OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [drivers/] [net/] [wavelan.c] - Rev 1765

Compare with Previous | Blame | View Log

/*
 *	WaveLAN ISA driver
 *
 *		Jean II - HPLB '96
 *
 * Reorganisation and extension of the driver.
 * Original copyright follows (also see the end of this file).
 * See wavelan.p.h for details.
 *
 *
 *
 * AT&T GIS (nee NCR) WaveLAN card:
 *	An Ethernet-like radio transceiver
 *	controlled by an Intel 82586 coprocessor.
 */
 
#include "wavelan.p.h"		/* Private header */
 
/************************* MISC SUBROUTINES **************************/
/*
 * Subroutines which won't fit in one of the following category
 * (WaveLAN modem or i82586)
 */
 
/*------------------------------------------------------------------*/
/*
 * Wrapper for disabling interrupts and locking the driver.
 * (note : inline, so optimised away)
 */
static inline void wv_splhi(net_local *		lp,
			    unsigned long *	pflags)
{
	spin_lock_irqsave(&lp->spinlock, *pflags);
	/* Note : above does the cli(); itself */
}
 
/*------------------------------------------------------------------*/
/*
 * Wrapper for re-enabling interrupts and un-locking the driver.
 */
static inline void wv_splx(net_local *		lp,
			   unsigned long *	pflags)
{
	spin_unlock_irqrestore(&lp->spinlock, *pflags);
}
 
/*------------------------------------------------------------------*/
/*
 * Translate irq number to PSA irq parameter
 */
static u8 wv_irq_to_psa(int irq)
{
	if (irq < 0 || irq >= NELS(irqvals))
		return 0;
 
	return irqvals[irq];
}
 
/*------------------------------------------------------------------*/
/*
 * Translate PSA irq parameter to irq number 
 */
static int __init wv_psa_to_irq(u8 irqval)
{
	int irq;
 
	for (irq = 0; irq < NELS(irqvals); irq++)
		if (irqvals[irq] == irqval)
			return irq;
 
	return -1;
}
 
#ifdef STRUCT_CHECK
/*------------------------------------------------------------------*/
/*
 * Sanity routine to verify the sizes of the various WaveLAN interface
 * structures.
 */
static char *wv_struct_check(void)
{
#define	SC(t,s,n)	if (sizeof(t) != s) return(n);
 
	SC(psa_t, PSA_SIZE, "psa_t");
	SC(mmw_t, MMW_SIZE, "mmw_t");
	SC(mmr_t, MMR_SIZE, "mmr_t");
	SC(ha_t, HA_SIZE, "ha_t");
 
#undef	SC
 
	return ((char *) NULL);
}				/* wv_struct_check */
#endif				/* STRUCT_CHECK */
 
/********************* HOST ADAPTER SUBROUTINES *********************/
/*
 * Useful subroutines to manage the WaveLAN ISA interface
 *
 * One major difference with the PCMCIA hardware (except the port mapping)
 * is that we have to keep the state of the Host Control Register
 * because of the interrupt enable & bus size flags.
 */
 
/*------------------------------------------------------------------*/
/*
 * Read from card's Host Adaptor Status Register.
 */
static inline u16 hasr_read(unsigned long ioaddr)
{
	return (inw(HASR(ioaddr)));
}				/* hasr_read */
 
/*------------------------------------------------------------------*/
/*
 * Write to card's Host Adapter Command Register.
 */
static inline void hacr_write(unsigned long ioaddr, u16 hacr)
{
	outw(hacr, HACR(ioaddr));
}				/* hacr_write */
 
/*------------------------------------------------------------------*/
/*
 * Write to card's Host Adapter Command Register. Include a delay for
 * those times when it is needed.
 */
static inline void hacr_write_slow(unsigned long ioaddr, u16 hacr)
{
	hacr_write(ioaddr, hacr);
	/* delay might only be needed sometimes */
	mdelay(1);
}				/* hacr_write_slow */
 
/*------------------------------------------------------------------*/
/*
 * Set the channel attention bit.
 */
static inline void set_chan_attn(unsigned long ioaddr, u16 hacr)
{
	hacr_write(ioaddr, hacr | HACR_CA);
}				/* set_chan_attn */
 
/*------------------------------------------------------------------*/
/*
 * Reset, and then set host adaptor into default mode.
 */
static inline void wv_hacr_reset(unsigned long ioaddr)
{
	hacr_write_slow(ioaddr, HACR_RESET);
	hacr_write(ioaddr, HACR_DEFAULT);
}				/* wv_hacr_reset */
 
/*------------------------------------------------------------------*/
/*
 * Set the I/O transfer over the ISA bus to 8-bit mode
 */
static inline void wv_16_off(unsigned long ioaddr, u16 hacr)
{
	hacr &= ~HACR_16BITS;
	hacr_write(ioaddr, hacr);
}				/* wv_16_off */
 
/*------------------------------------------------------------------*/
/*
 * Set the I/O transfer over the ISA bus to 8-bit mode
 */
static inline void wv_16_on(unsigned long ioaddr, u16 hacr)
{
	hacr |= HACR_16BITS;
	hacr_write(ioaddr, hacr);
}				/* wv_16_on */
 
/*------------------------------------------------------------------*/
/*
 * Disable interrupts on the WaveLAN hardware.
 * (called by wv_82586_stop())
 */
static inline void wv_ints_off(device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;
 
	lp->hacr &= ~HACR_INTRON;
	hacr_write(ioaddr, lp->hacr);
}				/* wv_ints_off */
 
/*------------------------------------------------------------------*/
/*
 * Enable interrupts on the WaveLAN hardware.
 * (called by wv_hw_reset())
 */
static inline void wv_ints_on(device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;
 
	lp->hacr |= HACR_INTRON;
	hacr_write(ioaddr, lp->hacr);
}				/* wv_ints_on */
 
/******************* MODEM MANAGEMENT SUBROUTINES *******************/
/*
 * Useful subroutines to manage the modem of the WaveLAN
 */
 
