unsigned int max_interrupt_work = 25;
 
#define MAX_UNITS 8
/* Used to pass the full-duplex flag, etc. */
static int full_duplex[MAX_UNITS];
static int options[MAX_UNITS];
static int mtu[MAX_UNITS];			/* Jumbo MTU for interfaces. */
 
/*  The possible media types that can be set in options[] are: */
const char * const medianame[32] = {
	"10baseT", "10base2", "AUI", "100baseTx",
	"10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
	"100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
	"10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
	"MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
	"","","","", "","","","",  "","","","Transceiver reset",
};
 
/* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
	|| defined(__sparc_) || defined(__ia64__) \
	|| defined(__sh__) || defined(__mips__) || defined(__SH5__)
static int rx_copybreak = 1518;
#else
static int rx_copybreak = 100;
#endif
 
/*
  Set the bus performance register.
	Typical: Set 16 longword cache alignment, no burst limit.
	Cache alignment bits 15:14	     Burst length 13:8
		0000	No alignment  0x00000000 unlimited		0800 8 longwords
		4000	8  longwords		0100 1 longword		1000 16 longwords
		8000	16 longwords		0200 2 longwords	2000 32 longwords
		C000	32  longwords		0400 4 longwords
	Warning: many older 486 systems are broken and require setting 0x00A04800
	   8 longword cache alignment, 8 longword burst.
	ToDo: Non-Intel setting could be better.
*/
 
#if defined(__alpha__) || defined(__ia64__) || defined(__x86_64__)
static int csr0 = 0x01A00000 | 0xE000;
#elif defined(__i386__) || defined(__powerpc__)
static int csr0 = 0x01A00000 | 0x8000;
#elif defined(__sparc__) || defined(__hppa__)
/* The UltraSparc PCI controllers will disconnect at every 64-byte
 * crossing anyways so it makes no sense to tell Tulip to burst
 * any more than that.
 */
static int csr0 = 0x01A00000 | 0x9000;
#elif defined(__arm__) || defined(__sh__)
static int csr0 = 0x01A00000 | 0x4800;
#elif defined(__mips__)
static int csr0 = 0x00200000 | 0x4000;
#else
#warning Processor architecture undefined!
static int csr0 = 0x00A00000 | 0x4800;
#endif
 
/* Operational parameters that usually are not changed. */
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT  (4*HZ)
 
 
MODULE_AUTHOR("The Linux Kernel Team");
MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver");
MODULE_LICENSE("GPL");
MODULE_PARM(tulip_debug, "i");
MODULE_PARM(max_interrupt_work, "i");
MODULE_PARM(rx_copybreak, "i");
MODULE_PARM(csr0, "i");
MODULE_PARM(options, "1-" __MODULE_STRING(MAX_UNITS) "i");
MODULE_PARM(full_duplex, "1-" __MODULE_STRING(MAX_UNITS) "i");
 
#define PFX DRV_NAME ": "
 
#ifdef TULIP_DEBUG
int tulip_debug = TULIP_DEBUG;
#else
int tulip_debug = 1;
#endif
 
 
 
/*
 * This table use during operation for capabilities and media timer.
 *
 * It is indexed via the values in 'enum chips'
 */
 
struct tulip_chip_table tulip_tbl[] = {
  /* DC21040 */
  { "Digital DC21040 Tulip", 128, 0x0001ebef, 0, tulip_timer },
 
  /* DC21041 */
  { "Digital DC21041 Tulip", 128, 0x0001ebef,
	HAS_MEDIA_TABLE | HAS_NWAY, tulip_timer },
 
  /* DC21140 */
  { "Digital DS21140 Tulip", 128, 0x0001ebef,
	HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer },
 
  /* DC21142, DC21143 */
  { "Digital DS21143 Tulip", 128, 0x0801fbff,
	HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY
	| HAS_INTR_MITIGATION | HAS_PCI_MWI, t21142_timer },
 
  /* LC82C168 */
  { "Lite-On 82c168 PNIC", 256, 0x0001fbef,
	HAS_MII | HAS_PNICNWAY, pnic_timer },
 
  /* MX98713 */
  { "Macronix 98713 PMAC", 128, 0x0001ebef,
	HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer },
 
  /* MX98715 */
  { "Macronix 98715 PMAC", 256, 0x0001ebef,
	HAS_MEDIA_TABLE, mxic_timer },
 
  /* MX98725 */
  { "Macronix 98725 PMAC", 256, 0x0001ebef,
	HAS_MEDIA_TABLE, mxic_timer },
 
  /* AX88140 */
  { "ASIX AX88140", 128, 0x0001fbff,
	HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY
	| IS_ASIX, tulip_timer },
 
  /* PNIC2 */
  { "Lite-On PNIC-II", 256, 0x0801fbff,
	HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer },
 
  /* COMET */
  { "ADMtek Comet", 256, 0x0001abef,
	MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer },
 
  /* COMPEX9881 */
  { "Compex 9881 PMAC", 128, 0x0001ebef,
	HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer },
 
  /* I21145 */
  { "Intel DS21145 Tulip", 128, 0x0801fbff,
	HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI
	| HAS_NWAY | HAS_PCI_MWI, t21142_timer },
 
  /* DM910X */
  { "Davicom DM9102/DM9102A", 128, 0x0001ebef,
	HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI,
	tulip_timer },
 
  /* CONEXANT */
  {	"Conexant LANfinity", 256, 0x0001ebef,
	HAS_MII, tulip_timer },
};
 
 
static struct pci_device_id tulip_pci_tbl[] __devinitdata = {
	{ 0x1011, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21040 },
	{ 0x1011, 0x0014, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21041 },
	{ 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 },
	{ 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 },
	{ 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 },
	{ 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 },
	{ 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
/*	{ 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/
	{ 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 },
	{ 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 },
	{ 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
	{ 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
	{ 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
	{ 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
	{ 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
	{ 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
	{ 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
	{ 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
	{ 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
	{ 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
	{ 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 },
	{ 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 },
	{ 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
	{ 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
	{ 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
	{ 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
	{ 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
	{ 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
	{ 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
	{ 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
	{ 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
	{ 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
	{ 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT },
	{ 0x10b9, 0x5261, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },	/* ALi 1563 integrated ethernet */
	{ 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },	/* 3Com 3CSOHO100B-TX */
	{ } /* terminate list */
};
MODULE_DEVICE_TABLE(pci, tulip_pci_tbl);
 
 
/* A full-duplex map for media types. */
const char tulip_media_cap[32] =
{0,0,0,16,  3,19,16,24,  27,4,7,5, 0,20,23,20,  28,31,0,0, };
u8 t21040_csr13[] = {2,0x0C,8,4,  4,0,0,0, 0,0,0,0, 4,0,0,0};
 
/* 21041 transceiver register settings: 10-T, 10-2, AUI, 10-T, 10T-FD*/
u16 t21041_csr13[] = {
	csr13_mask_10bt,		/* 10-T */
	csr13_mask_auibnc,		/* 10-2 */
	csr13_mask_auibnc,		/* AUI */
	csr13_mask_10bt,		/* 10-T */
	csr13_mask_10bt,		/* 10T-FD */
};
u16 t21041_csr14[] = { 0xFFFF, 0xF7FD, 0xF7FD, 0x7F3F, 0x7F3D, };
u16 t21041_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, };
 
 
static void tulip_tx_timeout(struct net_device *dev);
static void tulip_init_ring(struct net_device *dev);
static int tulip_start_xmit(struct sk_buff *skb, struct net_device *dev);
static int tulip_open(struct net_device *dev);
static int tulip_close(struct net_device *dev);
static void tulip_up(struct net_device *dev);
static void tulip_down(struct net_device *dev);
static struct net_device_stats *tulip_get_stats(struct net_device *dev);
static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static void set_rx_mode(struct net_device *dev);
 
 
 
static void tulip_set_power_state (struct tulip_private *tp,
				   int sleep, int snooze)
{
	if (tp->flags & HAS_ACPI) {
		u32 tmp, newtmp;
		pci_read_config_dword (tp->pdev, CFDD, &tmp);
		newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze);
		if (sleep)
			newtmp |= CFDD_Sleep;
		else if (snooze)
			newtmp |= CFDD_Snooze;
		if (tmp != newtmp)
			pci_write_config_dword (tp->pdev, CFDD, newtmp);
	}
 
