URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [drivers/] [net/] [wan/] [sdladrv.c] - Rev 1275
Go to most recent revision | Compare with Previous | Blame | View Log
/***************************************************************************** * sdladrv.c SDLA Support Module. Main module. * * This module is a library of common hardware-specific functions * used by all Sangoma drivers. * * Author: Gideon Hack * * Copyright: (c) 1995-2000 Sangoma Technologies Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * ============================================================================ * Mar 20, 2001 Nenad Corbic Added the auto_pci_cfg filed, to support * the PCISLOT #0. * Apr 04, 2000 Nenad Corbic Fixed the auto memory detection code. * The memory test at address 0xC8000. * Mar 09, 2000 Nenad Corbic Added Gideon's Bug Fix: clear pci * interrupt flags on initial load. * Jun 02, 1999 Gideon Hack Added support for the S514 adapter. * Updates for Linux 2.2.X kernels. * Sep 17, 1998 Jaspreet Singh Updates for linux 2.2.X kernels * Dec 20, 1996 Gene Kozin Version 3.0.0. Complete overhaul. * Jul 12, 1996 Gene Kozin Changes for Linux 2.0 compatibility. * Jun 12, 1996 Gene Kozin Added support for S503 card. * Apr 30, 1996 Gene Kozin SDLA hardware interrupt is acknowledged before * calling protocolspecific ISR. * Register I/O ports with Linux kernel. * Miscellaneous bug fixes. * Dec 20, 1995 Gene Kozin Fixed a bug in interrupt routine. * Oct 14, 1995 Gene Kozin Initial version. *****************************************************************************/ /***************************************************************************** * Notes: * ------ * 1. This code is ment to be system-independent (as much as possible). To * achive this, various macros are used to hide system-specific interfaces. * To compile this code, one of the following constants must be defined: * * Platform Define * -------- ------ * Linux _LINUX_ * SCO Unix _SCO_UNIX_ * * 2. Supported adapter types: * * S502A * ES502A (S502E) * S503 * S507 * S508 (S509) * * 3. S502A Notes: * * There is no separate DPM window enable/disable control in S502A. It * opens immediately after a window number it written to the HMCR * register. To close the window, HMCR has to be written a value * ????1111b (e.g. 0x0F or 0xFF). * * S502A DPM window cannot be located at offset E000 (e.g. 0xAE000). * * There should be a delay of ??? before reading back S502A status * register. * * 4. S502E Notes: * * S502E has a h/w bug: although default IRQ line state is HIGH, enabling * interrupts by setting bit 1 of the control register (BASE) to '1' * causes it to go LOW! Therefore, disabling interrupts by setting that * bit to '0' causes low-to-high transition on IRQ line (ghosty * interrupt). The same occurs when disabling CPU by resetting bit 0 of * CPU control register (BASE+3) - see the next note. * * S502E CPU and DPM control is limited: * * o CPU cannot be stopped independently. Resetting bit 0 of the CPUi * control register (BASE+3) shuts the board down entirely, including * DPM; * * o DPM access cannot be controlled dynamically. Ones CPU is started, * bit 1 of the control register (BASE) is used to enable/disable IRQ, * so that access to shared memory cannot be disabled while CPU is * running. ****************************************************************************/ #define _LINUX_ #if defined(_LINUX_) /****** Linux *******************************/ #include <linux/config.h> #include <linux/version.h> #include <linux/kernel.h> /* printk(), and other useful stuff */ #include <linux/stddef.h> /* offsetof(), etc. */ #include <linux/errno.h> /* return codes */ #include <linux/string.h> /* inline memset(), etc. */ #include <linux/module.h> /* support for loadable modules */ #include <linux/sched.h> /* for jiffies, HZ, etc. */ #include <linux/sdladrv.h> /* API definitions */ #include <linux/sdlasfm.h> /* SDLA firmware module definitions */ #include <linux/sdlapci.h> /* SDLA PCI hardware definitions */ #include <linux/pci.h> /* PCI defines and function prototypes */ #include <asm/io.h> /* for inb(), outb(), etc. */ #define _INB(port) (inb(port)) #define _OUTB(port, byte) (outb((byte),(port))) #define SYSTEM_TICK jiffies #if defined(LINUX_2_1) || defined(LINUX_2_4) #include <linux/init.h> #else #include <linux/bios32.h>/* BIOS32, PCI BIOS functions and definitions */ #define ioremap vremap #define iounmap vfree extern void * vremap (unsigned long offset, unsigned long size); extern void vfree (void *addr); #endif #elif defined(_SCO_UNIX_) /****** SCO Unix ****************************/ #if !defined(INKERNEL) #error This code MUST be compiled in kernel mode! #endif #include <sys/sdladrv.h> /* API definitions */ #include <sys/sdlasfm.h> /* SDLA firmware module definitions */ #include <sys/inline.h> /* for inb(), outb(), etc. */ #define _INB(port) (inb(port)) #define _OUTB(port, byte) (outb((port),(byte))) #define SYSTEM_TICK lbolt #else #error Unknown system type! #endif #define MOD_VERSION 3 #define MOD_RELEASE 0 #define SDLA_IODELAY 100 /* I/O Rd/Wr delay, 10 works for 486DX2-66 */ #define EXEC_DELAY 20 /* shared memory access delay, mks */ #define EXEC_TIMEOUT (HZ*2) /* command timeout, in ticks */ /* I/O port address range */ #define S502A_IORANGE 3 #define S502E_IORANGE 4 #define S503_IORANGE 3 #define S507_IORANGE 4 #define S508_IORANGE 4 /* Maximum amount of memory */ #define S502_MAXMEM 0x10000L #define S503_MAXMEM 0x10000L #define S507_MAXMEM 0x40000L #define S508_MAXMEM 0x40000L /* Minimum amount of memory */ #define S502_MINMEM 0x8000L #define S503_MINMEM 0x8000L #define S507_MINMEM 0x20000L #define S508_MINMEM 0x20000L #define NO_PORT -1 /****** Function Prototypes *************************************************/ /* Module entry points. These are called by the OS and must be public. */ int init_module (void); void cleanup_module (void); /* Hardware-specific functions */ static int sdla_detect (sdlahw_t* hw); static int sdla_autodpm (sdlahw_t* hw); static int sdla_setdpm (sdlahw_t* hw); static int sdla_load (sdlahw_t* hw, sfm_t* sfm, unsigned len); static int sdla_init (sdlahw_t* hw); static unsigned long sdla_memtest (sdlahw_t* hw); static int sdla_bootcfg (sdlahw_t* hw, sfm_info_t* sfminfo); static unsigned char make_config_byte (sdlahw_t* hw); static int sdla_start (sdlahw_t* hw, unsigned addr); static int init_s502a (sdlahw_t* hw); static int init_s502e (sdlahw_t* hw); static int init_s503 (sdlahw_t* hw); static int init_s507 (sdlahw_t* hw); static int init_s508 (sdlahw_t* hw); static int detect_s502a (int port); static int detect_s502e (int port); static int detect_s503 (int port); static int detect_s507 (int port); static int detect_s508 (int port); static int detect_s514 (sdlahw_t* hw); static int find_s514_adapter(sdlahw_t* hw, char find_first_S514_card); /* Miscellaneous functions */ static void peek_by_4 (unsigned long src, void* buf, unsigned len); static void poke_by_4 (unsigned long dest, void* buf, unsigned len); static int calibrate_delay (int mks); static int get_option_index (unsigned* optlist, unsigned optval); static unsigned check_memregion (void* ptr, unsigned len); static unsigned test_memregion (void* ptr, unsigned len); static unsigned short checksum (unsigned char* buf, unsigned len); static int init_pci_slot(sdlahw_t *); static int pci_probe(sdlahw_t *hw); /****** Global Data ********************************************************** * Note: All data must be explicitly initialized!!! */ static struct pci_device_id sdladrv_pci_tbl[] __initdata = { { V3_VENDOR_ID, V3_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID, }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(pci, sdladrv_pci_tbl); MODULE_LICENSE("GPL"); /* private data */ static char modname[] = "sdladrv"; static char fullname[] = "SDLA Support Module"; static char copyright[] = "(c) 1995-1999 Sangoma Technologies Inc."; static unsigned exec_idle; /* Hardware configuration options. * These are arrays of configuration options used