/*------------------------------------------------------------------*/
/*
 * Read the Parameter Storage Area from the WaveLAN card's memory
 */
/*
 * Read bytes from the PSA.
 */
static void psa_read(unsigned long ioaddr, u16 hacr, int o,	/* offset in PSA */
		     u8 * b,	/* buffer to fill */
		     int n)
{				/* size to read */
	wv_16_off(ioaddr, hacr);
 
	while (n-- > 0) {
		outw(o, PIOR2(ioaddr));
		o++;
		*b++ = inb(PIOP2(ioaddr));
	}
 
	wv_16_on(ioaddr, hacr);
}				/* psa_read */
 
/*------------------------------------------------------------------*/
/*
 * Write the Parameter Storage Area to the WaveLAN card's memory.
 */
static void psa_write(unsigned long ioaddr, u16 hacr, int o,	/* Offset in PSA */
		      u8 * b,	/* Buffer in memory */
		      int n)
{				/* Length of buffer */
	int count = 0;
 
	wv_16_off(ioaddr, hacr);
 
	while (n-- > 0) {
		outw(o, PIOR2(ioaddr));
		o++;
 
		outb(*b, PIOP2(ioaddr));
		b++;
 
		/* Wait for the memory to finish its write cycle */
		count = 0;
		while ((count++ < 100) &&
		       (hasr_read(ioaddr) & HASR_PSA_BUSY)) mdelay(1);
	}
 
	wv_16_on(ioaddr, hacr);
}				/* psa_write */
 
#ifdef SET_PSA_CRC
/*------------------------------------------------------------------*/
/*
 * Calculate the PSA CRC
 * Thanks to Valster, Nico <NVALSTER@wcnd.nl.lucent.com> for the code
 * NOTE: By specifying a length including the CRC position the
 * returned value should be zero. (i.e. a correct checksum in the PSA)
 *
 * The Windows drivers don't use the CRC, but the AP and the PtP tool
 * depend on it.
 */
static inline u16 psa_crc(u8 * psa,	/* The PSA */
			      int size)
{				/* Number of short for CRC */
	int byte_cnt;		/* Loop on the PSA */
	u16 crc_bytes = 0;	/* Data in the PSA */
	int bit_cnt;		/* Loop on the bits of the short */
 
	for (byte_cnt = 0; byte_cnt < size; byte_cnt++) {
		crc_bytes ^= psa[byte_cnt];	/* Its an xor */
 
		for (bit_cnt = 1; bit_cnt < 9; bit_cnt++) {
			if (crc_bytes & 0x0001)
				crc_bytes = (crc_bytes >> 1) ^ 0xA001;
			else
				crc_bytes >>= 1;
		}
	}
 
	return crc_bytes;
}				/* psa_crc */
#endif				/* SET_PSA_CRC */
 
/*------------------------------------------------------------------*/
/*
 * update the checksum field in the Wavelan's PSA
 */
static void update_psa_checksum(device * dev, unsigned long ioaddr, u16 hacr)
{
#ifdef SET_PSA_CRC
	psa_t psa;
	u16 crc;
 
	/* read the parameter storage area */
	psa_read(ioaddr, hacr, 0, (unsigned char *) &psa, sizeof(psa));
 
	/* update the checksum */
	crc = psa_crc((unsigned char *) &psa,
		      sizeof(psa) - sizeof(psa.psa_crc[0]) -
		      sizeof(psa.psa_crc[1])
		      - sizeof(psa.psa_crc_status));
 
	psa.psa_crc[0] = crc & 0xFF;
	psa.psa_crc[1] = (crc & 0xFF00) >> 8;
 
	/* Write it ! */
	psa_write(ioaddr, hacr, (char *) &psa.psa_crc - (char *) &psa,
		  (unsigned char *) &psa.psa_crc, 2);
 
#ifdef DEBUG_IOCTL_INFO
	printk(KERN_DEBUG "%s: update_psa_checksum(): crc = 0x%02x%02x\n",
	       dev->name, psa.psa_crc[0], psa.psa_crc[1]);
 
	/* Check again (luxury !) */
	crc = psa_crc((unsigned char *) &psa,
		      sizeof(psa) - sizeof(psa.psa_crc_status));
 
	if (crc != 0)
		printk(KERN_WARNING
		       "%s: update_psa_checksum(): CRC does not agree with PSA data (even after recalculating)\n",
		       dev->name);
#endif				/* DEBUG_IOCTL_INFO */
#endif				/* SET_PSA_CRC */
}				/* update_psa_checksum */
 
/*------------------------------------------------------------------*/
/*
 * Write 1 byte to the MMC.
 */
static inline void mmc_out(unsigned long ioaddr, u16 o, u8 d)
{
	/* Wait for MMC to go idle */
	while (inw(HASR(ioaddr)) & HASR_MMC_BUSY);
 
	outw((u16) (((u16) d << 8) | (o << 1) | 1), MMCR(ioaddr));
}
 
/*------------------------------------------------------------------*/
/*
 * Routine to write bytes to the Modem Management Controller.
 * We start at the end because it is the way it should be!
 */
static inline void mmc_write(unsigned long ioaddr, u8 o, u8 * b, int n)
{
	o += n;
	b += n;
 
	while (n-- > 0)
		mmc_out(ioaddr, --o, *(--b));
}				/* mmc_write */
 
/*------------------------------------------------------------------*/
/*
 * Read a byte from the MMC.
 * Optimised version for 1 byte, avoid using memory.
 */
static inline u8 mmc_in(unsigned long ioaddr, u16 o)
{
	while (inw(HASR(ioaddr)) & HASR_MMC_BUSY);
	outw(o << 1, MMCR(ioaddr));
 
	while (inw(HASR(ioaddr)) & HASR_MMC_BUSY);
	return (u8) (inw(MMCR(ioaddr)) >> 8);
}
 
/*------------------------------------------------------------------*/
/*
 * Routine to read bytes from the Modem Management Controller.
 * The implementation is complicated by a lack of address lines,
 * which prevents decoding of the low-order bit.
 * (code has just been moved in the above function)
 * We start at the end because it is the way it should be!
 */
static inline void mmc_read(unsigned long ioaddr, u8 o, u8 * b, int n)
{
	o += n;
	b += n;
 
	while (n-- > 0)
		*(--b) = mmc_in(ioaddr, --o);
}				/* mmc_read */
 
/*------------------------------------------------------------------*/
/*
 * Get the type of encryption available.
 */
static inline int mmc_encr(unsigned long ioaddr)
{				/* I/O port of the card */
	int temp;
 
	temp = mmc_in(ioaddr, mmroff(0, mmr_des_avail));
	if ((temp != MMR_DES_AVAIL_DES) && (temp != MMR_DES_AVAIL_AES))
		return 0;
	else
		return temp;
}
 