}
 
 
static void tulip_up(struct net_device *dev)
{
	struct tulip_private *tp = (struct tulip_private *)dev->priv;
	long ioaddr = dev->base_addr;
	int next_tick = 3*HZ;
	int i;
 
	/* Wake the chip from sleep/snooze mode. */
	tulip_set_power_state (tp, 0, 0);
 
	/* On some chip revs we must set the MII/SYM port before the reset!? */
	if (tp->mii_cnt  ||  (tp->mtable  &&  tp->mtable->has_mii))
		outl(0x00040000, ioaddr + CSR6);
 
	/* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
	outl(0x00000001, ioaddr + CSR0);
	udelay(100);
 
	/* Deassert reset.
	   Wait the specified 50 PCI cycles after a reset by initializing
	   Tx and Rx queues and the address filter list. */
	outl(tp->csr0, ioaddr + CSR0);
	udelay(100);
 
	if (tulip_debug > 1)
		printk(KERN_DEBUG "%s: tulip_up(), irq==%d.\n", dev->name, dev->irq);
 
	outl(tp->rx_ring_dma, ioaddr + CSR3);
	outl(tp->tx_ring_dma, ioaddr + CSR4);
	tp->cur_rx = tp->cur_tx = 0;
	tp->dirty_rx = tp->dirty_tx = 0;
 
	if (tp->flags & MC_HASH_ONLY) {
		u32 addr_low = cpu_to_le32(get_unaligned((u32 *)dev->dev_addr));
		u32 addr_high = cpu_to_le32(get_unaligned((u16 *)(dev->dev_addr+4)));
		if (tp->chip_id == AX88140) {
			outl(0, ioaddr + CSR13);
			outl(addr_low,  ioaddr + CSR14);
			outl(1, ioaddr + CSR13);
			outl(addr_high, ioaddr + CSR14);
		} else if (tp->flags & COMET_MAC_ADDR) {
			outl(addr_low,  ioaddr + 0xA4);
			outl(addr_high, ioaddr + 0xA8);
			outl(0, ioaddr + 0xAC);
			outl(0, ioaddr + 0xB0);
		}
	} else {
		/* This is set_rx_mode(), but without starting the transmitter. */
		u16 *eaddrs = (u16 *)dev->dev_addr;
		u16 *setup_frm = &tp->setup_frame[15*6];
		dma_addr_t mapping;
 
		/* 21140 bug: you must add the broadcast address. */
		memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame));
		/* Fill the final entry of the table with our physical address. */
		*setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
		*setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
		*setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
 
		mapping = pci_map_single(tp->pdev, tp->setup_frame,
					 sizeof(tp->setup_frame),
					 PCI_DMA_TODEVICE);
		tp->tx_buffers[tp->cur_tx].skb = NULL;
		tp->tx_buffers[tp->cur_tx].mapping = mapping;
 
		/* Put the setup frame on the Tx list. */
		tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192);
		tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping);
		tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned);
 
		tp->cur_tx++;
	}
 
	tp->saved_if_port = dev->if_port;
	if (dev->if_port == 0)
		dev->if_port = tp->default_port;
 
	/* Allow selecting a default media. */
	i = 0;
	if (tp->mtable == NULL)
		goto media_picked;
	if (dev->if_port) {
		int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 :
			(dev->if_port == 12 ? 0 : dev->if_port);
		for (i = 0; i < tp->mtable->leafcount; i++)
			if (tp->mtable->mleaf[i].media == looking_for) {
				printk(KERN_INFO "%s: Using user-specified media %s.\n",
					   dev->name, medianame[dev->if_port]);
				goto media_picked;
			}
	}
	if ((tp->mtable->defaultmedia & 0x0800) == 0) {
		int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
		for (i = 0; i < tp->mtable->leafcount; i++)
			if (tp->mtable->mleaf[i].media == looking_for) {
				printk(KERN_INFO "%s: Using EEPROM-set media %s.\n",
					   dev->name, medianame[looking_for]);
				goto media_picked;
			}
	}
	/* Start sensing first non-full-duplex media. */
	for (i = tp->mtable->leafcount - 1;
		 (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
		;
media_picked:
 
	tp->csr6 = 0;
	tp->cur_index = i;
	tp->nwayset = 0;
 
	if (dev->if_port) {
		if (tp->chip_id == DC21143  &&
		    (tulip_media_cap[dev->if_port] & MediaIsMII)) {
			/* We must reset the media CSRs when we force-select MII mode. */
			outl(0x0000, ioaddr + CSR13);
			outl(0x0000, ioaddr + CSR14);
			outl(0x0008, ioaddr + CSR15);
		}
		tulip_select_media(dev, 1);
	} else if (tp->chip_id == DC21041) {
		dev->if_port = 0;
		tp->nway = tp->mediasense = 1;
		tp->nwayset = tp->lpar = 0;
		outl(0x00000000, ioaddr + CSR13);
		outl(0xFFFFFFFF, ioaddr + CSR14);
		outl(0x00000008, ioaddr + CSR15); /* Listen on AUI also. */
		tp->csr6 = 0x80020000;
		if (tp->sym_advertise & 0x0040)
			tp->csr6 |= FullDuplex;
		outl(tp->csr6, ioaddr + CSR6);
		outl(0x0000EF01, ioaddr + CSR13);
 
	} else if (tp->chip_id == DC21142) {
		if (tp->mii_cnt) {
			tulip_select_media(dev, 1);
			if (tulip_debug > 1)
				printk(KERN_INFO "%s: Using MII transceiver %d, status "
					   "%4.4x.\n",
					   dev->name, tp->phys[0], tulip_mdio_read(dev, tp->phys[0], 1));
			outl(csr6_mask_defstate, ioaddr + CSR6);
			tp->csr6 = csr6_mask_hdcap;
			dev->if_port = 11;
			outl(0x0000, ioaddr + CSR13);
			outl(0x0000, ioaddr + CSR14);
		} else
			t21142_start_nway(dev);
	} else if (tp->chip_id == PNIC2) {
	        /* for initial startup advertise 10/100 Full and Half */
	        tp->sym_advertise = 0x01E0;
                /* enable autonegotiate end interrupt */
	        outl(inl(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5);
	        outl(inl(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7);
		pnic2_start_nway(dev);
	} else if (tp->chip_id == LC82C168  &&  ! tp->medialock) {
		if (tp->mii_cnt) {
			dev->if_port = 11;
			tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0);
			outl(0x0001, ioaddr + CSR15);
		} else if (inl(ioaddr + CSR5) & TPLnkPass)
			pnic_do_nway(dev);
		else {
			/* Start with 10mbps to do autonegotiation. */
			outl(0x32, ioaddr + CSR12);
			tp->csr6 = 0x00420000;
			outl(0x0001B078, ioaddr + 0xB8);
			outl(0x0201B078, ioaddr + 0xB8);
			next_tick = 1*HZ;
		}
	} else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881)
			   && ! tp->medialock) {
		dev->if_port = 0;
		tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0);
		outl(0x0f370000 | inw(ioaddr + 0x80), ioaddr + 0x80);
	} else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) {
		/* Provided by BOLO, Macronix - 12/10/1998. */
		dev->if_port = 0;
		tp->csr6 = 0x01a80200;
		outl(0x0f370000 | inw(ioaddr + 0x80), ioaddr + 0x80);
		outl(0x11000 | inw(ioaddr + 0xa0), ioaddr + 0xa0);
	} else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) {
		/* Enable automatic Tx underrun recovery. */
		outl(inl(ioaddr + 0x88) | 1, ioaddr + 0x88);
		dev->if_port = tp->mii_cnt ? 11 : 0;
		tp->csr6 = 0x00040000;
	} else if (tp->chip_id == AX88140) {
		tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
	} else
		tulip_select_media(dev, 1);
 
	/* Start the chip's Tx to process setup frame. */
	tulip_stop_rxtx(tp);
	barrier();
	udelay(5);
	outl(tp->csr6 | TxOn, ioaddr + CSR6);
 
	/* Enable interrupts by setting the interrupt mask. */
	outl(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
	outl(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
	tulip_start_rxtx(tp);
	outl(0, ioaddr + CSR2);		/* Rx poll demand */
 
	if (tulip_debug > 2) {
		printk(KERN_DEBUG "%s: Done tulip_up(), CSR0 %8.8x, CSR5 %8.8x CSR6 %8.8x.\n",
			   dev->name, inl(ioaddr + CSR0), inl(ioaddr + CSR5),
			   inl(ioaddr + CSR6));
	}
 