by verification routines. * The first element of each array is its size (i.e. number of options). */ static unsigned s502_port_options[] = { 4, 0x250, 0x300, 0x350, 0x360 } ; static unsigned s503_port_options[] = { 8, 0x250, 0x254, 0x300, 0x304, 0x350, 0x354, 0x360, 0x364 } ; static unsigned s508_port_options[] = { 8, 0x250, 0x270, 0x280, 0x300, 0x350, 0x360, 0x380, 0x390 } ; static unsigned s502a_irq_options[] = { 0 }; static unsigned s502e_irq_options[] = { 4, 2, 3, 5, 7 }; static unsigned s503_irq_options[] = { 5, 2, 3, 4, 5, 7 }; static unsigned s508_irq_options[] = { 8, 3, 4, 5, 7, 10, 11, 12, 15 }; static unsigned s502a_dpmbase_options[] = { 28, 0xA0000, 0xA2000, 0xA4000, 0xA6000, 0xA8000, 0xAA000, 0xAC000, 0xC0000, 0xC2000, 0xC4000, 0xC6000, 0xC8000, 0xCA000, 0xCC000, 0xD0000, 0xD2000, 0xD4000, 0xD6000, 0xD8000, 0xDA000, 0xDC000, 0xE0000, 0xE2000, 0xE4000, 0xE6000, 0xE8000, 0xEA000, 0xEC000, }; static unsigned s507_dpmbase_options[] = { 32, 0xA0000, 0xA2000, 0xA4000, 0xA6000, 0xA8000, 0xAA000, 0xAC000, 0xAE000, 0xB0000, 0xB2000, 0xB4000, 0xB6000, 0xB8000, 0xBA000, 0xBC000, 0xBE000, 0xC0000, 0xC2000, 0xC4000, 0xC6000, 0xC8000, 0xCA000, 0xCC000, 0xCE000, 0xE0000, 0xE2000, 0xE4000, 0xE6000, 0xE8000, 0xEA000, 0xEC000, 0xEE000, }; static unsigned s508_dpmbase_options[] = /* incl. S502E and S503 */ { 32, 0xA0000, 0xA2000, 0xA4000, 0xA6000, 0xA8000, 0xAA000, 0xAC000, 0xAE000, 0xC0000, 0xC2000, 0xC4000, 0xC6000, 0xC8000, 0xCA000, 0xCC000, 0xCE000, 0xD0000, 0xD2000, 0xD4000, 0xD6000, 0xD8000, 0xDA000, 0xDC000, 0xDE000, 0xE0000, 0xE2000, 0xE4000, 0xE6000, 0xE8000, 0xEA000, 0xEC000, 0xEE000, }; /* static unsigned s502_dpmsize_options[] = { 2, 0x2000, 0x10000 }; static unsigned s507_dpmsize_options[] = { 2, 0x2000, 0x4000 }; static unsigned s508_dpmsize_options[] = { 1, 0x2000 }; */ static unsigned s502a_pclk_options[] = { 2, 3600, 7200 }; static unsigned s502e_pclk_options[] = { 5, 3600, 5000, 7200, 8000, 10000 }; static unsigned s503_pclk_options[] = { 3, 7200, 8000, 10000 }; static unsigned s507_pclk_options[] = { 1, 12288 }; static unsigned s508_pclk_options[] = { 1, 16000 }; /* Host memory control register masks */ static unsigned char s502a_hmcr[] = { 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, /* A0000 - AC000 */ 0x20, 0x22, 0x24, 0x26, 0x28, 0x2A, 0x2C, /* C0000 - CC000 */ 0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, /* D0000 - DC000 */ 0x30, 0x32, 0x34, 0x36, 0x38, 0x3A, 0x3C, /* E0000 - EC000 */ }; static unsigned char s502e_hmcr[] = { 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x1E, /* A0000 - AE000 */ 0x20, 0x22, 0x24, 0x26, 0x28, 0x2A, 0x2C, 0x2E, /* C0000 - CE000 */ 0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E, /* D0000 - DE000 */ 0x30, 0x32, 0x34, 0x36, 0x38, 0x3A, 0x3C, 0x3E, /* E0000 - EE000 */ }; static unsigned char s507_hmcr[] = { 0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E, /* A0000 - AE000 */ 0x40, 0x42, 0x44, 0x46, 0x48, 0x4A, 0x4C, 0x4E, /* B0000 - BE000 */ 0x80, 0x82, 0x84, 0x86, 0x88, 0x8A, 0x8C, 0x8E, /* C0000 - CE000 */ 0xC0, 0xC2, 0xC4, 0xC6, 0xC8, 0xCA, 0xCC, 0xCE, /* E0000 - EE000 */ }; static unsigned char s508_hmcr[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, /* A0000 - AE000 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, /* C0000 - CE000 */ 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, /* D0000 - DE000 */ 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, /* E0000 - EE000 */ }; static unsigned char s507_irqmask[] = { 0x00, 0x20, 0x40, 0x60, 0x80, 0xA0, 0xC0, 0xE0 }; static int pci_slot_ar[MAX_S514_CARDS]; /******* Kernel Loadable Module Entry Points ********************************/ /*============================================================================ * Module 'insert' entry point. * o print announcement * o initialize static data * o calibrate SDLA shared memory access delay. * * Return: 0 Ok * < 0 error. * Context: process */ #ifdef MODULE int init_module (void) #else int sdladrv_init(void) #endif { int i=0; printk(KERN_INFO "%s v%u.%u %s\n", fullname, MOD_VERSION, MOD_RELEASE, copyright); exec_idle = calibrate_delay(EXEC_DELAY); #ifdef WANDEBUG printk(KERN_DEBUG "%s: exec_idle = %d\n", modname, exec_idle); #endif /* Initialize the PCI Card array, which * will store flags, used to mark * card initialization state */ for (i=0; i<MAX_S514_CARDS; i++) pci_slot_ar[i] = 0xFF; return 0; } #ifdef MODULE /*============================================================================ * Module 'remove' entry point. * o release all remaining system resources */ void cleanup_module (void) { } #endif /******* Kernel APIs ********************************************************/ /*============================================================================ * Set up adapter. * o detect adapter type * o verify hardware configuration options * o check for hardware conflicts * o set up adapter shared memory * o test adapter memory * o load firmware * Return: 0 ok. * < 0 error */ #if defined(LINUX_2_1) || defined(LINUX_2_4) EXPORT_SYMBOL(sdla_setup); #endif int sdla_setup (sdlahw_t* hw, void* sfm, unsigned len) { unsigned* irq_opt = NULL; /* IRQ options */ unsigned* dpmbase_opt = NULL; /* DPM window base options */ unsigned* pclk_opt = NULL; /* CPU clock rate options */ int err=0; if (sdla_detect(hw)) { if(hw->type != SDLA_S514) printk(KERN_INFO "%s: no SDLA card found at port 0x%X\n", modname, hw->port); return -EINVAL; } if(hw->type != SDLA_S514) { printk(KERN_INFO "%s: found S%04u card at port 0x%X.\n", modname, hw->type, hw->port); hw->dpmsize = SDLA_WINDOWSIZE; switch (hw->type) { case SDLA_S502A: hw->io_range = S502A_IORANGE; irq_opt = s502a_irq_options; dpmbase_opt = s502a_dpmbase_options; pclk_opt = s502a_pclk_options; break; case SDLA_S502E: hw->io_range = S502E_IORANGE; irq_opt = s502e_irq_options; dpmbase_opt = s508_dpmbase_options; pclk_opt = s502e_pclk_options; break; case SDLA_S503: hw->io_range = S503_IORANGE; irq_opt = s503_irq_options; dpmbase_opt = s508_dpmbase_options; pclk_opt = s503_pclk_options; break; case SDLA_S507: hw->io_range = S507_IORANGE; irq_opt = s508_irq_options; dpmbase_opt = s507_dpmbase_options; pclk_opt = s507_pclk_options; break; case SDLA_S508: hw->io_range = S508_IORANGE; irq_opt = s508_irq_options; dpmbase_opt = s508_dpmbase_options; pclk_opt = s508_pclk_options; break; } /* Verify IRQ configuration options */ if (!get_option_index(irq_opt, hw->irq)) { printk(KERN_INFO "%s: IRQ %d is illegal!\n", modname, hw->irq); return -EINVAL; } /* Verify CPU clock rate configuration options */ if (hw->pclk == 0) hw->pclk = pclk_opt[1]; /* use default */ else if (!get_option_index(pclk_opt, hw->pclk)) { printk(KERN_INFO "%s: CPU clock %u is illegal!\n", modname, hw->pclk); return -EINVAL; } printk(KERN_INFO "%s: assuming CPU clock rate of %u kHz.\n", modname, hw->pclk); /* Setup adapter dual-port memory window and test memory */ if (hw->dpmbase == 0) { err = sdla_autodpm(hw); if (err) { printk(KERN_INFO "%s: can't find available memory region!\n", modname); return err; } } else if (!get_option_index(dpmbase_opt, virt_to_phys(hw->dpmbase))) { printk(KERN_INFO "%s: memory address 0x%lX is illegal!\n", modname, virt_to_phys(hw->dpmbase)); return -EINVAL; } else if (sdla_setdpm(hw)) { printk(KERN_INFO "%s: 8K memory region at 0x%lX is not available!\n", modname, virt_to_phys(hw->dpmbase)); return -EINVAL; } printk(KERN_INFO "%s: dual-port memory window is set at 0x%lX.\n", modname, virt_to_phys(hw->dpmbase)); /* If we find memory in 0xE**** Memory region, * warn the user to disable the SHADOW RAM. * Since memory corruption can occur if SHADOW is * enabled. This can causes random crashes ! */ if (virt_to_phys(hw->dpmbase) >= 0xE0000){ printk(KERN_WARNING "\n%s: !!!!!!!! WARNING !!!!!!!!\n",modname); printk(KERN_WARNING "%s: WANPIPE is using 0x%lX memory region !!!\n", modname, virt_to_phys(hw->dpmbase)); printk(KERN_WARNING " Please disable the SHADOW RAM, otherwise\n"); printk(KERN_WARNING " your system might crash randomly from time to time !