/*------------------------------------------------------------------*/
/*
 * Wait for the frequency EEPROM to complete a command.
 * I hope this one will be optimally inlined.
 */
static inline void fee_wait(unsigned long ioaddr,	/* I/O port of the card */
			    int delay,	/* Base delay to wait for */
			    int number)
{				/* Number of time to wait */
	int count = 0;		/* Wait only a limited time */
 
	while ((count++ < number) &&
	       (mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
		MMR_FEE_STATUS_BUSY)) udelay(delay);
}
 
/*------------------------------------------------------------------*/
/*
 * Read bytes from the Frequency EEPROM (frequency select cards).
 */
static void fee_read(unsigned long ioaddr,	/* I/O port of the card */
		     u16 o,	/* destination offset */
		     u16 * b,	/* data buffer */
		     int n)
{				/* number of registers */
	b += n;			/* Position at the end of the area */
 
	/* Write the address */
	mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
 
	/* Loop on all buffer */
	while (n-- > 0) {
		/* Write the read command */
		mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
			MMW_FEE_CTRL_READ);
 
		/* Wait until EEPROM is ready (should be quick). */
		fee_wait(ioaddr, 10, 100);
 
		/* Read the value. */
		*--b = ((mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)) << 8) |
			mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
	}
}
 
#ifdef WIRELESS_EXT		/* if the wireless extension exists in the kernel */
 
/*------------------------------------------------------------------*/
/*
 * Write bytes from the Frequency EEPROM (frequency select cards).
 * This is a bit complicated, because the frequency EEPROM has to
 * be unprotected and the write enabled.
 * Jean II
 */
static void fee_write(unsigned long ioaddr,	/* I/O port of the card */
		      u16 o,	/* destination offset */
		      u16 * b,	/* data buffer */
		      int n)
{				/* number of registers */
	b += n;			/* Position at the end of the area. */
 
#ifdef EEPROM_IS_PROTECTED	/* disabled */
#ifdef DOESNT_SEEM_TO_WORK	/* disabled */
	/* Ask to read the protected register */
	mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRREAD);
 
	fee_wait(ioaddr, 10, 100);
 
	/* Read the protected register. */
	printk("Protected 2:  %02X-%02X\n",
	       mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)),
	       mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
#endif				/* DOESNT_SEEM_TO_WORK */
 
	/* Enable protected register. */
	mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
	mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PREN);
 
	fee_wait(ioaddr, 10, 100);
 
	/* Unprotect area. */
	mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n);
	mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
#ifdef DOESNT_SEEM_TO_WORK	/* disabled */
	/* or use: */
	mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRCLEAR);
#endif				/* DOESNT_SEEM_TO_WORK */
 
	fee_wait(ioaddr, 10, 100);
#endif				/* EEPROM_IS_PROTECTED */
 
	/* Write enable. */
	mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
	mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WREN);
 
	fee_wait(ioaddr, 10, 100);
 
	/* Write the EEPROM address. */
	mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
 
	/* Loop on all buffer */
	while (n-- > 0) {
		/* Write the value. */
		mmc_out(ioaddr, mmwoff(0, mmw_fee_data_h), (*--b) >> 8);
		mmc_out(ioaddr, mmwoff(0, mmw_fee_data_l), *b & 0xFF);
 
		/* Write the write command. */
		mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
			MMW_FEE_CTRL_WRITE);
 
		/* WaveLAN documentation says to wait at least 10 ms for EEBUSY = 0 */
		mdelay(10);
		fee_wait(ioaddr, 10, 100);
	}
 
	/* Write disable. */
	mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_DS);
	mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WDS);
 
	fee_wait(ioaddr, 10, 100);
 
#ifdef EEPROM_IS_PROTECTED	/* disabled */
	/* Reprotect EEPROM. */
	mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x00);
	mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
 
	fee_wait(ioaddr, 10, 100);
#endif				/* EEPROM_IS_PROTECTED */
}
#endif				/* WIRELESS_EXT */
 
/************************ I82586 SUBROUTINES *************************/
/*
 * Useful subroutines to manage the Ethernet controller
 */
 
/*------------------------------------------------------------------*/
/*
 * Read bytes from the on-board RAM.
 * Why does inlining this function make it fail?
 */
static /*inline */ void obram_read(unsigned long ioaddr,
				   u16 o, u8 * b, int n)
{
	outw(o, PIOR1(ioaddr));
	insw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
}
 
/*------------------------------------------------------------------*/
/*
 * Write bytes to the on-board RAM.
 */
static inline void obram_write(unsigned long ioaddr, u16 o, u8 * b, int n)
{
	outw(o, PIOR1(ioaddr));
	outsw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
}
 
/*------------------------------------------------------------------*/
/*
 * Acknowledge the reading of the status issued by the i82586.
 */
static void wv_ack(device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;
	u16 scb_cs;
	int i;
 
	obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
		   (unsigned char *) &scb_cs, sizeof(scb_cs));
	scb_cs &= SCB_ST_INT;
 
	if (scb_cs == 0)
		return;
 
	obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
		    (unsigned char *) &scb_cs, sizeof(scb_cs));
 
	set_chan_attn(ioaddr, lp->hacr);
 
	for (i = 1000; i > 0; i--) {
		obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
			   (unsigned char *) &scb_cs, sizeof(scb_cs));
		if (scb_cs == 0)
			break;
 
		udelay(10);
	}
	udelay(100);
 
#ifdef DEBUG_CONFIG_ERROR
	if (i <= 0)
		printk(KERN_INFO
		       "%s: wv_ack(): board not accepting command.\n",
		       dev->name);
#endif
}
 