	/* Set the timer to switch to check for link beat and perhaps switch
	   to an alternate media type. */
	tp->timer.expires = RUN_AT(next_tick);
	add_timer(&tp->timer);
}
 
#ifdef CONFIG_NET_HW_FLOWCONTROL
/* Enable receiver */
void tulip_xon(struct net_device *dev)
{
        struct tulip_private *tp = (struct tulip_private *)dev->priv;
 
        clear_bit(tp->fc_bit, &netdev_fc_xoff);
        if (netif_running(dev)){
 
                tulip_refill_rx(dev);
                outl(tulip_tbl[tp->chip_id].valid_intrs,  dev->base_addr+CSR7);
        }
}
#endif
 
static int
tulip_open(struct net_device *dev)
{
#ifdef CONFIG_NET_HW_FLOWCONTROL
        struct tulip_private *tp = (struct tulip_private *)dev->priv;
#endif
	int retval;
	MOD_INC_USE_COUNT;
 
	if ((retval = request_irq(dev->irq, &tulip_interrupt, SA_SHIRQ, dev->name, dev))) {
		MOD_DEC_USE_COUNT;
		return retval;
	}
 
	tulip_init_ring (dev);
 
	tulip_up (dev);
 
#ifdef CONFIG_NET_HW_FLOWCONTROL
        tp->fc_bit = netdev_register_fc(dev, tulip_xon);
#endif
 
	netif_start_queue (dev);
 
	return 0;
}
 
 
static void tulip_tx_timeout(struct net_device *dev)
{
	struct tulip_private *tp = (struct tulip_private *)dev->priv;
	long ioaddr = dev->base_addr;
	unsigned long flags;
 
	spin_lock_irqsave (&tp->lock, flags);
 
	if (tulip_media_cap[dev->if_port] & MediaIsMII) {
		/* Do nothing -- the media monitor should handle this. */
		if (tulip_debug > 1)
			printk(KERN_WARNING "%s: Transmit timeout using MII device.\n",
				   dev->name);
	} else if (tp->chip_id == DC21040) {
		if ( !tp->medialock  &&  inl(ioaddr + CSR12) & 0x0002) {
			dev->if_port = (dev->if_port == 2 ? 0 : 2);
			printk(KERN_INFO "%s: 21040 transmit timed out, switching to "
				   "%s.\n",
				   dev->name, medianame[dev->if_port]);
			tulip_select_media(dev, 0);
		}
		goto out;
	} else if (tp->chip_id == DC21041) {
		int csr12 = inl(ioaddr + CSR12);
 
		printk(KERN_WARNING "%s: 21041 transmit timed out, status %8.8x, "
			   "CSR12 %8.8x, CSR13 %8.8x, CSR14 %8.8x, resetting...\n",
			   dev->name, inl(ioaddr + CSR5), csr12,
			   inl(ioaddr + CSR13), inl(ioaddr + CSR14));
		tp->mediasense = 1;
		if ( ! tp->medialock) {
			if (dev->if_port == 1 || dev->if_port == 2)
				if (csr12 & 0x0004) {
					dev->if_port = 2 - dev->if_port;
				} else
					dev->if_port = 0;
			else if (dev->if_port != 0 || (csr12 & 0x0004) != 0)
				dev->if_port = 1;
			tulip_select_media(dev, 0);
		}
	} else if (tp->chip_id == DC21140 || tp->chip_id == DC21142
			   || tp->chip_id == MX98713 || tp->chip_id == COMPEX9881
			   || tp->chip_id == DM910X) {
		printk(KERN_WARNING "%s: 21140 transmit timed out, status %8.8x, "
			   "SIA %8.8x %8.8x %8.8x %8.8x, resetting...\n",
			   dev->name, inl(ioaddr + CSR5), inl(ioaddr + CSR12),
			   inl(ioaddr + CSR13), inl(ioaddr + CSR14), inl(ioaddr + CSR15));
		if ( ! tp->medialock  &&  tp->mtable) {
			do
				--tp->cur_index;
			while (tp->cur_index >= 0
				   && (tulip_media_cap[tp->mtable->mleaf[tp->cur_index].media]
					   & MediaIsFD));
			if (--tp->cur_index < 0) {
				/* We start again, but should instead look for default. */
				tp->cur_index = tp->mtable->leafcount - 1;
			}
			tulip_select_media(dev, 0);
			printk(KERN_WARNING "%s: transmit timed out, switching to %s "
				   "media.\n", dev->name, medianame[dev->if_port]);
		}
	} else if (tp->chip_id == PNIC2) {
		printk(KERN_WARNING "%s: PNIC2 transmit timed out, status %8.8x, "
		       "CSR6/7 %8.8x / %8.8x CSR12 %8.8x, resetting...\n",
		       dev->name, (int)inl(ioaddr + CSR5), (int)inl(ioaddr + CSR6),
		       (int)inl(ioaddr + CSR7), (int)inl(ioaddr + CSR12));
	} else {
		printk(KERN_WARNING "%s: Transmit timed out, status %8.8x, CSR12 "
			   "%8.8x, resetting...\n",
			   dev->name, inl(ioaddr + CSR5), inl(ioaddr + CSR12));
		dev->if_port = 0;
	}
 
#if defined(way_too_many_messages)
	if (tulip_debug > 3) {
		int i;
		for (i = 0; i < RX_RING_SIZE; i++) {
			u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
			int j;
			printk(KERN_DEBUG "%2d: %8.8x %8.8x %8.8x %8.8x  "
				   "%2.2x %2.2x %2.2x.\n",
				   i, (unsigned int)tp->rx_ring[i].status,
				   (unsigned int)tp->rx_ring[i].length,
				   (unsigned int)tp->rx_ring[i].buffer1,
				   (unsigned int)tp->rx_ring[i].buffer2,
				   buf[0], buf[1], buf[2]);
			for (j = 0; buf[j] != 0xee && j < 1600; j++)
				if (j < 100) printk(" %2.2x", buf[j]);
			printk(" j=%d.\n", j);
		}
		printk(KERN_DEBUG "  Rx ring %8.8x: ", (int)tp->rx_ring);
		for (i = 0; i < RX_RING_SIZE; i++)
			printk(" %8.8x", (unsigned int)tp->rx_ring[i].status);
		printk("\n" KERN_DEBUG "  Tx ring %8.8x: ", (int)tp->tx_ring);
		for (i = 0; i < TX_RING_SIZE; i++)
			printk(" %8.8x", (unsigned int)tp->tx_ring[i].status);
		printk("\n");
	}
#endif
 
	/* Stop and restart the chip's Tx processes . */
#ifdef CONFIG_NET_HW_FLOWCONTROL
        if (tp->fc_bit && test_bit(tp->fc_bit,&netdev_fc_xoff))
                printk("BUG tx_timeout restarting rx when fc on\n");
#endif
	tulip_restart_rxtx(tp);
	/* Trigger an immediate transmit demand. */
	outl(0, ioaddr + CSR1);
 
	tp->stats.tx_errors++;
 
out:
	spin_unlock_irqrestore (&tp->lock, flags);
	dev->trans_start = jiffies;
	netif_wake_queue (dev);
}
 
 
/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
static void tulip_init_ring(struct net_device *dev)
{
	struct tulip_private *tp = (struct tulip_private *)dev->priv;
	int i;
 
	tp->susp_rx = 0;
	tp->ttimer = 0;
	tp->nir = 0;
 
	for (i = 0; i < RX_RING_SIZE; i++) {
		tp->rx_ring[i].status = 0x00000000;
		tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ);
		tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1));
		tp->rx_buffers[i].skb = NULL;
		tp->rx_buffers[i].mapping = 0;
	}
	/* Mark the last entry as wrapping the ring. */
	tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP);
	tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma);
 
	for (i = 0; i < RX_RING_SIZE; i++) {
		dma_addr_t mapping;
 
		/* Note the receive buffer must be longword aligned.
		   dev_alloc_skb() provides 16 byte alignment.  But do *not*
		   use skb_reserve() to align the IP header! */
		struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ);
		tp->rx_buffers[i].skb = skb;
		if (skb == NULL)
			break;
		mapping = pci_map_single(tp->pdev, skb->tail,
					 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
		tp->rx_buffers[i].mapping = mapping;
		skb->dev = dev;			/* Mark as being used by this device. */
		tp->rx_ring[i].status = cpu_to_le32(DescOwned);	/* Owned by Tulip chip */
		tp->rx_ring[i].buffer1 = cpu_to_le32(mapping);
	}
	tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
 