\n"); printk(KERN_WARNING "%s: !!!!!!!! WARNING !!!!!!!!\n\n",modname); } } else { hw->memory = test_memregion((void*)hw->dpmbase, MAX_SIZEOF_S514_MEMORY); if(hw->memory < (256 * 1024)) { printk(KERN_INFO "%s: error in testing S514 memory (0x%lX)\n", modname, hw->memory); sdla_down(hw); return -EINVAL; } } printk(KERN_INFO "%s: found %luK bytes of on-board memory\n", modname, hw->memory / 1024); /* Load firmware. If loader fails then shut down adapter */ err = sdla_load(hw, sfm, len); if (err) sdla_down(hw); /* shutdown adapter */ return err; } /*============================================================================ * Shut down SDLA: disable shared memory access and interrupts, stop CPU, etc. */ #if defined(LINUX_2_1) || defined(LINUX_2_4) EXPORT_SYMBOL(sdla_down); #endif int sdla_down (sdlahw_t* hw) { unsigned port = hw->port; int i; unsigned char CPU_no; u32 int_config, int_status; if(!port && (hw->type != SDLA_S514)) return -EFAULT; switch (hw->type) { case SDLA_S502A: _OUTB(port, 0x08); /* halt CPU */ _OUTB(port, 0x08); _OUTB(port, 0x08); hw->regs[0] = 0x08; _OUTB(port + 1, 0xFF); /* close memory window */ hw->regs[1] = 0xFF; break; case SDLA_S502E: _OUTB(port + 3, 0); /* stop CPU */ _OUTB(port, 0); /* reset board */ for (i = 0; i < S502E_IORANGE; ++i) hw->regs[i] = 0 ; break; case SDLA_S503: case SDLA_S507: case SDLA_S508: _OUTB(port, 0); /* reset board logic */ hw->regs[0] = 0; break; case SDLA_S514: /* halt the adapter */ *(char *)hw->vector = S514_CPU_HALT; CPU_no = hw->S514_cpu_no[0]; #if defined(LINUX_2_1) || defined(LINUX_2_4) /* disable the PCI IRQ and disable memory access */ pci_read_config_dword(hw->pci_dev, PCI_INT_CONFIG, &int_config); int_config &= (CPU_no == S514_CPU_A) ? ~PCI_DISABLE_IRQ_CPU_A : ~PCI_DISABLE_IRQ_CPU_B; pci_write_config_dword(hw->pci_dev, PCI_INT_CONFIG, int_config); read_S514_int_stat(hw, &int_status); S514_intack(hw, int_status); if(CPU_no == S514_CPU_A) pci_write_config_dword(hw->pci_dev, PCI_MAP0_DWORD, PCI_CPU_A_MEM_DISABLE); else pci_write_config_dword(hw->pci_dev, PCI_MAP1_DWORD, PCI_CPU_B_MEM_DISABLE); #else /* disable the PCI IRQ and disable memory access */ pcibios_read_config_dword(hw->pci_bus, hw->pci_dev_func, PCI_INT_CONFIG, &int_config); int_config &= (CPU_no == S514_CPU_A) ? ~PCI_DISABLE_IRQ_CPU_A : ~PCI_DISABLE_IRQ_CPU_B; pcibios_write_config_dword(hw->pci_bus, hw->pci_dev_func, PCI_INT_CONFIG, int_config); read_S514_int_stat(hw, &int_status); S514_intack(hw, int_status); // disable PCI memory access if(CPU_no == S514_CPU_A) pcibios_write_config_dword(hw->pci_bus,hw->pci_dev_func, PCI_MAP0_DWORD, PCI_CPU_A_MEM_DISABLE); else pcibios_write_config_dword(hw->pci_bus,hw->pci_dev_func, PCI_MAP1_DWORD, PCI_CPU_B_MEM_DISABLE); #endif /* free up the allocated virtual memory */ iounmap((void *)hw->dpmbase); iounmap((void *)hw->vector); break; default: return -EINVAL; } return 0; } /*============================================================================ * Map shared memory window into SDLA address space. */ #if defined(LINUX_2_1) || defined(LINUX_2_4) EXPORT_SYMBOL(sdla_mapmem); #endif int sdla_mapmem (sdlahw_t* hw, unsigned long addr) { unsigned port = hw->port; register int tmp; switch (hw->type) { case SDLA_S502A: case SDLA_S502E: if (addr < S502_MAXMEM) { /* verify parameter */ tmp = addr >> 13; /* convert to register mask */ _OUTB(port + 2, tmp); hw->regs[2] = tmp; } else return -EINVAL; break; case SDLA_S503: if (addr < S503_MAXMEM) { /* verify parameter */ tmp = (hw->regs[0] & 0x8F) | ((addr >> 9) & 0x70); _OUTB(port, tmp); hw->regs[0] = tmp; } else return -EINVAL; break; case SDLA_S507: if (addr < S507_MAXMEM) { if (!(_INB(port) & 0x02)) return -EIO; tmp = addr >> 13; /* convert to register mask */ _OUTB(port + 2, tmp); hw->regs[2] = tmp; } else return -EINVAL; break; case SDLA_S508: if (addr < S508_MAXMEM) { tmp = addr >> 13; /* convert to register mask */ _OUTB(port + 2, tmp); hw->regs[2] = tmp; } else return -EINVAL; break; case SDLA_S514: return 0; default: return -EINVAL; } hw->vector = addr & 0xFFFFE000L; return 0; } /*============================================================================ * Enable interrupt generation. */ #if defined(LINUX_2_1) || defined(LINUX_2_4) EXPORT_SYMBOL(sdla_inten); #endif int sdla_inten (sdlahw_t* hw) { unsigned port = hw->port; int tmp, i; switch (hw->type) { case SDLA_S502E: /* Note thar interrupt control operations on S502E are allowed * only if CPU is enabled (bit 0 of status register is set). */ if (_INB(port) & 0x01) { _OUTB(port, 0x02); /* bit1 = 1, bit2 = 0 */ _OUTB(port, 0x06); /* bit1 = 1, bit2 = 1 */ hw->regs[0] = 0x06; } else return -EIO; break; case SDLA_S503: tmp = hw->regs[0] | 0x04; _OUTB(port, tmp); hw->regs[0] = tmp; /* update mirror */ for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (!(_INB(port) & 0x02)) /* verify */ return -EIO; break; case SDLA_S508: tmp = hw->regs[0] | 0x10; _OUTB(port, tmp); hw->regs[0] = tmp; /* update mirror */ for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (!(_INB(port + 1) & 0x10)) /* verify */ return -EIO; break; case SDLA_S502A: case SDLA_S507: break; case SDLA_S514: break; default: return -EINVAL; } return 0; } /*============================================================================ * Disable interrupt generation. */ #if defined(LINUX_2_1) || defined(LINUX_2_4) EXPORT_SYMBOL(sdla_intde); #endif int sdla_intde (sdlahw_t* hw) { unsigned port = hw->port; int tmp, i; switch (hw->type) { case SDLA_S502E: /* Notes: * 1) interrupt control operations are allowed only if CPU is * enabled (bit 0 of status register is set). * 2) disabling interrupts using bit 1 of control register * causes IRQ line go high, therefore we are going to use * 0x04 instead: lower it to inhibit interrupts to PC. */ if (_INB(port) & 0x01) { _OUTB(port, hw->regs[0] & ~0x04); hw->regs[0] &= ~0x04; } else return -EIO; break; case SDLA_S503: tmp = hw->regs[0] & ~0x04; _OUTB(port, tmp); hw->regs[0] = tmp; /* update mirror */ for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (_INB(port) & 0x02) /* verify */ return -EIO; break; case SDLA_S508: tmp = hw->regs[0] & ~0x10; _OUTB(port, tmp); hw->regs[0] = tmp; /* update mirror */ for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (_INB(port) & 0x10) /* verify */ return -EIO; break; case SDLA_S502A: case SDLA_S507: break; default: return -EINVAL; } return 0; } /*============================================================================ * Acknowledge SDLA hardware interrupt. */ #if defined(LINUX_2_1) || defined(LINUX_2_4) EXPORT_SYMBOL(sdla_intack); #endif int sdla_intack (sdlahw_t* hw) { unsigned port = hw->port; int tmp; switch (hw->type) { case SDLA_S502E: /* To acknoledge hardware interrupt we have to toggle bit 3 of * control register: \_/ * Note that interrupt control operations on S502E are allowed * only if CPU is enabled (bit 1 of status register is set). */ if (_INB(port) & 0x01) { tmp = hw->regs[0] & ~0x04; _OUTB(port, tmp); tmp |= 0x04; _OUTB(port, tmp); hw->regs[0] = tmp; } else return -EIO; break; case SDLA_S503: if (_INB(port) & 0x04) { tmp = hw->regs[0] & ~0x08; _OUTB(port, tmp); tmp |= 0x08; _OUTB(port, tmp); hw->regs[0] = tmp; } break; case SDLA_S502A: case SDLA_S507: case SDLA_S508: break; default: return -EINVAL; } return 0; } /*============================================================================ * Acknowledge S514 hardware interrupt. */ #if defined(LINUX_2_1) || defined(LINUX_2_4) EXPORT_SYMBOL(S514_intack); #endif void S514_intack (sdlahw_t* hw, u32 int_status) { #if defined(LINUX_2_1) || defined(LINUX_2_4) pci_write_config_dword(hw->pci_dev, PCI_INT_STATUS, int_status); #else pcibios_write_config_dword(hw->pci_bus, hw->pci_dev_func, PCI_INT_STATUS, int_status); #endif } /*============================================================================ * Read the S514 hardware interrupt status. */ #if defined(LINUX_2_1) || defined(LINUX_2_4) EXPORT_SYMBOL(read_S514_int_stat); #endif void read_S514_int_stat (sdlahw_t* hw, u32* int_status) { #if defined(LINUX_2_1) || defined(LINUX_2_4) pci_read_config_dword(hw->pci_dev, PCI_INT_STATUS, int_status); #else pcibios_read_config_dword(hw->pci_bus, hw->pci_dev_func, PCI_INT_STATUS, int_status); #endif } /*============================================================================ * Generate an interrupt to adapter's CPU. */ #if defined(LINUX_2_1) || defined(LINUX_2_4) EXPORT_SYMBOL(sdla_intr); #endif int sdla_intr (sdlahw_t* hw) { unsigned port = hw->port; switch (hw->type) { case SDLA_S502A: if (!