/*------------------------------------------------------------------*/
/*
 * Set channel attention bit and busy wait until command has
 * completed, then acknowledge completion of the command.
 */
static inline int wv_synchronous_cmd(device * dev, const char *str)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;
	u16 scb_cmd;
	ach_t cb;
	int i;
 
	scb_cmd = SCB_CMD_CUC & SCB_CMD_CUC_GO;
	obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
		    (unsigned char *) &scb_cmd, sizeof(scb_cmd));
 
	set_chan_attn(ioaddr, lp->hacr);
 
	for (i = 1000; i > 0; i--) {
		obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb,
			   sizeof(cb));
		if (cb.ac_status & AC_SFLD_C)
			break;
 
		udelay(10);
	}
	udelay(100);
 
	if (i <= 0 || !(cb.ac_status & AC_SFLD_OK)) {
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_INFO "%s: %s failed; status = 0x%x\n",
		       dev->name, str, cb.ac_status);
#endif
#ifdef DEBUG_I82586_SHOW
		wv_scb_show(ioaddr);
#endif
		return -1;
	}
 
	/* Ack the status */
	wv_ack(dev);
 
	return 0;
}
 
/*------------------------------------------------------------------*/
/*
 * Configuration commands completion interrupt.
 * Check if done, and if OK.
 */
static inline int
wv_config_complete(device * dev, unsigned long ioaddr, net_local * lp)
{
	unsigned short mcs_addr;
	unsigned short status;
	int ret;
 
#ifdef DEBUG_INTERRUPT_TRACE
	printk(KERN_DEBUG "%s: ->wv_config_complete()\n", dev->name);
#endif
 
	mcs_addr = lp->tx_first_in_use + sizeof(ac_tx_t) + sizeof(ac_nop_t)
	    + sizeof(tbd_t) + sizeof(ac_cfg_t) + sizeof(ac_ias_t);
 
	/* Read the status of the last command (set mc list). */
	obram_read(ioaddr, acoff(mcs_addr, ac_status),
		   (unsigned char *) &status, sizeof(status));
 
	/* If not completed -> exit */
	if ((status & AC_SFLD_C) == 0)
		ret = 0;	/* Not ready to be scrapped */
	else {
#ifdef DEBUG_CONFIG_ERROR
		unsigned short cfg_addr;
		unsigned short ias_addr;
 
		/* Check mc_config command */
		if ((status & AC_SFLD_OK) != AC_SFLD_OK)
			printk(KERN_INFO
			       "%s: wv_config_complete(): set_multicast_address failed; status = 0x%x\n",
			       dev->name, status);
 
		/* check ia-config command */
		ias_addr = mcs_addr - sizeof(ac_ias_t);
		obram_read(ioaddr, acoff(ias_addr, ac_status),
			   (unsigned char *) &status, sizeof(status));
		if ((status & AC_SFLD_OK) != AC_SFLD_OK)
			printk(KERN_INFO
			       "%s: wv_config_complete(): set_MAC_address failed; status = 0x%x\n",
			       dev->name, status);
 
		/* Check config command. */
		cfg_addr = ias_addr - sizeof(ac_cfg_t);
		obram_read(ioaddr, acoff(cfg_addr, ac_status),
			   (unsigned char *) &status, sizeof(status));
		if ((status & AC_SFLD_OK) != AC_SFLD_OK)
			printk(KERN_INFO
			       "%s: wv_config_complete(): configure failed; status = 0x%x\n",
			       dev->name, status);
#endif	/* DEBUG_CONFIG_ERROR */
 
		ret = 1;	/* Ready to be scrapped */
	}
 
#ifdef DEBUG_INTERRUPT_TRACE
	printk(KERN_DEBUG "%s: <-wv_config_complete() - %d\n", dev->name,
	       ret);
#endif
	return ret;
}
 
/*------------------------------------------------------------------*/
/*
 * Command completion interrupt.
 * Reclaim as many freed tx buffers as we can.
 * (called in wavelan_interrupt()).
 * Note : the spinlock is already grabbed for us.
 */
static int wv_complete(device * dev, unsigned long ioaddr, net_local * lp)
{
	int nreaped = 0;
 
#ifdef DEBUG_INTERRUPT_TRACE
	printk(KERN_DEBUG "%s: ->wv_complete()\n", dev->name);
#endif
 
	/* Loop on all the transmit buffers */
	while (lp->tx_first_in_use != I82586NULL) {
		unsigned short tx_status;
 
		/* Read the first transmit buffer */
		obram_read(ioaddr, acoff(lp->tx_first_in_use, ac_status),
			   (unsigned char *) &tx_status,
			   sizeof(tx_status));
 
		/* If not completed -> exit */
		if ((tx_status & AC_SFLD_C) == 0)
			break;
 
		/* Hack for reconfiguration */
		if (tx_status == 0xFFFF)
			if (!wv_config_complete(dev, ioaddr, lp))
				break;	/* Not completed */
 
		/* We now remove this buffer */
		nreaped++;
		--lp->tx_n_in_use;
 
/*
if (lp->tx_n_in_use > 0)
	printk("%c", "0123456789abcdefghijk"[lp->tx_n_in_use]);
*/
 
		/* Was it the last one? */
		if (lp->tx_n_in_use <= 0)
			lp->tx_first_in_use = I82586NULL;
		else {
			/* Next one in the chain */
			lp->tx_first_in_use += TXBLOCKZ;
			if (lp->tx_first_in_use >=
			    OFFSET_CU +
			    NTXBLOCKS * TXBLOCKZ) lp->tx_first_in_use -=
				    NTXBLOCKS * TXBLOCKZ;
		}
 
		/* Hack for reconfiguration */
		if (tx_status == 0xFFFF)
			continue;
 