	/* The Tx buffer descriptor is filled in as needed, but we
	   do need to clear the ownership bit. */
	for (i = 0; i < TX_RING_SIZE; i++) {
		tp->tx_buffers[i].skb = NULL;
		tp->tx_buffers[i].mapping = 0;
		tp->tx_ring[i].status = 0x00000000;
		tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1));
	}
	tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma);
}
 
static int
tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct tulip_private *tp = (struct tulip_private *)dev->priv;
	int entry;
	u32 flag;
	dma_addr_t mapping;
	unsigned long eflags;
 
	spin_lock_irqsave(&tp->lock, eflags);
 
	/* Calculate the next Tx descriptor entry. */
	entry = tp->cur_tx % TX_RING_SIZE;
 
	tp->tx_buffers[entry].skb = skb;
	mapping = pci_map_single(tp->pdev, skb->data,
				 skb->len, PCI_DMA_TODEVICE);
	tp->tx_buffers[entry].mapping = mapping;
	tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
 
	if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
		flag = 0x60000000; /* No interrupt */
	} else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
		flag = 0xe0000000; /* Tx-done intr. */
	} else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
		flag = 0x60000000; /* No Tx-done intr. */
	} else {		/* Leave room for set_rx_mode() to fill entries. */
		flag = 0xe0000000; /* Tx-done intr. */
		netif_stop_queue(dev);
	}
	if (entry == TX_RING_SIZE-1)
		flag = 0xe0000000 | DESC_RING_WRAP;
 
	tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
	/* if we were using Transmit Automatic Polling, we would need a
	 * wmb() here. */
	tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
	wmb();
 
	tp->cur_tx++;
 
	/* Trigger an immediate transmit demand. */
	outl(0, dev->base_addr + CSR1);
 
	spin_unlock_irqrestore(&tp->lock, eflags);
 
	dev->trans_start = jiffies;
 
	return 0;
}
 
static void tulip_clean_tx_ring(struct tulip_private *tp)
{
	unsigned int dirty_tx;
 
	for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0;
		dirty_tx++) {
		int entry = dirty_tx % TX_RING_SIZE;
		int status = le32_to_cpu(tp->tx_ring[entry].status);
 
		if (status < 0) {
			tp->stats.tx_errors++;	/* It wasn't Txed */
			tp->tx_ring[entry].status = 0;
		}
 
		/* Check for Tx filter setup frames. */
		if (tp->tx_buffers[entry].skb == NULL) {
			/* test because dummy frames not mapped */
			if (tp->tx_buffers[entry].mapping)
				pci_unmap_single(tp->pdev,
					tp->tx_buffers[entry].mapping,
					sizeof(tp->setup_frame),
					PCI_DMA_TODEVICE);
			continue;
		}
 
		pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping,
				tp->tx_buffers[entry].skb->len,
				PCI_DMA_TODEVICE);
 
		/* Free the original skb. */
		dev_kfree_skb_irq(tp->tx_buffers[entry].skb);
		tp->tx_buffers[entry].skb = NULL;
		tp->tx_buffers[entry].mapping = 0;
	}
}
 
static void tulip_down (struct net_device *dev)
{
	long ioaddr = dev->base_addr;
	struct tulip_private *tp = (struct tulip_private *) dev->priv;
	unsigned long flags;
 
	del_timer_sync (&tp->timer);
 
	spin_lock_irqsave (&tp->lock, flags);
 
	/* Disable interrupts by clearing the interrupt mask. */
	outl (0x00000000, ioaddr + CSR7);
 
	/* Stop the Tx and Rx processes. */
	tulip_stop_rxtx(tp);
 
	/* prepare receive buffers */
	tulip_refill_rx(dev);
 
	/* release any unconsumed transmit buffers */
	tulip_clean_tx_ring(tp);
 
	/* 21040 -- Leave the card in 10baseT state. */
	if (tp->chip_id == DC21040)
		outl (0x00000004, ioaddr + CSR13);
 
	if (inl (ioaddr + CSR6) != 0xffffffff)
		tp->stats.rx_missed_errors += inl (ioaddr + CSR8) & 0xffff;
 
	spin_unlock_irqrestore (&tp->lock, flags);
 
	init_timer(&tp->timer);
	tp->timer.data = (unsigned long)dev;
	tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
 
	dev->if_port = tp->saved_if_port;
 
	/* Leave the driver in snooze, not sleep, mode. */
	tulip_set_power_state (tp, 0, 1);
}
 
 
static int tulip_close (struct net_device *dev)
{
	long ioaddr = dev->base_addr;
	struct tulip_private *tp = (struct tulip_private *) dev->priv;
	int i;
 
	netif_stop_queue (dev);
 
#ifdef CONFIG_NET_HW_FLOWCONTROL
        if (tp->fc_bit) {
                int bit = tp->fc_bit;
                tp->fc_bit = 0;
                netdev_unregister_fc(bit);
        }
#endif
	tulip_down (dev);
 
	if (tulip_debug > 1)
		printk (KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
			dev->name, inl (ioaddr + CSR5));
 
	free_irq (dev->irq, dev);
 
	/* Free all the skbuffs in the Rx queue. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		struct sk_buff *skb = tp->rx_buffers[i].skb;
		dma_addr_t mapping = tp->rx_buffers[i].mapping;
 
		tp->rx_buffers[i].skb = NULL;
		tp->rx_buffers[i].mapping = 0;
 
		tp->rx_ring[i].status = 0;	/* Not owned by Tulip chip. */
		tp->rx_ring[i].length = 0;
		tp->rx_ring[i].buffer1 = 0xBADF00D0;	/* An invalid address. */
		if (skb) {
			pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ,
					 PCI_DMA_FROMDEVICE);
			dev_kfree_skb (skb);
		}
	}
	for (i = 0; i < TX_RING_SIZE; i++) {
		struct sk_buff *skb = tp->tx_buffers[i].skb;
 
		if (skb != NULL) {
			pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping,
					 skb->len, PCI_DMA_TODEVICE);
			dev_kfree_skb (skb);
		}
		tp->tx_buffers[i].skb = NULL;
		tp->tx_buffers[i].mapping = 0;
	}
 
	MOD_DEC_USE_COUNT;
 
	return 0;
}
 
static struct net_device_stats *tulip_get_stats(struct net_device *dev)
{
	struct tulip_private *tp = (struct tulip_private *)dev->priv;
	long ioaddr = dev->base_addr;
 
	if (netif_running(dev)) {
		unsigned long flags;
 
		spin_lock_irqsave (&tp->lock, flags);
 
		tp->stats.rx_missed_errors += inl(ioaddr + CSR8) & 0xffff;
 
		spin_unlock_irqrestore(&tp->lock, flags);
	}
 
	return &tp->stats;
}
 
 
static int netdev_ethtool_ioctl(struct net_device *dev, void *useraddr)
{
	struct tulip_private *np = dev->priv;
	u32 ethcmd;
 
	if (copy_from_user(&ethcmd, useraddr, sizeof(ethcmd)))
		return -EFAULT;
 
        switch (ethcmd) {
        case ETHTOOL_GDRVINFO: {
		struct ethtool_drvinfo info = {ETHTOOL_GDRVINFO};
		strcpy(info.driver, DRV_NAME);
		strcpy(info.version, DRV_VERSION);
		strcpy(info.bus_info, np->pdev->slot_name);
		if (copy_to_user(useraddr, &info, sizeof(info)))
			return -EFAULT;
		return 0;
	}
 
        }
 
	return -EOPNOTSUPP;
}
 
/* Provide ioctl() calls to examine the MII xcvr state. */
static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct tulip_private *tp = dev->priv;
	long ioaddr = dev->base_addr;
	struct mii_ioctl_data *data = (struct mii_ioctl_data *) & rq->ifr_data;
	const unsigned int phy_idx = 0;
	int phy = tp->phys[phy_idx] & 0x1f;
	unsigned int regnum = data->reg_num;
 
	switch (cmd) {
	case SIOCETHTOOL:
		return netdev_ethtool_ioctl(dev, (void *) rq->ifr_data);
 