(_INB(port) & 0x40)) { _OUTB(port, 0x10); /* issue NMI to CPU */ hw->regs[0] = 0x10; } else return -EIO; break; case SDLA_S507: if ((_INB(port) & 0x06) == 0x06) { _OUTB(port + 3, 0); } else return -EIO; break; case SDLA_S508: if (_INB(port + 1) & 0x02) { _OUTB(port, 0x08); } else return -EIO; break; case SDLA_S502E: case SDLA_S503: default: return -EINVAL; } return 0; } /*============================================================================ * Execute Adapter Command. * o Set exec flag. * o Busy-wait until flag is reset. * o Return number of loops made, or 0 if command timed out. */ #if defined(LINUX_2_1) || defined(LINUX_2_4) EXPORT_SYMBOL(sdla_exec); #endif int sdla_exec (void* opflag) { volatile unsigned char* flag = opflag; unsigned long tstop; int nloops; if(readb(flag) != 0x00) { printk(KERN_INFO "WANPIPE: opp flag set on entry to sdla_exec\n"); return 0; } writeb(0x01, flag); tstop = SYSTEM_TICK + EXEC_TIMEOUT; for (nloops = 1; (readb(flag) == 0x01); ++ nloops) { unsigned delay = exec_idle; while (-- delay); /* delay */ if (SYSTEM_TICK > tstop) return 0; /* time is up! */ } return nloops; } /*============================================================================ * Read absolute adapter memory. * Transfer data from adapter's memory to data buffer. * * Note: * Care should be taken when crossing dual-port memory window boundary. * This function is not atomic, so caller must disable interrupt if * interrupt routines are accessing adapter shared memory. */ #if defined(LINUX_2_1) || defined(LINUX_2_4) EXPORT_SYMBOL(sdla_peek); #endif int sdla_peek (sdlahw_t* hw, unsigned long addr, void* buf, unsigned len) { if (addr + len > hw->memory) /* verify arguments */ return -EINVAL; if(hw->type == SDLA_S514) { /* copy data for the S514 adapter */ peek_by_4 ((unsigned long)hw->dpmbase + addr, buf, len); return 0; } else { /* copy data for the S508 adapter */ unsigned long oldvec = hw->vector; unsigned winsize = hw->dpmsize; unsigned curpos, curlen; /* current offset and block size */ unsigned long curvec; /* current DPM window vector */ int err = 0; while (len && !err) { curpos = addr % winsize; /* current window offset */ curvec = addr - curpos; /* current window vector */ curlen = (len > (winsize - curpos)) ? (winsize - curpos) : len; /* Relocate window and copy block of data */ err = sdla_mapmem(hw, curvec); peek_by_4 ((unsigned long)hw->dpmbase + curpos, buf, curlen); addr += curlen; (char*)buf += curlen; len -= curlen; } /* Restore DPM window position */ sdla_mapmem(hw, oldvec); return err; } } /*============================================================================ * Read data from adapter's memory to a data buffer in 4-byte chunks. * Note that we ensure that the SDLA memory address is on a 4-byte boundary * before we begin moving the data in 4-byte chunks. */ static void peek_by_4 (unsigned long src, void* buf, unsigned len) { /* byte copy data until we get to a 4-byte boundary */ while (len && (src & 0x03)) { *(char *)buf ++ = readb(src ++); len --; } /* copy data in 4-byte chunks */ while (len >= 4) { *(unsigned long *)buf = readl(src); buf += 4; src += 4; len -= 4; } /* byte copy any remaining data */ while (len) { *(char *)buf ++ = readb(src ++); len --; } } /*============================================================================ * Write Absolute Adapter Memory. * Transfer data from data buffer to adapter's memory. * * Note: * Care should be taken when crossing dual-port memory window boundary. * This function is not atomic, so caller must disable interrupt if * interrupt routines are accessing adapter shared memory. */ #if defined(LINUX_2_1) || defined(LINUX_2_4) EXPORT_SYMBOL(sdla_poke); #endif int sdla_poke (sdlahw_t* hw, unsigned long addr, void* buf, unsigned len) { if (addr + len > hw->memory) /* verify arguments */ return -EINVAL; if(hw->type == SDLA_S514) { /* copy data for the S514 adapter */ poke_by_4 ((unsigned long)hw->dpmbase + addr, buf, len); return 0; } else { /* copy data for the S508 adapter */ unsigned long oldvec = hw->vector; unsigned winsize = hw->dpmsize; unsigned curpos, curlen; /* current offset and block size */ unsigned long curvec; /* current DPM window vector */ int err = 0; while (len && !err) { curpos = addr % winsize; /* current window offset */ curvec = addr - curpos; /* current window vector */ curlen = (len > (winsize - curpos)) ? (winsize - curpos) : len; /* Relocate window and copy block of data */ sdla_mapmem(hw, curvec); poke_by_4 ((unsigned long)hw->dpmbase + curpos, buf, curlen); addr += curlen; (char*)buf += curlen; len -= curlen; } /* Restore DPM window position */ sdla_mapmem(hw, oldvec); return err; } } /*============================================================================ * Write from a data buffer to adapter's memory in 4-byte chunks. * Note that we ensure that the SDLA memory address is on a 4-byte boundary * before we begin moving the data in 4-byte chunks. */ static void poke_by_4 (unsigned long dest, void* buf, unsigned len) { /* byte copy data until we get to a 4-byte boundary */ while (len && (dest & 0x03)) { writeb (*(char *)buf ++, dest ++); len --; } /* copy data in 4-byte chunks */ while (len >= 4) { writel (*(unsigned long *)buf, dest); dest += 4; buf += 4; len -= 4; } /* byte copy any remaining data */ while (len) { writeb (*(char *)buf ++ , dest ++); len --; } } #ifdef DONT_COMPIPLE_THIS #endif /* DONT_COMPIPLE_THIS */ /****** Hardware-Specific Functions *****************************************/ /*============================================================================ * Detect adapter type. * o if adapter type is specified then call detection routine for that adapter * type. Otherwise call detection routines for every adapter types until * adapter is detected. * * Notes: * 1) Detection tests are destructive! Adapter will be left in shutdown state * after the test. */ static int sdla_detect (sdlahw_t* hw) { unsigned port = hw->port; int err = 0; if (!port && (hw->type != SDLA_S514)) return -EFAULT; switch (hw->type) { case SDLA_S502A: if (!detect_s502a(port)) err = -ENODEV; break; case SDLA_S502E: if (!detect_s502e(port)) err = -ENODEV; break; case SDLA_S503: if (!detect_s503(port)) err = -ENODEV; break; case SDLA_S507: if (!detect_s507(port)) err = -ENODEV; break; case SDLA_S508: if (!detect_s508(port)) err = -ENODEV; break; case SDLA_S514: if (!detect_s514(hw)) err = -ENODEV; break; default: if (detect_s502a(port)) hw->type = SDLA_S502A; else if (detect_s502e(port)) hw->type = SDLA_S502E; else if (detect_s503(port)) hw->type = SDLA_S503; else if (detect_s507(port)) hw->type = SDLA_S507; else if (detect_s508(port)) hw->type = SDLA_S508; else err = -ENODEV; } return err; } /*============================================================================ * Autoselect memory region. * o try all available DMP address options from the top down until success. */ static int sdla_autodpm (sdlahw_t* hw) { int i, err = -EINVAL; unsigned* opt; switch (hw->type) { case SDLA_S502A: opt = s502a_dpmbase_options; break; case SDLA_S502E: case SDLA_S503: case SDLA_S508: opt = s508_dpmbase_options; break; case SDLA_S507: opt = s507_dpmbase_options; break; default: return -EINVAL; } /* Start testing from 8th position, address * 0xC8000 from the 508 address table. * We don't want to test A**** addresses, since * they are usually used for Video */ for (i = 8; i <= opt[0] && err; i++) { hw->dpmbase = phys_to_virt(opt[i]); err = sdla_setdpm(hw); } return err; } /*============================================================================ * Set up adapter dual-port memory window. * o shut down adapter * o make sure that no physical memory exists in this region, i.e entire * region reads 0xFF and is not writable when adapter is shut down. * o initialize adapter hardware * o make sure that region is usable with SDLA card, i.e. we can write to it * when adapter is configured. */ static int sdla_setdpm (sdlahw_t* hw) { int err; /* Shut down card and verify memory region */ sdla_down(hw); if (check_memregion(hw->dpmbase, hw->dpmsize)) return -EINVAL; /* Initialize adapter and test on-board memory segment by segment. * If memory size appears to be less than shared memory window size, * assume that memory region is unusable. */ err = sdla_init(hw); if (err) return err; if (sdla_memtest(hw) < hw->dpmsize) { /* less than window size */ sdla_down(hw); return -EIO; } sdla_mapmem(hw, 0L); /* set window vector at bottom */ return 0; } /*============================================================================ * Load adapter from the memory image of the SDLA firmware module. * o verify firmware integrity and compatibility * o start adapter up */ static int sdla_load (sdlahw_t* hw, sfm_t* sfm, unsigned len) { int i; /* Verify firmware signature */ if (strcmp(sfm->signature, SFM_SIGNATURE)) { printk(KERN_INFO "%s: not SDLA firmware!\n", modname); return -EINVAL; } /* Verify firmware module format version */ if (sfm->version != SFM_VERSION) { printk(KERN_INFO "%s: firmware format %u rejected! Expecting %u.\n", modname, sfm->version, SFM_VERSION); return -EINVAL; } /* Verify firmware module length and checksum */ if ((len - offsetof(sfm_t, image) != sfm->info.codesize) || (checksum((void*)&sfm->info, sizeof(sfm_info_t) + sfm->info.codesize) != sfm->checksum)) { printk(KERN_INFO "%s: firmware corrupted!\n", modname); return -EINVAL; } /* Announce */ printk(KERN_INFO "%s: loading %s (ID=%u)...\n", modname, (sfm->descr[0] != '\0') ? sfm->descr : "unknown firmware", sfm->info.codeid); if(hw->type == SDLA_S514) printk(KERN_INFO "%s: loading S514 adapter, CPU %c\n", modname, hw->S514_cpu_no[0]); /* Scan through the list of compatible adapters and make sure our * adapter type is listed. */ for (i = 0; (i < SFM_MAX_SDLA) && (sfm->info.adapter[i] != hw->type); ++i); if (i == SFM_MAX_SDLA) { printk(KERN_INFO "%s: firmware is not compatible with S%u!\n", modname, hw->type); return -EINVAL; } /* Make sure there is enough on-board memory */ if (hw->memory < sfm->info.memsize) { printk(KERN_INFO "%s: firmware needs %lu bytes of on-board memory!\n", modname, sfm->info.memsize); return -EINVAL; } /* Move code onto adapter */ if (sdla_poke(hw, sfm->info.codeoffs, sfm->image, sfm->info.codesize)) { printk(KERN_INFO "%s: failed to load code segment!\n", modname); return -EIO; } /* Prepare boot-time configuration data and kick-off CPU */ sdla_bootcfg(hw, &sfm->info); if (sdla_start(hw, sfm->info.startoffs)) { printk(KERN_INFO "%s: Damn... Adapter won't start!\n", modname); return -EIO; } /* position DPM window over the mailbox and enable interrupts */ if (sdla_mapmem(hw, sfm->info.winoffs) || sdla_inten(hw)) { printk(KERN_INFO "%s: adapter hardware failure!\n", modname); return -EIO; } hw->fwid = sfm->info.codeid; /* set firmware ID */ return 0; } /*============================================================================ * Initialize SDLA hardware: setup memory window, IRQ, etc. */ static int sdla_init (sdlahw_t* hw) { int i; for (i = 0; i < SDLA_MAXIORANGE; ++i) hw->regs[i] = 0; switch (hw->type) { case SDLA_S502A: return init_s502a(hw); case SDLA_S502E: return init_s502e(hw); case SDLA_S503: return init_s503(hw); case SDLA_S507: return init_s507(hw); case SDLA_S508: return init_s508(hw); } return -EINVAL; } /*============================================================================ * Test adapter on-board memory. * o slide DPM window from the bottom up and test adapter memory segment by * segment. * Return adapter memory size. */ static unsigned long sdla_memtest (sdlahw_t* hw) { unsigned long memsize; unsigned winsize; for (memsize = 0, winsize = hw->dpmsize; !sdla_mapmem(hw, memsize) && (test_memregion(hw->dpmbase, winsize) == winsize) ; memsize += winsize) ; hw->memory = memsize; return memsize; } /*============================================================================ * Prepare boot-time firmware configuration data. * o position DPM window * o initialize configuration data area */ static int sdla_bootcfg (sdlahw_t* hw, sfm_info_t* sfminfo) { unsigned char* data; if (!sfminfo->datasize) return 0; /* nothing to do */ if (sdla_mapmem(hw, sfminfo->dataoffs) != 0) return -EIO; if(hw->type == SDLA_S514) data = (void*)(hw->dpmbase + sfminfo->dataoffs); else data = (void*)((u8 *)hw->dpmbase + (sfminfo->dataoffs - hw->vector)); memset_io (data, 0, sfminfo->datasize); writeb (make_config_byte(hw), &data[0x00]); switch (sfminfo->codeid) { case SFID_X25_502: case SFID_X25_508: writeb (3, &data[0x01]); /* T1 timer */ writeb (10, &data[0x03]); /* N2 */ writeb (7, &data[0x06]); /* HDLC window size */ writeb (1, &data[0x0B]); /* DTE */ writeb (2, &data[0x0C]); /* X.25 packet window size */ writew (128, &data[0x0D]); /* default X.25 data size */ writew (128, &data[0x0F]); /* maximum X.25 data size */ break; } return 0; } /*============================================================================ * Prepare configuration byte identifying adapter type and CPU clock rate. */ static unsigned char make_config_byte (sdlahw_t* hw) { unsigned char byte = 0; switch (hw->pclk) { case 5000: byte = 0x01; break; case 7200: byte = 0x02; break; case 8000: byte = 0x03; break; case 10000: byte = 0x04; break; case 16000: byte = 0x05; break; } switch (hw->type) { case SDLA_S502E: byte |= 0x80; break; case SDLA_S503: byte |= 0x40; break; } return byte; } /*============================================================================ * Start adapter's CPU. * o calculate a pointer to adapter's cold boot entry point * o position DPM window * o place boot instruction (jp addr) at cold boot entry point * o start CPU */ static int sdla_start (sdlahw_t* hw, unsigned addr) { unsigned port = hw->port; unsigned char *bootp; int err, tmp, i; if (!port && (hw->type != SDLA_S514)) return -EFAULT; switch (hw->type) { case SDLA_S502A: bootp = hw->dpmbase; bootp += 0x66; break; case SDLA_S502E: case SDLA_S503: case SDLA_S507: case SDLA_S508: case SDLA_S514: bootp = hw->dpmbase; break; default: return -EINVAL; } err = sdla_mapmem(hw, 0); if (err) return err; writeb (0xC3, bootp); /* Z80: 'jp' opcode */ bootp ++; writew (addr, bootp); switch (hw->type) { case SDLA_S502A: _OUTB(port, 0x10); /* issue NMI to CPU */ hw->regs[0] = 0x10; break; case SDLA_S502E: _OUTB(port + 3, 0x01); /* start CPU */ hw->regs[3] = 0x01; for (i = 0; i < SDLA_IODELAY; ++i); if (_INB(port) & 0x01) { /* verify */ /* * Enabling CPU changes functionality of the * control register, so we have to reset its * mirror. */ _OUTB(port, 0); /* disable interrupts */ hw->regs[0] = 0; } else return -EIO; break; case SDLA_S503: tmp = hw->regs[0] | 0x09; /* set bits 0 and 3 */ _OUTB(port, tmp); hw->regs[0] = tmp; /* update mirror */ for (i = 0; i < SDLA_IODELAY; ++i); if (!(_INB(port) & 0x01)) /* verify */ return -EIO; break; case SDLA_S507: tmp = hw->regs[0] | 0x02; _OUTB(port, tmp); hw->regs[0] = tmp; /* update mirror */ for (i = 0; i < SDLA_IODELAY; ++i); if (!(_INB(port) & 0x04)) /* verify */ return -EIO; break; case SDLA_S508: tmp = hw->regs[0] | 0x02; _OUTB(port, tmp); hw->regs[0] = tmp; /* update mirror */ for (i = 0; i < SDLA_IODELAY; ++i); if (!