		/* Now, check status of the finished command */
		if (tx_status & AC_SFLD_OK) {
			int ncollisions;
 
			lp->stats.tx_packets++;
			ncollisions = tx_status & AC_SFLD_MAXCOL;
			lp->stats.collisions += ncollisions;
#ifdef DEBUG_TX_INFO
			if (ncollisions > 0)
				printk(KERN_DEBUG
				       "%s: wv_complete(): tx completed after %d collisions.\n",
				       dev->name, ncollisions);
#endif
		} else {
			lp->stats.tx_errors++;
			if (tx_status & AC_SFLD_S10) {
				lp->stats.tx_carrier_errors++;
#ifdef DEBUG_TX_FAIL
				printk(KERN_DEBUG
				       "%s: wv_complete(): tx error: no CS.\n",
				       dev->name);
#endif
			}
			if (tx_status & AC_SFLD_S9) {
				lp->stats.tx_carrier_errors++;
#ifdef DEBUG_TX_FAIL
				printk(KERN_DEBUG
				       "%s: wv_complete(): tx error: lost CTS.\n",
				       dev->name);
#endif
			}
			if (tx_status & AC_SFLD_S8) {
				lp->stats.tx_fifo_errors++;
#ifdef DEBUG_TX_FAIL
				printk(KERN_DEBUG
				       "%s: wv_complete(): tx error: slow DMA.\n",
				       dev->name);
#endif
			}
			if (tx_status & AC_SFLD_S6) {
				lp->stats.tx_heartbeat_errors++;
#ifdef DEBUG_TX_FAIL
				printk(KERN_DEBUG
				       "%s: wv_complete(): tx error: heart beat.\n",
				       dev->name);
#endif
			}
			if (tx_status & AC_SFLD_S5) {
				lp->stats.tx_aborted_errors++;
#ifdef DEBUG_TX_FAIL
				printk(KERN_DEBUG
				       "%s: wv_complete(): tx error: too many collisions.\n",
				       dev->name);
#endif
			}
		}
 
#ifdef DEBUG_TX_INFO
		printk(KERN_DEBUG
		       "%s: wv_complete(): tx completed, tx_status 0x%04x\n",
		       dev->name, tx_status);
#endif
	}
 
#ifdef DEBUG_INTERRUPT_INFO
	if (nreaped > 1)
		printk(KERN_DEBUG "%s: wv_complete(): reaped %d\n",
		       dev->name, nreaped);
#endif
 
	/*
	 * Inform upper layers.
	 */
	if (lp->tx_n_in_use < NTXBLOCKS - 1) {
		netif_wake_queue(dev);
	}
#ifdef DEBUG_INTERRUPT_TRACE
	printk(KERN_DEBUG "%s: <-wv_complete()\n", dev->name);
#endif
	return nreaped;
}
 
/*------------------------------------------------------------------*/
/*
 * Reconfigure the i82586, or at least ask for it.
 * Because wv_82586_config uses a transmission buffer, we must do it
 * when we are sure that there is one left, so we do it now
 * or in wavelan_packet_xmit() (I can't find any better place,
 * wavelan_interrupt is not an option), so you may experience
 * delays sometimes.
 */
static inline void wv_82586_reconfig(device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long flags;
 
	/* Arm the flag, will be cleard in wv_82586_config() */
	lp->reconfig_82586 = 1;
 
	/* Check if we can do it now ! */
	if((netif_running(dev)) && !(netif_queue_stopped(dev))) {
		wv_splhi(lp, &flags);
		/* May fail */
		wv_82586_config(dev);
		wv_splx(lp, &flags);
	}
	else {
#ifdef DEBUG_CONFIG_INFO
		printk(KERN_DEBUG
		       "%s: wv_82586_reconfig(): delayed (state = %lX)\n",
			       dev->name, dev->state);
#endif
	}
}
 
/********************* DEBUG & INFO SUBROUTINES *********************/
/*
 * This routine is used in the code to show information for debugging.
 * Most of the time, it dumps the contents of hardware structures.
 */
 
#ifdef DEBUG_PSA_SHOW
/*------------------------------------------------------------------*/
/*
 * Print the formatted contents of the Parameter Storage Area.
 */
static void wv_psa_show(psa_t * p)
{
	printk(KERN_DEBUG "##### WaveLAN PSA contents: #####\n");
	printk(KERN_DEBUG "psa_io_base_addr_1: 0x%02X %02X %02X %02X\n",
	       p->psa_io_base_addr_1,
	       p->psa_io_base_addr_2,
	       p->psa_io_base_addr_3, p->psa_io_base_addr_4);
	printk(KERN_DEBUG "psa_rem_boot_addr_1: 0x%02X %02X %02X\n",
	       p->psa_rem_boot_addr_1,
	       p->psa_rem_boot_addr_2, p->psa_rem_boot_addr_3);
	printk(KERN_DEBUG "psa_holi_params: 0x%02x, ", p->psa_holi_params);
	printk("psa_int_req_no: %d\n", p->psa_int_req_no);
#ifdef DEBUG_SHOW_UNUSED
	printk(KERN_DEBUG
	       "psa_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
	       p->psa_unused0[0], p->psa_unused0[1], p->psa_unused0[2],
	       p->psa_unused0[3], p->psa_unused0[4], p->psa_unused0[5],
	       p->psa_unused0[6]);
#endif				/* DEBUG_SHOW_UNUSED */
	printk(KERN_DEBUG
	       "psa_univ_mac_addr[]: %02x:%02x:%02x:%02x:%02x:%02x\n",
	       p->psa_univ_mac_addr[0], p->psa_univ_mac_addr[1],
	       p->psa_univ_mac_addr[2], p->psa_univ_mac_addr[3],
	       p->psa_univ_mac_addr[4], p->psa_univ_mac_addr[5]);
	printk(KERN_DEBUG
	       "psa_local_mac_addr[]: %02x:%02x:%02x:%02x:%02x:%02x\n",
	       p->psa_local_mac_addr[0], p->psa_local_mac_addr[1],
	       p->psa_local_mac_addr[2], p->psa_local_mac_addr[3],
	       p->psa_local_mac_addr[4], p->psa_local_mac_addr[5]);
	printk(KERN_DEBUG "psa_univ_local_sel: %d, ",
	       p->psa_univ_local_sel);
	printk("psa_comp_number: %d, ", p->psa_comp_number);
	printk("psa_thr_pre_set: 0x%02x\n", p->psa_thr_pre_set);
	printk(KERN_DEBUG "psa_feature_select/decay_prm: 0x%02x, ",
	       p->psa_feature_select);
	printk("psa_subband/decay_update_prm: %d\n", p->psa_subband);
	printk(KERN_DEBUG "psa_quality_thr: 0x%02x, ", p->psa_quality_thr);
	printk("psa_mod_delay: 0x%02x\n", p->psa_mod_delay);
	printk(KERN_DEBUG "psa_nwid: 0x%02x%02x, ", p->psa_nwid[0],
	       p->psa_nwid[1]);
	printk("psa_nwid_select: %d\n", p->psa_nwid_select);
	printk(KERN_DEBUG "psa_encryption_select: %d, ",
	       p->psa_encryption_select);
	printk
	    ("psa_encryption_key[]: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
	     p->psa_encryption_key[0], p->psa_encryption_key[1],
	     p->psa_encryption_key[2], p->psa_encryption_key[3],
	     p->psa_encryption_key[4], p->psa_encryption_key[5],
	     p->psa_encryption_key[6], p->psa_encryption_key[7]);
	printk(KERN_DEBUG "psa_databus_width: %d\n", p->psa_databus_width);
	printk(KERN_DEBUG "psa_call_code/auto_squelch: 0x%02x, ",
	       p->psa_call_code[0]);
	printk
	    ("psa_call_code[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
	     p->psa_call_code[0], p->psa_call_code[1], p->psa_call_code[2],
	     p->psa_call_code[3], p->psa_call_code[4], p->psa_call_code[5],
	     p->psa_call_code[6], p->psa_call_code[7]);
#ifdef DEBUG_SHOW_UNUSED
	printk(KERN_DEBUG "psa_reserved[]: %02X:%02X:%02X:%02X\n",
	       p->psa_reserved[0],
	       p->psa_reserved[1], p->psa_reserved[2], p->psa_reserved[3]);
#endif				/* DEBUG_SHOW_UNUSED */
	printk(KERN_DEBUG "psa_conf_status: %d, ", p->psa_conf_status);
	printk("psa_crc: 0x%02x%02x, ", p->psa_crc[0], p->psa_crc[1]);
	printk("psa_crc_status: 0x%02x\n", p->psa_crc_status);
}				/* wv_psa_show */
#endif				/* DEBUG_PSA_SHOW */
 