	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
	case SIOCDEVPRIVATE:		/* for binary compat, remove in 2.5 */
		if (tp->mii_cnt)
			data->phy_id = phy;
		else if (tp->flags & HAS_NWAY)
			data->phy_id = 32;
		else if (tp->chip_id == COMET)
			data->phy_id = 1;
		else
			return -ENODEV;
 
	case SIOCGMIIREG:		/* Read MII PHY register. */
	case SIOCDEVPRIVATE+1:		/* for binary compat, remove in 2.5 */
		if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
			int csr12 = inl (ioaddr + CSR12);
			int csr14 = inl (ioaddr + CSR14);
			switch (regnum) {
			case 0:
                                if (((csr14<<5) & 0x1000) ||
                                        (dev->if_port == 5 && tp->nwayset))
                                        data->val_out = 0x1000;
                                else
                                        data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
                                                | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
				break;
			case 1:
                                data->val_out =
					0x1848 +
					((csr12&0x7000) == 0x5000 ? 0x20 : 0) +
					((csr12&0x06) == 6 ? 0 : 4);
                                if (tp->chip_id != DC21041)
                                        data->val_out |= 0x6048;
				break;
			case 4:
                                /* Advertised value, bogus 10baseTx-FD value from CSR6. */
                                data->val_out =
					((inl(ioaddr + CSR6) >> 3) & 0x0040) +
					((csr14 >> 1) & 0x20) + 1;
                                if (tp->chip_id != DC21041)
                                         data->val_out |= ((csr14 >> 9) & 0x03C0);
				break;
			case 5: data->val_out = tp->lpar; break;
			default: data->val_out = 0; break;
			}
		} else {
			data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum);
		}
		return 0;
 
	case SIOCSMIIREG:		/* Write MII PHY register. */
	case SIOCDEVPRIVATE+2:		/* for binary compat, remove in 2.5 */
		if (!capable (CAP_NET_ADMIN))
			return -EPERM;
		if (regnum & ~0x1f)
			return -EINVAL;
		if (data->phy_id == phy) {
			u16 value = data->val_in;
			switch (regnum) {
			case 0:	/* Check for autonegotiation on or reset. */
				tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
				if (tp->full_duplex_lock)
					tp->full_duplex = (value & 0x0100) ? 1 : 0;
				break;
			case 4:
				tp->advertising[phy_idx] =
				tp->mii_advertise = data->val_in;
				break;
			}
		}
		if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
			u16 value = data->val_in;
			if (regnum == 0) {
			  if ((value & 0x1200) == 0x1200) {
			    if (tp->chip_id == PNIC2) {
                                   pnic2_start_nway (dev);
                            } else {
				   t21142_start_nway (dev);
                            }
			  }
			} else if (regnum == 4)
				tp->sym_advertise = value;
		} else {
			tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in);
		}
		return 0;
	default:
		return -EOPNOTSUPP;
	}
 
	return -EOPNOTSUPP;
}
 
 
/* Set or clear the multicast filter for this adaptor.
   Note that we only use exclusion around actually queueing the
   new frame, not around filling tp->setup_frame.  This is non-deterministic
   when re-entered but still correct. */
 
#undef set_bit_le
#define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
 
static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
{
	struct tulip_private *tp = (struct tulip_private *)dev->priv;
	u16 hash_table[32];
	struct dev_mc_list *mclist;
	int i;
	u16 *eaddrs;
 
	memset(hash_table, 0, sizeof(hash_table));
	set_bit_le(255, hash_table); 			/* Broadcast entry */
	/* This should work on big-endian machines as well. */
	for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
	     i++, mclist = mclist->next) {
		int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
 
		set_bit_le(index, hash_table);
 
	}
	for (i = 0; i < 32; i++) {
		*setup_frm++ = hash_table[i];
		*setup_frm++ = hash_table[i];
	}
	setup_frm = &tp->setup_frame[13*6];
 
	/* Fill the final entry with our physical address. */
	eaddrs = (u16 *)dev->dev_addr;
	*setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
	*setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
	*setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
}
 
static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
{
	struct tulip_private *tp = (struct tulip_private *)dev->priv;
	struct dev_mc_list *mclist;
	int i;
	u16 *eaddrs;
 
	/* We have <= 14 addresses so we can use the wonderful
	   16 address perfect filtering of the Tulip. */
	for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
	     i++, mclist = mclist->next) {
		eaddrs = (u16 *)mclist->dmi_addr;
		*setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
		*setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
		*setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
	}
	/* Fill the unused entries with the broadcast address. */
	memset(setup_frm, 0xff, (15-i)*12);
	setup_frm = &tp->setup_frame[15*6];
 
	/* Fill the final entry with our physical address. */
	eaddrs = (u16 *)dev->dev_addr;
	*setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
	*setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
	*setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
}
 
 
static void set_rx_mode(struct net_device *dev)
{
	struct tulip_private *tp = (struct tulip_private *)dev->priv;
	long ioaddr = dev->base_addr;
	int csr6;
 
	csr6 = inl(ioaddr + CSR6) & ~0x00D5;
 
	tp->csr6 &= ~0x00D5;
	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
		tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
		csr6 |= AcceptAllMulticast | AcceptAllPhys;
		/* Unconditionally log net taps. */
		printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name);
	} else if ((dev->mc_count > 1000)  ||  (dev->flags & IFF_ALLMULTI)) {
		/* Too many to filter well -- accept all multicasts. */
		tp->csr6 |= AcceptAllMulticast;
		csr6 |= AcceptAllMulticast;
	} else	if (tp->flags & MC_HASH_ONLY) {
		/* Some work-alikes have only a 64-entry hash filter table. */
		/* Should verify correctness on big-endian/__powerpc__ */
		struct dev_mc_list *mclist;
		int i;
		if (dev->mc_count > 64) {		/* Arbitrary non-effective limit. */
			tp->csr6 |= AcceptAllMulticast;
			csr6 |= AcceptAllMulticast;
		} else {
			u32 mc_filter[2] = {0, 0};		 /* Multicast hash filter */
			int filterbit;
			for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
				 i++, mclist = mclist->next) {
				if (tp->flags & COMET_MAC_ADDR)
					filterbit = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
				else
					filterbit = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
				filterbit &= 0x3f;
				mc_filter[filterbit >> 5] |= cpu_to_le32(1 << (filterbit & 31));
				if (tulip_debug > 2) {
					printk(KERN_INFO "%s: Added filter for %2.2x:%2.2x:%2.2x:"
						   "%2.2x:%2.2x:%2.2x  %8.8x bit %d.\n", dev->name,
						   mclist->dmi_addr[0], mclist->dmi_addr[1],
						   mclist->dmi_addr[2], mclist->dmi_addr[3],
						   mclist->dmi_addr[4], mclist->dmi_addr[5],
						   ether_crc(ETH_ALEN, mclist->dmi_addr), filterbit);
				}
			}
			if (mc_filter[0] == tp->mc_filter[0]  &&
				mc_filter[1] == tp->mc_filter[1])
				;				/* No change. */
			else if (tp->flags & IS_ASIX) {
				outl(2, ioaddr + CSR13);
				outl(mc_filter[0], ioaddr + CSR14);
				outl(3, ioaddr + CSR13);
				outl(mc_filter[1], ioaddr + CSR14);
			} else if (tp->flags & COMET_MAC_ADDR) {
				outl(mc_filter[0], ioaddr + 0xAC);
				outl(mc_filter[1], ioaddr + 0xB0);
			}
			tp->mc_filter[0] = mc_filter[0];
			tp->mc_filter[1] = mc_filter[1];
		}
	} else {
		unsigned long flags;
		u32 tx_flags = 0x08000000 | 192;
 
		/* Note that only the low-address shortword of setup_frame is valid!
		   The values are doubled for big-endian architectures. */
		if (dev->mc_count > 14) { /* Must use a multicast hash table. */
			build_setup_frame_hash(tp->setup_frame, dev);
			tx_flags = 0x08400000 | 192;
		} else {
			build_setup_frame_perfect(tp->setup_frame, dev);
		}
 
		spin_lock_irqsave(&tp->lock, flags);
 
		if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
			/* Same setup recently queued, we need not add it. */
		} else {
			unsigned int entry;
			int dummy = -1;
 