(_INB(port + 1) & 0x02)) /* verify */ return -EIO; break; case SDLA_S514: writeb (S514_CPU_START, hw->vector); break; default: return -EINVAL; } return 0; } /*============================================================================ * Initialize S502A adapter. */ static int init_s502a (sdlahw_t* hw) { unsigned port = hw->port; int tmp, i; if (!detect_s502a(port)) return -ENODEV; hw->regs[0] = 0x08; hw->regs[1] = 0xFF; /* Verify configuration options */ i = get_option_index(s502a_dpmbase_options, virt_to_phys(hw->dpmbase)); if (i == 0) return -EINVAL; tmp = s502a_hmcr[i - 1]; switch (hw->dpmsize) { case 0x2000: tmp |= 0x01; break; case 0x10000L: break; default: return -EINVAL; } /* Setup dual-port memory window (this also enables memory access) */ _OUTB(port + 1, tmp); hw->regs[1] = tmp; hw->regs[0] = 0x08; return 0; } /*============================================================================ * Initialize S502E adapter. */ static int init_s502e (sdlahw_t* hw) { unsigned port = hw->port; int tmp, i; if (!detect_s502e(port)) return -ENODEV; /* Verify configuration options */ i = get_option_index(s508_dpmbase_options, virt_to_phys(hw->dpmbase)); if (i == 0) return -EINVAL; tmp = s502e_hmcr[i - 1]; switch (hw->dpmsize) { case 0x2000: tmp |= 0x01; break; case 0x10000L: break; default: return -EINVAL; } /* Setup dual-port memory window */ _OUTB(port + 1, tmp); hw->regs[1] = tmp; /* Enable memory access */ _OUTB(port, 0x02); hw->regs[0] = 0x02; for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ return (_INB(port) & 0x02) ? 0 : -EIO; } /*============================================================================ * Initialize S503 adapter. * --------------------------------------------------------------------------- */ static int init_s503 (sdlahw_t* hw) { unsigned port = hw->port; int tmp, i; if (!detect_s503(port)) return -ENODEV; /* Verify configuration options */ i = get_option_index(s508_dpmbase_options, virt_to_phys(hw->dpmbase)); if (i == 0) return -EINVAL; tmp = s502e_hmcr[i - 1]; switch (hw->dpmsize) { case 0x2000: tmp |= 0x01; break; case 0x10000L: break; default: return -EINVAL; } /* Setup dual-port memory window */ _OUTB(port + 1, tmp); hw->regs[1] = tmp; /* Enable memory access */ _OUTB(port, 0x02); hw->regs[0] = 0x02; /* update mirror */ return 0; } /*============================================================================ * Initialize S507 adapter. */ static int init_s507 (sdlahw_t* hw) { unsigned port = hw->port; int tmp, i; if (!detect_s507(port)) return -ENODEV; /* Verify configuration options */ i = get_option_index(s507_dpmbase_options, virt_to_phys(hw->dpmbase)); if (i == 0) return -EINVAL; tmp = s507_hmcr[i - 1]; switch (hw->dpmsize) { case 0x2000: tmp |= 0x01; break; case 0x10000L: break; default: return -EINVAL; } /* Enable adapter's logic */ _OUTB(port, 0x01); hw->regs[0] = 0x01; for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (!(_INB(port) & 0x20)) return -EIO; /* Setup dual-port memory window */ _OUTB(port + 1, tmp); hw->regs[1] = tmp; /* Enable memory access */ tmp = hw->regs[0] | 0x04; if (hw->irq) { i = get_option_index(s508_irq_options, hw->irq); if (i) tmp |= s507_irqmask[i - 1]; } _OUTB(port, tmp); hw->regs[0] = tmp; /* update mirror */ for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ return (_INB(port) & 0x08) ? 0 : -EIO; } /*============================================================================ * Initialize S508 adapter. */ static int init_s508 (sdlahw_t* hw) { unsigned port = hw->port; int tmp, i; if (!detect_s508(port)) return -ENODEV; /* Verify configuration options */ i = get_option_index(s508_dpmbase_options, virt_to_phys(hw->dpmbase)); if (i == 0) return -EINVAL; /* Setup memory configuration */ tmp = s508_hmcr[i - 1]; _OUTB(port + 1, tmp); hw->regs[1] = tmp; /* Enable memory access */ _OUTB(port, 0x04); hw->regs[0] = 0x04; /* update mirror */ for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ return (_INB(port + 1) & 0x04) ? 0 : -EIO; } /*============================================================================ * Detect S502A adapter. * Following tests are used to detect S502A adapter: * 1. All registers other than status (BASE) should read 0xFF * 2. After writing 00001000b to control register, status register should * read 01000000b. * 3. After writing 0 to control register, status register should still * read 01000000b. * 4. After writing 00000100b to control register, status register should * read 01000100b. * Return 1 if detected o.k. or 0 if failed. * Note: This test is destructive! Adapter will be left in shutdown * state after the test. */ static int detect_s502a (int port) { int i, j; if (!get_option_index(s502_port_options, port)) return 0; for (j = 1; j < SDLA_MAXIORANGE; ++j) { if (_INB(port + j) != 0xFF) return 0; for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ } _OUTB(port, 0x08); /* halt CPU */ _OUTB(port, 0x08); _OUTB(port, 0x08); for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (_INB(port) != 0x40) return 0; _OUTB(port, 0x00); for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (_INB(port) != 0x40) return 0; _OUTB(port, 0x04); for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (_INB(port) != 0x44) return 0; /* Reset adapter */ _OUTB(port, 0x08); _OUTB(port, 0x08); _OUTB(port, 0x08); _OUTB(port + 1, 0xFF); return 1; } /*============================================================================ * Detect S502E adapter. * Following tests are used to verify adapter presence: * 1. All registers other than status (BASE) should read 0xFF. * 2. After writing 0 to CPU control register (BASE+3), status register * (BASE) should read 11111000b. * 3. After writing 00000100b to port BASE (set bit 2), status register * (BASE) should read 11111100b. * Return 1 if detected o.k. or 0 if failed. * Note: This test is destructive! Adapter will be left in shutdown * state after the test. */ static int detect_s502e (int port) { int i, j; if (!get_option_index(s502_port_options, port)) return 0; for (j = 1; j < SDLA_MAXIORANGE; ++j) { if (_INB(port + j) != 0xFF) return 0; for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ } _OUTB(port + 3, 0); /* CPU control reg. */ for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (_INB(port) != 0xF8) /* read status */ return 0; _OUTB(port, 0x04); /* set bit 2 */ for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (_INB(port) != 0xFC) /* verify */ return 0; /* Reset adapter */ _OUTB(port, 0); return 1; } /*============================================================================ * Detect s503 adapter. * Following tests are used to verify adapter presence: * 1. All registers other than status (BASE) should read 0xFF. * 2. After writing 0 to control register (BASE), status register (BASE) * should read 11110000b. * 3. After writing 00000100b (set bit 2) to control register (BASE), * status register should read 11110010b. * Return 1 if detected o.k. or 0 if failed. * Note: This test is destructive! Adapter will be left in shutdown * state after the test. */ static int detect_s503 (int port) { int i, j; if (!get_option_index(s503_port_options, port)) return 0; for (j = 1; j < SDLA_MAXIORANGE; ++j) { if (_INB(port + j) != 0xFF) return 0; for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ } _OUTB(port, 0); /* reset control reg.