#ifdef DEBUG_MMC_SHOW
/*------------------------------------------------------------------*/
/*
 * Print the formatted status of the Modem Management Controller.
 * This function needs to be completed.
 */
static void wv_mmc_show(device * dev)
{
	unsigned long ioaddr = dev->base_addr;
	net_local *lp = (net_local *) dev->priv;
	mmr_t m;
 
	/* Basic check */
	if (hasr_read(ioaddr) & HASR_NO_CLK) {
		printk(KERN_WARNING
		       "%s: wv_mmc_show: modem not connected\n",
		       dev->name);
		return;
	}
 
	/* Read the mmc */
	mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
	mmc_read(ioaddr, 0, (u8 *) & m, sizeof(m));
	mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
 
#ifdef WIRELESS_EXT		/* if wireless extension exists in the kernel */
	/* Don't forget to update statistics */
	lp->wstats.discard.nwid +=
	    (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
#endif				/* WIRELESS_EXT */
 
	printk(KERN_DEBUG "##### WaveLAN modem status registers: #####\n");
#ifdef DEBUG_SHOW_UNUSED
	printk(KERN_DEBUG
	       "mmc_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
	       m.mmr_unused0[0], m.mmr_unused0[1], m.mmr_unused0[2],
	       m.mmr_unused0[3], m.mmr_unused0[4], m.mmr_unused0[5],
	       m.mmr_unused0[6], m.mmr_unused0[7]);
#endif				/* DEBUG_SHOW_UNUSED */
	printk(KERN_DEBUG "Encryption algorithm: %02X - Status: %02X\n",
	       m.mmr_des_avail, m.mmr_des_status);
#ifdef DEBUG_SHOW_UNUSED
	printk(KERN_DEBUG "mmc_unused1[]: %02X:%02X:%02X:%02X:%02X\n",
	       m.mmr_unused1[0],
	       m.mmr_unused1[1],
	       m.mmr_unused1[2], m.mmr_unused1[3], m.mmr_unused1[4]);
#endif				/* DEBUG_SHOW_UNUSED */
	printk(KERN_DEBUG "dce_status: 0x%x [%s%s%s%s]\n",
	       m.mmr_dce_status,
	       (m.
		mmr_dce_status & MMR_DCE_STATUS_RX_BUSY) ?
	       "energy detected," : "",
	       (m.
		mmr_dce_status & MMR_DCE_STATUS_LOOPT_IND) ?
	       "loop test indicated," : "",
	       (m.
		mmr_dce_status & MMR_DCE_STATUS_TX_BUSY) ?
	       "transmitter on," : "",
	       (m.
		mmr_dce_status & MMR_DCE_STATUS_JBR_EXPIRED) ?
	       "jabber timer expired," : "");
	printk(KERN_DEBUG "Dsp ID: %02X\n", m.mmr_dsp_id);
#ifdef DEBUG_SHOW_UNUSED
	printk(KERN_DEBUG "mmc_unused2[]: %02X:%02X\n",
	       m.mmr_unused2[0], m.mmr_unused2[1]);
#endif				/* DEBUG_SHOW_UNUSED */
	printk(KERN_DEBUG "# correct_nwid: %d, # wrong_nwid: %d\n",
	       (m.mmr_correct_nwid_h << 8) | m.mmr_correct_nwid_l,
	       (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l);
	printk(KERN_DEBUG "thr_pre_set: 0x%x [current signal %s]\n",
	       m.mmr_thr_pre_set & MMR_THR_PRE_SET,
	       (m.
		mmr_thr_pre_set & MMR_THR_PRE_SET_CUR) ? "above" :
	       "below");
	printk(KERN_DEBUG "signal_lvl: %d [%s], ",
	       m.mmr_signal_lvl & MMR_SIGNAL_LVL,
	       (m.
		mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) ? "new msg" :
	       "no new msg");
	printk("silence_lvl: %d [%s], ",
	       m.mmr_silence_lvl & MMR_SILENCE_LVL,
	       (m.
		mmr_silence_lvl & MMR_SILENCE_LVL_VALID) ? "update done" :
	       "no new update");
	printk("sgnl_qual: 0x%x [%s]\n", m.mmr_sgnl_qual & MMR_SGNL_QUAL,
	       (m.
		mmr_sgnl_qual & MMR_SGNL_QUAL_ANT) ? "Antenna 1" :
	       "Antenna 0");
#ifdef DEBUG_SHOW_UNUSED
	printk(KERN_DEBUG "netw_id_l: %x\n", m.mmr_netw_id_l);
#endif				/* DEBUG_SHOW_UNUSED */
}				/* wv_mmc_show */
#endif				/* DEBUG_MMC_SHOW */
 