			/* Now add this frame to the Tx list. */
 
			entry = tp->cur_tx++ % TX_RING_SIZE;
 
			if (entry != 0) {
				/* Avoid a chip errata by prefixing a dummy entry. */
				tp->tx_buffers[entry].skb = NULL;
				tp->tx_buffers[entry].mapping = 0;
				tp->tx_ring[entry].length =
					(entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0;
				tp->tx_ring[entry].buffer1 = 0;
				/* Must set DescOwned later to avoid race with chip */
				dummy = entry;
				entry = tp->cur_tx++ % TX_RING_SIZE;
			}
 
			tp->tx_buffers[entry].skb = NULL;
			tp->tx_buffers[entry].mapping =
				pci_map_single(tp->pdev, tp->setup_frame,
					       sizeof(tp->setup_frame),
					       PCI_DMA_TODEVICE);
			/* Put the setup frame on the Tx list. */
			if (entry == TX_RING_SIZE-1)
				tx_flags |= DESC_RING_WRAP;		/* Wrap ring. */
			tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
			tp->tx_ring[entry].buffer1 =
				cpu_to_le32(tp->tx_buffers[entry].mapping);
			tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
			if (dummy >= 0)
				tp->tx_ring[dummy].status = cpu_to_le32(DescOwned);
			if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2)
				netif_stop_queue(dev);
 
			/* Trigger an immediate transmit demand. */
			outl(0, ioaddr + CSR1);
		}
 
		spin_unlock_irqrestore(&tp->lock, flags);
	}
 
	outl(csr6, ioaddr + CSR6);
}
 
#ifdef CONFIG_TULIP_MWI
static void __devinit tulip_mwi_config (struct pci_dev *pdev,
					struct net_device *dev)
{
	struct tulip_private *tp = dev->priv;
	u8 cache;
	u16 pci_command;
	u32 csr0;
 
	if (tulip_debug > 3)
		printk(KERN_DEBUG "%s: tulip_mwi_config()\n", pdev->slot_name);
 
	tp->csr0 = csr0 = 0;
 
	/* if we have any cache line size at all, we can do MRM */
	csr0 |= MRM;
 
	/* ...and barring hardware bugs, MWI */
	if (!(tp->chip_id == DC21143 && tp->revision == 65))
		csr0 |= MWI;
 
	/* set or disable MWI in the standard PCI command bit.
	 * Check for the case where  mwi is desired but not available
	 */
	if (csr0 & MWI)	pci_set_mwi(pdev);
	else		pci_clear_mwi(pdev);
 
	/* read result from hardware (in case bit refused to enable) */
	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
	if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE)))
		csr0 &= ~MWI;
 
	/* if cache line size hardwired to zero, no MWI */
	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache);
	if ((csr0 & MWI) && (cache == 0)) {
		csr0 &= ~MWI;
		pci_clear_mwi(pdev);
	}
 
	/* assign per-cacheline-size cache alignment and
	 * burst length values
	 */
	switch (cache) {
	case 8:
		csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift);
		break;
	case 16:
		csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift);
		break;
	case 32:
		csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift);
		break;
	default:
		cache = 0;
		break;
	}
 
	/* if we have a good cache line size, we by now have a good
	 * csr0, so save it and exit
	 */
	if (cache)
		goto out;
 
	/* we don't have a good csr0 or cache line size, disable MWI */
	if (csr0 & MWI) {
		pci_clear_mwi(pdev);
		csr0 &= ~MWI;
	}
 
	/* sane defaults for burst length and cache alignment
	 * originally from de4x5 driver
	 */
	csr0 |= (8 << BurstLenShift) | (1 << CALShift);
 
out:
	tp->csr0 = csr0;
	if (tulip_debug > 2)
		printk(KERN_DEBUG "%s: MWI config cacheline=%d, csr0=%08x\n",
		       pdev->slot_name, cache, csr0);
}
#endif
 
static int __devinit tulip_init_one (struct pci_dev *pdev,
				     const struct pci_device_id *ent)
{
	struct tulip_private *tp;
	/* See note below on the multiport cards. */
	static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'};
	static int last_irq;
	static int multiport_cnt;	/* For four-port boards w/one EEPROM */
	u8 chip_rev;
	int i, irq;
	unsigned short sum;
	u8 ee_data[EEPROM_SIZE];
	struct net_device *dev;
	long ioaddr;
	static int board_idx = -1;
	int chip_idx = ent->driver_data;
	unsigned int t2104x_mode = 0;
	unsigned int eeprom_missing = 0;
	unsigned int force_csr0 = 0;
 
#ifndef MODULE
	static int did_version;		/* Already printed version info. */
	if (tulip_debug > 0  &&  did_version++ == 0)
		printk (KERN_INFO "%s", version);
#endif
 
	board_idx++;
 
	/*
	 *	Lan media wire a tulip chip to a wan interface. Needs a very
	 *	different driver (lmc driver)
	 */
 
        if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) {
		printk (KERN_ERR PFX "skipping LMC card.\n");
		return -ENODEV;
	}
 
	/*
	 *	Early DM9100's need software CRC and the DMFE driver
	 */
 
	if (pdev->vendor == 0x1282 && pdev->device == 0x9100)
	{
		u32 dev_rev;
		/* Read Chip revision */
		pci_read_config_dword(pdev, PCI_REVISION_ID, &dev_rev);
		if(dev_rev < 0x02000030)
		{
			printk(KERN_ERR PFX "skipping early DM9100 with Crc bug (use dmfe)\n");
			return -ENODEV;
		}
	}
 
	/*
	 *	Looks for early PCI chipsets where people report hangs
	 *	without the workarounds being on.
	 */
 
	/* Intel Saturn. Switch to 8 long words burst, 8 long word cache aligned
	   Aries might need this too. The Saturn errata are not pretty reading but
	   thankfully its an old 486 chipset.
	*/
 
	if (pci_find_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424, NULL)) {
		csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
		force_csr0 = 1;
	}
	/* The dreaded SiS496 486 chipset. Same workaround as above. */
	if (pci_find_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496, NULL)) {
		csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
		force_csr0 = 1;
	}
 
	/* bugfix: the ASIX must have a burst limit or horrible things happen. */
	if (chip_idx == AX88140) {
		if ((csr0 & 0x3f00) == 0)
			csr0 |= 0x2000;
	}
 
	/* PNIC doesn't have MWI/MRL/MRM... */
	if (chip_idx == LC82C168)
		csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */
 
	/* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */
	if ((pdev->vendor == 0x1282 && pdev->device == 0x9102)
		|| (pdev->vendor == 0x10b9 && pdev->device == 0x5261))
		csr0 &= ~0x01f100ff;
 
#if defined(__sparc__)
        /* DM9102A needs 32-dword alignment/burst length on sparc - chip bug? */
	if ((pdev->vendor == 0x1282 && pdev->device == 0x9102)
		|| (pdev->vendor == 0x10b9 && pdev->device == 0x5261))
                csr0 = (csr0 & ~0xff00) | 0xe000;
#endif
 
	/*
	 *	And back to business
	 */
 
	i = pci_enable_device(pdev);
	if (i) {
		printk (KERN_ERR PFX
			"Cannot enable tulip board #%d, aborting\n",
			board_idx);
		return i;
	}
 
	ioaddr = pci_resource_start (pdev, 0);
	irq = pdev->irq;
 
	/* alloc_etherdev ensures aligned and zeroed private structures */
	dev = alloc_etherdev (sizeof (*tp));
	if (!dev) {
		printk (KERN_ERR PFX "ether device alloc failed, aborting\n");
		return -ENOMEM;
	}
 
	if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) {
		printk (KERN_ERR PFX "%s: I/O region (0x%lx@0x%lx) too small, "
			"aborting\n", pdev->slot_name,
			pci_resource_len (pdev, 0),
			pci_resource_start (pdev, 0));
		goto err_out_free_netdev;
	}
 
	/* grab all resources from both PIO and MMIO regions, as we
	 * don't want anyone else messing around with our hardware */
	if (pci_request_regions (pdev, "tulip"))
		goto err_out_free_netdev;
 
#ifndef USE_IO_OPS
	ioaddr = (unsigned long) ioremap (pci_resource_start (pdev, 1),
					  tulip_tbl[chip_idx].io_size);
	if (!ioaddr)
		goto err_out_free_res;
#endif
 
	pci_read_config_byte (pdev, PCI_REVISION_ID, &chip_rev);
 