*/ for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (_INB(port) != 0xF0) /* read status */ return 0; _OUTB(port, 0x04); /* set bit 2 */ for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (_INB(port) != 0xF2) /* verify */ return 0; /* Reset adapter */ _OUTB(port, 0); return 1; } /*============================================================================ * Detect s507 adapter. * Following tests are used to detect s507 adapter: * 1. All ports should read the same value. * 2. After writing 0x00 to control register, status register should read * ?011000?b. * 3. After writing 0x01 to control register, status register should read * ?011001?b. * Return 1 if detected o.k. or 0 if failed. * Note: This test is destructive! Adapter will be left in shutdown * state after the test. */ static int detect_s507 (int port) { int tmp, i, j; if (!get_option_index(s508_port_options, port)) return 0; tmp = _INB(port); for (j = 1; j < S507_IORANGE; ++j) { if (_INB(port + j) != tmp) return 0; for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ } _OUTB(port, 0x00); for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if ((_INB(port) & 0x7E) != 0x30) return 0; _OUTB(port, 0x01); for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if ((_INB(port) & 0x7E) != 0x32) return 0; /* Reset adapter */ _OUTB(port, 0x00); return 1; } /*============================================================================ * Detect s508 adapter. * Following tests are used to detect s508 adapter: * 1. After writing 0x00 to control register, status register should read * ??000000b. * 2. After writing 0x10 to control register, status register should read * ??010000b * Return 1 if detected o.k. or 0 if failed. * Note: This test is destructive! Adapter will be left in shutdown * state after the test. */ static int detect_s508 (int port) { int i; if (!get_option_index(s508_port_options, port)) return 0; _OUTB(port, 0x00); for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if ((_INB(port + 1) & 0x3F) != 0x00) return 0; _OUTB(port, 0x10); for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if ((_INB(port + 1) & 0x3F) != 0x10) return 0; /* Reset adapter */ _OUTB(port, 0x00); return 1; } /*============================================================================ * Detect s514 PCI adapter. * Return 1 if detected o.k. or 0 if failed. * Note: This test is destructive! Adapter will be left in shutdown * state after the test. */ static int detect_s514 (sdlahw_t* hw) { unsigned char CPU_no, slot_no, auto_slot_cfg; int number_S514_cards = 0; u32 S514_mem_base_addr = 0; u32 ut_u32; #if defined(LINUX_2_1) || defined(LINUX_2_4) struct pci_dev *pci_dev; #else u8 ut_u8; #endif #ifdef CONFIG_PCI #if defined(LINUX_2_1) || defined(LINUX_2_4) if(!pci_present()) #else if(!pcibios_present()) #endif { printk(KERN_INFO "%s: PCI BIOS not present!\n", modname); return 0; } #else printk(KERN_INFO "%s: Linux not compiled for PCI usage!\n", modname); return 0; #endif /* The 'setup()' procedure in 'sdlamain.c' passes the CPU number and the slot number defined in 'router.conf' via the 'port' definition. */ CPU_no = hw->S514_cpu_no[0]; slot_no = hw->S514_slot_no; auto_slot_cfg = hw->auto_pci_cfg; if (auto_slot_cfg){ printk(KERN_INFO "%s: srch... S514 card, CPU %c, Slot=Auto\n", modname, CPU_no); }else{ printk(KERN_INFO "%s: srch... S514 card, CPU %c, Slot #%d\n", modname, CPU_no, slot_no); } /* check to see that CPU A or B has been selected in 'router.conf' */ switch(CPU_no) { case S514_CPU_A: case S514_CPU_B: break; default: printk(KERN_INFO "%s: S514 CPU definition invalid.\n", modname); printk(KERN_INFO "Must be 'A' or 'B'\n"); return 0; } number_S514_cards = find_s514_adapter(hw, 0); if(!number_S514_cards) return 0; /* we are using a single S514 adapter with a slot of 0 so re-read the */ /* location of this adapter */ if((number_S514_cards == 1) && auto_slot_cfg) { number_S514_cards = find_s514_adapter(hw, 1); if(!number_S514_cards) { printk(KERN_INFO "%s: Error finding PCI card\n", modname); return 0; } } #if defined(LINUX_2_4) pci_dev = hw->pci_dev; /* read the physical memory base address */ S514_mem_base_addr = (CPU_no == S514_CPU_A) ? (pci_dev->resource[1].start) : (pci_dev->resource[2].start); #elif defined (LINUX_2_1) pci_dev = hw->pci_dev; /* read the physical memory base address */ S514_mem_base_addr = (CPU_no == S514_CPU_A) ? (pci_dev->base_address[1] & PCI_BASE_ADDRESS_MEM_MASK) : (pci_dev->base_address[2] & PCI_BASE_ADDRESS_MEM_MASK); #else pcibios_read_config_dword(hw->pci_bus, hw->pci_dev_func, (CPU_no == S514_CPU_A) ? PCI_MEM_BASE0_DWORD : PCI_MEM_BASE1_DWORD, &S514_mem_base_addr); #endif printk(KERN_INFO "%s: S514 PCI memory at 0x%X\n", modname, S514_mem_base_addr); if(!S514_mem_base_addr) { if(CPU_no == S514_CPU_B) printk(KERN_INFO "%s: CPU #B not present on the card\n", modname); else printk(KERN_INFO "%s: No PCI memory allocated to card\n", modname); return 0; } /* enable the PCI memory */ #if defined(LINUX_2_1) || defined(LINUX_2_4) pci_read_config_dword(pci_dev, (CPU_no == S514_CPU_A) ? PCI_MAP0_DWORD : PCI_MAP1_DWORD, &ut_u32); pci_write_config_dword(pci_dev, (CPU_no == S514_CPU_A) ? PCI_MAP0_DWORD : PCI_MAP1_DWORD, (ut_u32 | PCI_MEMORY_ENABLE)); #else pcibios_read_config_dword(hw->pci_bus, hw->pci_dev_func, (CPU_no == S514_CPU_A) ? PCI_MAP0_DWORD : PCI_MAP1_DWORD, &ut_u32); pcibios_write_config_dword(hw->pci_bus, hw->pci_dev_func, (CPU_no == S514_CPU_A) ? PCI_MAP0_DWORD : PCI_MAP1_DWORD, (ut_u32 | PCI_MEMORY_ENABLE)); #endif /* check the IRQ allocated and enable IRQ usage */ #if defined(LINUX_2_1) || defined(LINUX_2_4) if(!(hw->irq = pci_dev->irq)) { printk(KERN_INFO "%s: IRQ not allocated to S514 adapter\n", modname); return 0; } /* BUG FIX : Mar 6 2000 * On a initial loading of the card, we must check * and clear PCI interrupt bits, due to a reset * problem on some other boards. i.e. An interrupt * might be pending, even after system bootup, * in which case, when starting wanrouter the machine * would crash. */ if (init_pci_slot(hw)) return 0; pci_read_config_dword(pci_dev, PCI_INT_CONFIG, &ut_u32); ut_u32 |= (CPU_no == S514_CPU_A) ? PCI_ENABLE_IRQ_CPU_A : PCI_ENABLE_IRQ_CPU_B; pci_write_config_dword(pci_dev, PCI_INT_CONFIG, ut_u32); #else /* the INTPIN must not be 0 - if it is, then the S514 adapter is not */ /* configured for IRQ usage */ pcibios_read_config_byte(hw->pci_bus, hw->pci_dev_func, PCI_INT_PIN_BYTE, &ut_u8); if(!ut_u8) { printk(KERN_INFO "%s: invalid setting for INTPIN on S514 card\n", modname); printk(KERN_INFO "Please contact your Sangoma representative\n"); return 0; } pcibios_read_config_byte(hw->pci_bus, hw->pci_dev_func, PCI_INT_LINE_BYTE, (unsigned char *)&hw->irq); if(hw->irq == PCI_IRQ_NOT_ALLOCATED) { printk(KERN_INFO "%s: IRQ not allocated to S514 adapter\n", modname); return 0; } pcibios_read_config_dword(hw->pci_bus, hw->pci_dev_func, PCI_INT_CONFIG, &ut_u32); ut_u32 |= (CPU_no == S514_CPU_A) ? PCI_ENABLE_IRQ_CPU_A : PCI_ENABLE_IRQ_CPU_B; pcibios_write_config_dword(hw->pci_bus, hw->pci_dev_func, PCI_INT_CONFIG, ut_u32); #endif printk(KERN_INFO "%s: IRQ %d allocated to the S514 card\n", modname, hw->irq); /* map the physical PCI memory to virtual memory */ (void *)hw->dpmbase = ioremap((unsigned long)S514_mem_base_addr, (unsigned long)MAX_SIZEOF_S514_MEMORY); /* map the physical control register memory to virtual memory */ (void *)hw->vector = ioremap( (unsigned long)(S514_mem_base_addr + S514_CTRL_REG_BYTE), (unsigned long)16); if(!hw->dpmbase || !hw->vector) { printk(KERN_INFO "%s: PCI virtual memory allocation failed\n", modname); return 0; } /* halt the adapter */ writeb (S514_CPU_HALT, hw->vector); return 1; } /*============================================================================ * Find the S514 PCI adapter in the PCI bus. * Return the number of S514 adapters found (0 if no adapter found). */ static int find_s514_adapter(sdlahw_t* hw, char find_first_S514_card) { unsigned char slot_no; int number_S514_cards = 0; char S514_found_in_slot = 0; u16 PCI_subsys_vendor; #if defined(LINUX_2_1) || defined(LINUX_2_4) struct pci_dev *pci_dev = NULL; #else int pci_index; #endif slot_no = hw->S514_slot_no; #if defined(LINUX_2_1) || defined(LINUX_2_4) while ((pci_dev = pci_find_device(V3_VENDOR_ID, V3_DEVICE_ID, pci_dev)) != NULL) { pci_read_config_word(pci_dev, PCI_SUBSYS_VENDOR_WORD, &PCI_subsys_vendor); if(PCI_subsys_vendor != SANGOMA_SUBSYS_VENDOR) continue; hw->pci_dev = pci_dev; if(find_first_S514_card) return(1); number_S514_cards ++; printk(KERN_INFO "%s: S514 card found, slot #%d (devfn 0x%X)\n", modname, ((pci_dev->devfn >> 3) & PCI_DEV_SLOT_MASK), pci_dev->devfn); if (hw->auto_pci_cfg){ hw->S514_slot_no = ((pci_dev->devfn >> 3) & PCI_DEV_SLOT_MASK); slot_no = hw->S514_slot_no; }else if (((pci_dev->devfn >> 3) & PCI_DEV_SLOT_MASK) == slot_no){ S514_found_in_slot = 1; break; } } #else //LINUX VERSION 2.0.X for (pci_index = 0; pci_index < MAX_S514_CARDS; pci_index ++) { if (pcibios_find_device(V3_VENDOR_ID, V3_DEVICE_ID, pci_index, &hw->pci_bus, &hw->pci_dev_func)!