#ifdef DEBUG_I82586_SHOW
/*------------------------------------------------------------------*/
/*
 * Print the last block of the i82586 memory.
 */
static void wv_scb_show(unsigned long ioaddr)
{
	scb_t scb;
 
	obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
		   sizeof(scb));
 
	printk(KERN_DEBUG "##### WaveLAN system control block: #####\n");
 
	printk(KERN_DEBUG "status: ");
	printk("stat 0x%x[%s%s%s%s] ",
	       (scb.
		scb_status & (SCB_ST_CX | SCB_ST_FR | SCB_ST_CNA |
			      SCB_ST_RNR)) >> 12,
	       (scb.
		scb_status & SCB_ST_CX) ? "command completion interrupt," :
	       "", (scb.scb_status & SCB_ST_FR) ? "frame received," : "",
	       (scb.
		scb_status & SCB_ST_CNA) ? "command unit not active," : "",
	       (scb.
		scb_status & SCB_ST_RNR) ? "receiving unit not ready," :
	       "");
	printk("cus 0x%x[%s%s%s] ", (scb.scb_status & SCB_ST_CUS) >> 8,
	       ((scb.scb_status & SCB_ST_CUS) ==
		SCB_ST_CUS_IDLE) ? "idle" : "",
	       ((scb.scb_status & SCB_ST_CUS) ==
		SCB_ST_CUS_SUSP) ? "suspended" : "",
	       ((scb.scb_status & SCB_ST_CUS) ==
		SCB_ST_CUS_ACTV) ? "active" : "");
	printk("rus 0x%x[%s%s%s%s]\n", (scb.scb_status & SCB_ST_RUS) >> 4,
	       ((scb.scb_status & SCB_ST_RUS) ==
		SCB_ST_RUS_IDLE) ? "idle" : "",
	       ((scb.scb_status & SCB_ST_RUS) ==
		SCB_ST_RUS_SUSP) ? "suspended" : "",
	       ((scb.scb_status & SCB_ST_RUS) ==
		SCB_ST_RUS_NRES) ? "no resources" : "",
	       ((scb.scb_status & SCB_ST_RUS) ==
		SCB_ST_RUS_RDY) ? "ready" : "");
 
	printk(KERN_DEBUG "command: ");
	printk("ack 0x%x[%s%s%s%s] ",
	       (scb.
		scb_command & (SCB_CMD_ACK_CX | SCB_CMD_ACK_FR |
			       SCB_CMD_ACK_CNA | SCB_CMD_ACK_RNR)) >> 12,
	       (scb.
		scb_command & SCB_CMD_ACK_CX) ? "ack cmd completion," : "",
	       (scb.
		scb_command & SCB_CMD_ACK_FR) ? "ack frame received," : "",
	       (scb.
		scb_command & SCB_CMD_ACK_CNA) ? "ack CU not active," : "",
	       (scb.
		scb_command & SCB_CMD_ACK_RNR) ? "ack RU not ready," : "");
	printk("cuc 0x%x[%s%s%s%s%s] ",
	       (scb.scb_command & SCB_CMD_CUC) >> 8,
	       ((scb.scb_command & SCB_CMD_CUC) ==
		SCB_CMD_CUC_NOP) ? "nop" : "",
	       ((scb.scb_command & SCB_CMD_CUC) ==
		SCB_CMD_CUC_GO) ? "start cbl_offset" : "",
	       ((scb.scb_command & SCB_CMD_CUC) ==
		SCB_CMD_CUC_RES) ? "resume execution" : "",
	       ((scb.scb_command & SCB_CMD_CUC) ==
		SCB_CMD_CUC_SUS) ? "suspend execution" : "",
	       ((scb.scb_command & SCB_CMD_CUC) ==
		SCB_CMD_CUC_ABT) ? "abort execution" : "");
	printk("ruc 0x%x[%s%s%s%s%s]\n",
	       (scb.scb_command & SCB_CMD_RUC) >> 4,
	       ((scb.scb_command & SCB_CMD_RUC) ==
		SCB_CMD_RUC_NOP) ? "nop" : "",
	       ((scb.scb_command & SCB_CMD_RUC) ==
		SCB_CMD_RUC_GO) ? "start rfa_offset" : "",
	       ((scb.scb_command & SCB_CMD_RUC) ==
		SCB_CMD_RUC_RES) ? "resume reception" : "",
	       ((scb.scb_command & SCB_CMD_RUC) ==
		SCB_CMD_RUC_SUS) ? "suspend reception" : "",
	       ((scb.scb_command & SCB_CMD_RUC) ==
		SCB_CMD_RUC_ABT) ? "abort reception" : "");
 
	printk(KERN_DEBUG "cbl_offset 0x%x ", scb.scb_cbl_offset);
	printk("rfa_offset 0x%x\n", scb.scb_rfa_offset);
 
	printk(KERN_DEBUG "crcerrs %d ", scb.scb_crcerrs);
	printk("alnerrs %d ", scb.scb_alnerrs);
	printk("rscerrs %d ", scb.scb_rscerrs);
	printk("ovrnerrs %d\n", scb.scb_ovrnerrs);
}
 
/*------------------------------------------------------------------*/
/*
 * Print the formatted status of the i82586's receive unit.
 */
static void wv_ru_show(device * dev)
{
	/* net_local *lp = (net_local *) dev->priv; */
 
	printk(KERN_DEBUG
	       "##### WaveLAN i82586 receiver unit status: #####\n");
	printk(KERN_DEBUG "ru:");
	/*
	 * Not implemented yet
	 */
	printk("\n");
}				/* wv_ru_show */
 
/*------------------------------------------------------------------*/
/*
 * Display info about one control block of the i82586 memory.
 */
static void wv_cu_show_one(device * dev, net_local * lp, int i, u16 p)
{
	unsigned long ioaddr;
	ac_tx_t actx;
 
	ioaddr = dev->base_addr;
 
	printk("%d: 0x%x:", i, p);
 
	obram_read(ioaddr, p, (unsigned char *) &actx, sizeof(actx));
	printk(" status=0x%x,", actx.tx_h.ac_status);
	printk(" command=0x%x,", actx.tx_h.ac_command);
 