	/*
	 * initialize private data structure 'tp'
	 * it is zeroed and aligned in alloc_etherdev
	 */
	tp = dev->priv;
 
	tp->rx_ring = pci_alloc_consistent(pdev,
					   sizeof(struct tulip_rx_desc) * RX_RING_SIZE +
					   sizeof(struct tulip_tx_desc) * TX_RING_SIZE,
					   &tp->rx_ring_dma);
	if (!tp->rx_ring)
		goto err_out_mtable;
	tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE);
	tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE;
 
	tp->chip_id = chip_idx;
	tp->flags = tulip_tbl[chip_idx].flags;
	tp->pdev = pdev;
	tp->base_addr = ioaddr;
	tp->revision = chip_rev;
	tp->csr0 = csr0;
	spin_lock_init(&tp->lock);
	spin_lock_init(&tp->mii_lock);
	init_timer(&tp->timer);
	tp->timer.data = (unsigned long)dev;
	tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
 
	dev->base_addr = ioaddr;
 
#ifdef CONFIG_TULIP_MWI
	if (!force_csr0 && (tp->flags & HAS_PCI_MWI))
		tulip_mwi_config (pdev, dev);
#else
	/* MWI is broken for DC21143 rev 65... */
	if (chip_idx == DC21143 && chip_rev == 65)
		tp->csr0 &= ~MWI;
#endif
 
	/* Stop the chip's Tx and Rx processes. */
	tulip_stop_rxtx(tp);
 
	pci_set_master(pdev);
 
	/* Clear the missed-packet counter. */
	inl(ioaddr + CSR8);
 
	if (chip_idx == DC21041) {
		if (inl(ioaddr + CSR9) & 0x8000) {
			chip_idx = DC21040;
			t2104x_mode = 1;
		} else {
			t2104x_mode = 2;
		}
	}
 
	/* The station address ROM is read byte serially.  The register must
	   be polled, waiting for the value to be read bit serially from the
	   EEPROM.
	   */
	sum = 0;
	if (chip_idx == DC21040) {
		outl(0, ioaddr + CSR9);		/* Reset the pointer with a dummy write. */
		for (i = 0; i < 6; i++) {
			int value, boguscnt = 100000;
			do
				value = inl(ioaddr + CSR9);
			while (value < 0  && --boguscnt > 0);
			dev->dev_addr[i] = value;
			sum += value & 0xff;
		}
	} else if (chip_idx == LC82C168) {
		for (i = 0; i < 3; i++) {
			int value, boguscnt = 100000;
			outl(0x600 | i, ioaddr + 0x98);
			do
				value = inl(ioaddr + CSR9);
			while (value < 0  && --boguscnt > 0);
			put_unaligned(le16_to_cpu(value), ((u16*)dev->dev_addr) + i);
			sum += value & 0xffff;
		}
	} else if (chip_idx == COMET) {
		/* No need to read the EEPROM. */
		put_unaligned(inl(ioaddr + 0xA4), (u32 *)dev->dev_addr);
		put_unaligned(inl(ioaddr + 0xA8), (u16 *)(dev->dev_addr + 4));
		for (i = 0; i < 6; i ++)
			sum += dev->dev_addr[i];
	} else {
		/* A serial EEPROM interface, we read now and sort it out later. */
		int sa_offset = 0;
		int ee_addr_size = tulip_read_eeprom(ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
 
		for (i = 0; i < sizeof(ee_data)/2; i++)
			((u16 *)ee_data)[i] =
				le16_to_cpu(tulip_read_eeprom(ioaddr, i, ee_addr_size));
 
		/* DEC now has a specification (see Notes) but early board makers
		   just put the address in the first EEPROM locations. */
		/* This does  memcmp(eedata, eedata+16, 8) */
		for (i = 0; i < 8; i ++)
			if (ee_data[i] != ee_data[16+i])
				sa_offset = 20;
		if (chip_idx == CONEXANT) {
		    /* Check that the tuple type and length is correct. */
			if (ee_data[0x198] == 0x04  &&  ee_data[0x199] == 6)
			    sa_offset = 0x19A;
		}
		if (ee_data[0] == 0xff && ee_data[1] == 0xff &&
		    ee_data[2] == 0) {
			sa_offset = 2;		/* Grrr, damn Matrox boards. */
			multiport_cnt = 4;
		}
#ifdef CONFIG_DDB5476
		if ((pdev->bus->number == 0) && (PCI_SLOT(pdev->devfn) == 6)) {
			/* DDB5476 MAC address in first EEPROM locations. */
                       sa_offset = 0;
                       /* No media table either */
                       tp->flags &= ~HAS_MEDIA_TABLE;
               }
#endif
#ifdef CONFIG_DDB5477
               if ((pdev->bus->number == 0) && (PCI_SLOT(pdev->devfn) == 4)) {
                       /* DDB5477 MAC address in first EEPROM locations. */
                       sa_offset = 0;
                       /* No media table either */
                       tp->flags &= ~HAS_MEDIA_TABLE;
               }
#endif
#ifdef CONFIG_MIPS_COBALT
               if ((pdev->bus->number == 0) && 
                   ((PCI_SLOT(pdev->devfn) == 7) ||
                    (PCI_SLOT(pdev->devfn) == 12))) {
                       /* Cobalt MAC address in first EEPROM locations. */
                       sa_offset = 0;
                       /* No media table either */
                       tp->flags &= ~HAS_MEDIA_TABLE;
               }
#endif
#ifdef __hppa__
		/* 3x5 HSC (J3514A) has a broken srom */
		if(ee_data[0] == 0x61 && ee_data[1] == 0x10) {
			/* pci_vendor_id and subsystem_id are swapped */
			ee_data[0] = ee_data[2];
			ee_data[1] = ee_data[3];
			ee_data[2] = 0x61;
			ee_data[3] = 0x10;
 
			/* srom need to be byte-swaped and shifted up 1 word.  
			 * This shift needs to happen at the end of the MAC
			 * first because of the 2 byte overlap.
			 */
			for(i = 4; i >= 0; i -= 2) {
				ee_data[17 + i + 3] = ee_data[17 + i];
				ee_data[16 + i + 5] = ee_data[16 + i];
			}
		}
#endif
		for (i = 0; i < 6; i ++) {
			dev->dev_addr[i] = ee_data[i + sa_offset];
			sum += ee_data[i + sa_offset];
		}
	}
	/* Lite-On boards have the address byte-swapped. */
	if ((dev->dev_addr[0] == 0xA0  ||  dev->dev_addr[0] == 0xC0)
		&&  dev->dev_addr[1] == 0x00)
		for (i = 0; i < 6; i+=2) {
			char tmp = dev->dev_addr[i];
			dev->dev_addr[i] = dev->dev_addr[i+1];
			dev->dev_addr[i+1] = tmp;
		}
	/* On the Zynx 315 Etherarray and other multiport boards only the
	   first Tulip has an EEPROM.
	   On Sparc systems the mac address is held in the OBP property
	   "local-mac-address".
	   The addresses of the subsequent ports are derived from the first.
	   Many PCI BIOSes also incorrectly report the IRQ line, so we correct
	   that here as well. */
	if (sum == 0  || sum == 6*0xff) {
#if defined(__sparc__)
		struct pcidev_cookie *pcp = pdev->sysdata;
#endif
		eeprom_missing = 1;
		for (i = 0; i < 5; i++)
			dev->dev_addr[i] = last_phys_addr[i];
		dev->dev_addr[i] = last_phys_addr[i] + 1;
#if defined(__sparc__)
		if ((pcp != NULL) && prom_getproplen(pcp->prom_node,
			"local-mac-address") == 6) {
			prom_getproperty(pcp->prom_node, "local-mac-address",
			    dev->dev_addr, 6);
		}
#endif
#if defined(__i386__)		/* Patch up x86 BIOS bug. */
		if (last_irq)
			irq = last_irq;
#endif
	}
 
	for (i = 0; i < 6; i++)
		last_phys_addr[i] = dev->dev_addr[i];
	last_irq = irq;
	dev->irq = irq;
 