=PCIBIOS_SUCCESSFUL) { break; } pcibios_read_config_word(hw->pci_bus, hw->pci_dev_func, PCI_SUBSYS_VENDOR_WORD, &PCI_subsys_vendor); if (PCI_subsys_vendor != SANGOMA_SUBSYS_VENDOR) continue; if (find_first_S514_card) return(1); number_S514_cards ++; printk(KERN_INFO "%s: S514 card found, bus #%d, slot #%d\n", modname, hw->pci_bus, ((hw->pci_dev_func >> 3) & PCI_DEV_SLOT_MASK)); if (hw->auto_pci_cfg){ hw->S514_slot_no = ((hw->pci_dev_func >> 3) & PCI_DEV_SLOT_MASK) slot_no = hw->S514_slot_no; }else if (((hw->pci_dev_func >> 3) & PCI_DEV_SLOT_MASK) == slot_no) { S514_found_in_slot = 1; break; } } #endif /* if no S514 adapter has been found, then exit */ if (!number_S514_cards) { printk(KERN_INFO "%s: Error, no S514 adapters found\n", modname); return 0; } /* if more than one S514 card has been found, then the user must have */ /* defined a slot number so that the correct adapter is used */ else if ((number_S514_cards > 1) && hw->auto_pci_cfg) { printk(KERN_INFO "%s: Error, PCI Slot autodetect Failed! \n" "%s: More than one S514 adapter found.\n" "%s: Disable the Autodetect feature and supply\n" "%s: the PCISLOT numbers for each card.\n", modname,modname,modname,modname); return 0; } /* if the user has specified a slot number and the S514 adapter has */ /* not been found in that slot, then exit */ else if (!hw->auto_pci_cfg && !S514_found_in_slot) { printk(KERN_INFO "%s: Error, S514 card not found in specified slot #%d\n", modname, slot_no); return 0; } return (number_S514_cards); } /******* Miscellaneous ******************************************************/ /*============================================================================ * Calibrate SDLA memory access delay. * Count number of idle loops made within 1 second and then calculate the * number of loops that should be made to achive desired delay. */ static int calibrate_delay (int mks) { unsigned int delay; unsigned long stop; for (delay = 0, stop = SYSTEM_TICK + HZ; SYSTEM_TICK < stop; ++delay); return (delay/(1000000L/mks) + 1); } /*============================================================================ * Get option's index into the options list. * Return option's index (1 .. N) or zero if option is invalid. */ static int get_option_index (unsigned* optlist, unsigned optval) { int i; for (i = 1; i <= optlist[0]; ++i) if ( optlist[i] == optval) return i; return 0; } /*============================================================================ * Check memory region to see if it's available. * Return: 0 ok. */ static unsigned check_memregion (void* ptr, unsigned len) { volatile unsigned char* p = ptr; for (; len && (readb (p) == 0xFF); --len, ++p) { writeb (0, p); /* attempt to write 0 */ if (readb(p) != 0xFF) { /* still has to read 0xFF */ writeb (0xFF, p);/* restore original value */ break; /* not good */ } } return len; } /*============================================================================ * Test memory region. * Return: size of the region that passed the test. * Note: Region size must be multiple of 2 ! */ static unsigned test_memregion (void* ptr, unsigned len) { volatile unsigned short* w_ptr; unsigned len_w = len >> 1; /* region len in words */ unsigned i; for (i = 0, w_ptr = ptr; i < len_w; ++i, ++w_ptr) writew (0xAA55, w_ptr); for (i = 0, w_ptr = ptr; i < len_w; ++i, ++w_ptr) if (readw (w_ptr) != 0xAA55) { len_w = i; break; } for (i = 0, w_ptr = ptr; i < len_w; ++i, ++w_ptr) writew (0x55AA, w_ptr); for (i = 0, w_ptr = ptr; i < len_w; ++i, ++w_ptr) if (readw(w_ptr) != 0x55AA) { len_w = i; break; } for (i = 0, w_ptr = ptr; i < len_w; ++i, ++w_ptr) writew (0, w_ptr); return len_w << 1; } /*============================================================================ * Calculate 16-bit CRC using CCITT polynomial. */ static unsigned short checksum (unsigned char* buf, unsigned len) { unsigned short crc = 0; unsigned mask, flag; for (; len; --len, ++buf) { for (mask = 0x80; mask; mask >>= 1) { flag = (crc & 0x8000); crc <<= 1; crc |= ((*buf & mask) ? 1 : 0); if (flag) crc ^= 0x1021; } } return crc; } static int init_pci_slot(sdlahw_t *hw) { u32 int_status; int volatile found=0; int i=0; /* Check if this is a very first load for a specific * pci card. If it is, clear the interrput bits, and * set the flag indicating that this card was initialized. */ for (i=0; (i<MAX_S514_CARDS) && !found; i++){ if (pci_slot_ar[i] == hw->S514_slot_no){ found=1; break; } if (pci_slot_ar[i] == 0xFF){ break; } } if (!found){ read_S514_int_stat(hw,&int_status); S514_intack(hw,int_status); if (i == MAX_S514_CARDS){ printk(KERN_INFO "%s: Critical Error !!!\n",modname); printk(KERN_INFO "%s: Number of Sangoma PCI cards exceeded maximum limit.\n", modname); printk(KERN_INFO "Please contact Sangoma Technologies\n"); return 1; } pci_slot_ar[i] = hw->S514_slot_no; } return 0; } static int pci_probe(sdlahw_t *hw) { unsigned char slot_no; int number_S514_cards = 0; u16 PCI_subsys_vendor; u16 PCI_card_type; #if defined(LINUX_2_1) || defined(LINUX_2_4) struct pci_dev *pci_dev = NULL; struct pci_bus *bus = NULL; #else int pci_index; u8 irq; #endif slot_no = 0; #if defined(LINUX_2_1) || defined(LINUX_2_4) while ((pci_dev = pci_find_device(V3_VENDOR_ID, V3_DEVICE_ID, pci_dev)) != NULL) { pci_read_config_word(pci_dev, PCI_SUBSYS_VENDOR_WORD, &PCI_subsys_vendor); if(PCI_subsys_vendor != SANGOMA_SUBSYS_VENDOR) continue; pci_read_config_word(pci_dev, PCI_CARD_TYPE, &PCI_card_type); bus = pci_dev->bus; /* A dual cpu card can support up to 4 physical connections, * where a single cpu card can support up to 2 physical * connections. The FT1 card can only support a single * connection, however we cannot distinguish between a Single * CPU card and an FT1 card. */ if (PCI_card_type == S514_DUAL_CPU){ number_S514_cards += 4; printk(KERN_INFO "wanpipe: S514-PCI card found, cpu(s) 2, bus #%d, slot #%d, irq #%d\n", bus->number,((pci_dev->devfn >> 3) & PCI_DEV_SLOT_MASK), pci_dev->irq); }else{ number_S514_cards += 2; printk(KERN_INFO "wanpipe: S514-PCI card found, cpu(s) 1, bus #%d, slot #%d, irq #%d\n", bus->number,((pci_dev->devfn >> 3) & PCI_DEV_SLOT_MASK), pci_dev->irq); } } #else for (pci_index = 0; pci_index < MAX_S514_CARDS; pci_index ++) { if(pcibios_find_device(V3_VENDOR_ID, V3_DEVICE_ID, pci_index, &hw->pci_bus, &hw->pci_dev_func)!=PCIBIOS_SUCCESSFUL) { break; } pcibios_read_config_word(hw->pci_bus, hw->pci_dev_func, PCI_SUBSYS_VENDOR_WORD, &PCI_subsys_vendor); if(PCI_subsys_vendor != SANGOMA_SUBSYS_VENDOR) continue; pcibios_read_config_word(hw->pci_bus,hw->pci_dev_func,PCI_CARD_TYPE, &PCI_card_type); pcibios_read_config_byte(hw->pci_bus, hw->pci_dev_func, PCI_INT_LINE_BYTE, &irq); /* A dual cpu card can support up to 4 physical connections, * where a single cpu card can support up to 2 physical * connections. The FT1 card can only support a single * connection, however we cannot distinguish between a Single * CPU card and an FT1 card. */ if (PCI_card_type == S514_DUAL_CPU){ number_S514_cards += 4; printk(KERN_INFO "%s: S514-PCI card found, cpu(s) 2, bus #%d, slot #%d, irq #%d\n", modname, hw->pci_bus, ((hw->pci_dev_func >> 3) & PCI_DEV_SLOT_MASK),irq); }else{ printk(KERN_INFO "%s: S514-PCI card found, cpu(s) 1, bus #%d, slot #%d, irq #%d\n", modname, hw->pci_bus, ((hw->pci_dev_func >> 3) & PCI_DEV_SLOT_MASK),irq); number_S514_cards += 2; } } #endif return number_S514_cards; } #if defined(LINUX_2_1) || defined(LINUX_2_4) EXPORT_SYMBOL(wanpipe_hw_probe); #endif unsigned wanpipe_hw_probe(void) { sdlahw_t hw; unsigned* opt = s508_port_options; unsigned cardno=0; int i; memset(&hw, 0, sizeof(hw)); for (i = 1; i <= opt[0]; i++) { if (detect_s508(opt[i])){ /* S508 card can support up to two physical links */ cardno+=2; printk(KERN_INFO "wanpipe: S508-ISA card found, port 0x%x\n",opt[i]); } } #ifdef CONFIG_PCI hw.S514_slot_no = 0; cardno += pci_probe(&hw); #else printk(KERN_INFO "wanpipe: Warning, Kernel not compiled for PCI support!\n"); printk(KERN_INFO "wanpipe: PCI Hardware Probe Failed!\n"); #endif return cardno; } /****** End *****************************************************************/
Go to most recent revision | Compare with Previous | Blame | View Log