	/* The lower four bits are the media type. */
	if (board_idx >= 0  &&  board_idx < MAX_UNITS) {
		if (options[board_idx] & MEDIA_MASK)
			tp->default_port = options[board_idx] & MEDIA_MASK;
		if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0)
			tp->full_duplex = 1;
		if (mtu[board_idx] > 0)
			dev->mtu = mtu[board_idx];
	}
	if (dev->mem_start & MEDIA_MASK)
		tp->default_port = dev->mem_start & MEDIA_MASK;
	if (tp->default_port) {
		printk(KERN_INFO "tulip%d: Transceiver selection forced to %s.\n",
		       board_idx, medianame[tp->default_port & MEDIA_MASK]);
		tp->medialock = 1;
		if (tulip_media_cap[tp->default_port] & MediaAlwaysFD)
			tp->full_duplex = 1;
	}
	if (tp->full_duplex)
		tp->full_duplex_lock = 1;
 
	if (tulip_media_cap[tp->default_port] & MediaIsMII) {
		u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 };
		tp->mii_advertise = media2advert[tp->default_port - 9];
		tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
	}
 
	if (tp->flags & HAS_MEDIA_TABLE) {
		memcpy(tp->eeprom, ee_data, sizeof(tp->eeprom));
 
		sprintf(dev->name, "tulip%d", board_idx);	/* hack */
		tulip_parse_eeprom(dev);
		strcpy(dev->name, "eth%d");			/* un-hack */
	}
 
	if ((tp->flags & ALWAYS_CHECK_MII) ||
		(tp->mtable  &&  tp->mtable->has_mii) ||
		( ! tp->mtable  &&  (tp->flags & HAS_MII))) {
		if (tp->mtable  &&  tp->mtable->has_mii) {
			for (i = 0; i < tp->mtable->leafcount; i++)
				if (tp->mtable->mleaf[i].media == 11) {
					tp->cur_index = i;
					tp->saved_if_port = dev->if_port;
					tulip_select_media(dev, 2);
					dev->if_port = tp->saved_if_port;
					break;
				}
		}
 
		/* Find the connected MII xcvrs.
		   Doing this in open() would allow detecting external xcvrs
		   later, but takes much time. */
		tulip_find_mii (dev, board_idx);
	}
 
	/* The Tulip-specific entries in the device structure. */
	dev->open = tulip_open;
	dev->hard_start_xmit = tulip_start_xmit;
	dev->tx_timeout = tulip_tx_timeout;
	dev->watchdog_timeo = TX_TIMEOUT;
	dev->stop = tulip_close;
	dev->get_stats = tulip_get_stats;
	dev->do_ioctl = private_ioctl;
	dev->set_multicast_list = set_rx_mode;
 
	if (register_netdev(dev))
		goto err_out_free_ring;
 
	printk(KERN_INFO "%s: %s rev %d at %#3lx,",
	       dev->name, tulip_tbl[chip_idx].chip_name, chip_rev, ioaddr);
	pci_set_drvdata(pdev, dev);
 
	if (t2104x_mode == 1)
		printk(" 21040 compatible mode,");
	else if (t2104x_mode == 2)
		printk(" 21041 mode,");
	if (eeprom_missing)
		printk(" EEPROM not present,");
	for (i = 0; i < 6; i++)
		printk("%c%2.2X", i ? ':' : ' ', dev->dev_addr[i]);
	printk(", IRQ %d.\n", irq);
 
        if (tp->chip_id == PNIC2)
		tp->link_change = pnic2_lnk_change;
	else if ((tp->flags & HAS_NWAY)  || tp->chip_id == DC21041)
		tp->link_change = t21142_lnk_change;
	else if (tp->flags & HAS_PNICNWAY)
		tp->link_change = pnic_lnk_change;
 
	/* Reset the xcvr interface and turn on heartbeat. */
	switch (chip_idx) {
	case DC21041:
		if (tp->sym_advertise == 0)
			tp->sym_advertise = 0x0061;
		outl(0x00000000, ioaddr + CSR13);
		outl(0xFFFFFFFF, ioaddr + CSR14);
		outl(0x00000008, ioaddr + CSR15); /* Listen on AUI also. */
		outl(inl(ioaddr + CSR6) | csr6_fd, ioaddr + CSR6);
		outl(0x0000EF01, ioaddr + CSR13);
		break;
	case DC21040:
		outl(0x00000000, ioaddr + CSR13);
		outl(0x00000004, ioaddr + CSR13);
		break;
	case DC21140:
	case DM910X:
	default:
		if (tp->mtable)
			outl(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
		break;
	case DC21142:
		if (tp->mii_cnt  ||  tulip_media_cap[dev->if_port] & MediaIsMII) {
			outl(csr6_mask_defstate, ioaddr + CSR6);
			outl(0x0000, ioaddr + CSR13);
			outl(0x0000, ioaddr + CSR14);
			outl(csr6_mask_hdcap, ioaddr + CSR6);
		} else
			t21142_start_nway(dev);
		break;
	case PNIC2:
	        /* just do a reset for sanity sake */
		outl(0x0000, ioaddr + CSR13);
		outl(0x0000, ioaddr + CSR14);
		break;
	case LC82C168:
		if ( ! tp->mii_cnt) {
			tp->nway = 1;
			tp->nwayset = 0;
			outl(csr6_ttm | csr6_ca, ioaddr + CSR6);
			outl(0x30, ioaddr + CSR12);
			outl(0x0001F078, ioaddr + CSR6);
			outl(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */
		}
		break;
	case MX98713:
	case COMPEX9881:
		outl(0x00000000, ioaddr + CSR6);
		outl(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
		outl(0x00000001, ioaddr + CSR13);
		break;
	case MX98715:
	case MX98725:
		outl(0x01a80000, ioaddr + CSR6);
		outl(0xFFFFFFFF, ioaddr + CSR14);
		outl(0x00001000, ioaddr + CSR12);
		break;
	case COMET:
		/* No initialization necessary. */
		break;
	}
 
	/* put the chip in snooze mode until opened */
	tulip_set_power_state (tp, 0, 1);
 
	return 0;
 
err_out_free_ring:
	pci_free_consistent (pdev,
			     sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
			     sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
			     tp->rx_ring, tp->rx_ring_dma);
 
err_out_mtable:
	if (tp->mtable)
		kfree (tp->mtable);
#ifndef USE_IO_OPS
	iounmap((void *)ioaddr);
 
err_out_free_res:
#endif
	pci_release_regions (pdev);
 
err_out_free_netdev:
	kfree (dev);
	return -ENODEV;
}
 
 
#ifdef CONFIG_PM
 
static int tulip_suspend (struct pci_dev *pdev, u32 state)
{
	struct net_device *dev = pci_get_drvdata(pdev);
 
	if (dev && netif_running (dev) && netif_device_present (dev)) {
		netif_device_detach (dev);
		tulip_down (dev);
		/* pci_power_off(pdev, -1); */
	}
	return 0;
}
 
 
static int tulip_resume(struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);
 
	if (dev && netif_running (dev) && !netif_device_present (dev)) {
#if 1
		pci_enable_device (pdev);
#endif
		/* pci_power_on(pdev); */
		tulip_up (dev);
		netif_device_attach (dev);
	}
	return 0;
}
 
#endif /* CONFIG_PM */
 
 
static void __devexit tulip_remove_one (struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata (pdev);
	struct tulip_private *tp;
 
	if (!dev)
		return;
 
	tp = dev->priv;
	pci_free_consistent (pdev,
			     sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
			     sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
			     tp->rx_ring, tp->rx_ring_dma);
	unregister_netdev (dev);
	if (tp->mtable)
		kfree (tp->mtable);
#ifndef USE_IO_OPS
	iounmap((void *)dev->base_addr);
#endif
	kfree (dev);
	pci_release_regions (pdev);
	pci_set_drvdata (pdev, NULL);
 
	/* pci_power_off (pdev, -1); */
}
 
 
static struct pci_driver tulip_driver = {
	name:		DRV_NAME,
	id_table:	tulip_pci_tbl,
	probe:		tulip_init_one,
	remove:		__devexit_p(tulip_remove_one),
#ifdef CONFIG_PM
	suspend:	tulip_suspend,
	resume:		tulip_resume,
#endif /* CONFIG_PM */
};
 
 
static int __init tulip_init (void)
{
#ifdef MODULE
	printk (KERN_INFO "%s", version);
#endif
 
	/* copy module parms into globals */
	tulip_rx_copybreak = rx_copybreak;
	tulip_max_interrupt_work = max_interrupt_work;
 
	/* probe for and init boards */
	return pci_module_init (&tulip_driver);
}
 
 
static void __exit tulip_cleanup (void)
{
	pci_unregister_driver (&tulip_driver);
}
 
 
module_init(tulip_init);
module_exit(tulip_cleanup);
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.