	/*
	   {
	   tbd_t      tbd;
 
	   obram_read(ioaddr, actx.tx_tbd_offset, (unsigned char *)&tbd, sizeof(tbd));
	   printk(" tbd_status=0x%x,", tbd.tbd_status);
	   }
	 */
 
	printk("|");
}
 
/*------------------------------------------------------------------*/
/*
 * Print status of the command unit of the i82586.
 */
static void wv_cu_show(device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned int i;
	u16 p;
 
	printk(KERN_DEBUG
	       "##### WaveLAN i82586 command unit status: #####\n");
 
	printk(KERN_DEBUG);
	for (i = 0, p = lp->tx_first_in_use; i < NTXBLOCKS; i++) {
		wv_cu_show_one(dev, lp, i, p);
 
		p += TXBLOCKZ;
		if (p >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
			p -= NTXBLOCKS * TXBLOCKZ;
	}
	printk("\n");
}
#endif				/* DEBUG_I82586_SHOW */
 
#ifdef DEBUG_DEVICE_SHOW
/*------------------------------------------------------------------*/
/*
 * Print the formatted status of the WaveLAN PCMCIA device driver.
 */
static void wv_dev_show(device * dev)
{
	printk(KERN_DEBUG "dev:");
	printk(" state=%lX,", dev->state);
	printk(" trans_start=%ld,", dev->trans_start);
	printk(" flags=0x%x,", dev->flags);
	printk("\n");
}				/* wv_dev_show */
 
/*------------------------------------------------------------------*/
/*
 * Print the formatted status of the WaveLAN PCMCIA device driver's
 * private information.
 */
static void wv_local_show(device * dev)
{
	net_local *lp;
 
	lp = (net_local *) dev->priv;
 
	printk(KERN_DEBUG "local:");
	printk(" tx_n_in_use=%d,", lp->tx_n_in_use);
	printk(" hacr=0x%x,", lp->hacr);
	printk(" rx_head=0x%x,", lp->rx_head);
	printk(" rx_last=0x%x,", lp->rx_last);
	printk(" tx_first_free=0x%x,", lp->tx_first_free);
	printk(" tx_first_in_use=0x%x,", lp->tx_first_in_use);
	printk("\n");
}				/* wv_local_show */
#endif				/* DEBUG_DEVICE_SHOW */
 
#if defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO)
/*------------------------------------------------------------------*/
/*
 * Dump packet header (and content if necessary) on the screen
 */
static inline void wv_packet_info(u8 * p,	/* Packet to dump */
				  int length,	/* Length of the packet */
				  char *msg1,	/* Name of the device */
				  char *msg2)
{				/* Name of the function */
	int i;
	int maxi;
 
	printk(KERN_DEBUG
	       "%s: %s(): dest %02X:%02X:%02X:%02X:%02X:%02X, length %d\n",
	       msg1, msg2, p[0], p[1], p[2], p[3], p[4], p[5], length);
	printk(KERN_DEBUG
	       "%s: %s(): src %02X:%02X:%02X:%02X:%02X:%02X, type 0x%02X%02X\n",
	       msg1, msg2, p[6], p[7], p[8], p[9], p[10], p[11], p[12],
	       p[13]);
 
#ifdef DEBUG_PACKET_DUMP
 
	printk(KERN_DEBUG "data=\"");
 
	if ((maxi = length) > DEBUG_PACKET_DUMP)
		maxi = DEBUG_PACKET_DUMP;
	for (i = 14; i < maxi; i++)
		if (p[i] >= ' ' && p[i] <= '~')
			printk(" %c", p[i]);
		else
			printk("%02X", p[i]);
	if (maxi < length)
		printk("..");
	printk("\"\n");
	printk(KERN_DEBUG "\n");
#endif				/* DEBUG_PACKET_DUMP */
}
#endif				/* defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) */
 
/*------------------------------------------------------------------*/
/*
 * This is the information which is displayed by the driver at startup.
 * There are lots of flags for configuring it to your liking.
 */
static inline void wv_init_info(device * dev)
{
	short ioaddr = dev->base_addr;
	net_local *lp = (net_local *) dev->priv;
	psa_t psa;
	int i;
 
	/* Read the parameter storage area */
	psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
 
#ifdef DEBUG_PSA_SHOW
	wv_psa_show(&psa);
#endif
#ifdef DEBUG_MMC_SHOW
	wv_mmc_show(dev);
#endif
#ifdef DEBUG_I82586_SHOW
	wv_cu_show(dev);
#endif
 
#ifdef DEBUG_BASIC_SHOW
	/* Now, let's go for the basic stuff. */
	printk(KERN_NOTICE "%s: WaveLAN at %#x,", dev->name, ioaddr);
	for (i = 0; i < WAVELAN_ADDR_SIZE; i++)
		printk("%s%02X", (i == 0) ? " " : ":", dev->dev_addr[i]);
	printk(", IRQ %d", dev->irq);
 
	/* Print current network ID. */
	if (psa.psa_nwid_select)
		printk(", nwid 0x%02X-%02X", psa.psa_nwid[0],
		       psa.psa_nwid[1]);
	else
		printk(", nwid off");
 
	/* If 2.00 card */
	if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
	      (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
		unsigned short freq;
 
		/* Ask the EEPROM to read the frequency from the first area. */
		fee_read(ioaddr, 0x00, &freq, 1);
 
		/* Print frequency */
		printk(", 2.00, %ld", (freq >> 6) + 2400L);
 
		/* Hack! */
		if (freq & 0x20)
			printk(".5");
	} else {
		printk(", PC");
		switch (psa.psa_comp_number) {
		case PSA_COMP_PC_AT_915:
		case PSA_COMP_PC_AT_2400:
			printk("-AT");
			break;
		case PSA_COMP_PC_MC_915:
		case PSA_COMP_PC_MC_2400:
			printk("-MC");
			break;
		case PSA_COMP_PCMCIA_915:
			printk("MCIA");
			break;
		default:
			printk("?");
		}
		printk(", ");
		switch (psa.psa_subband) {
		case PSA_SUBBAND_915:
			printk("915");
			break;
		case PSA_SUBBAND_2425:
			printk("2425");
			break;
		case PSA_SUBBAND_2460:
			printk("2460");
			break;
		case PSA_SUBBAND_2484:
			printk("2484");
			break;
		case PSA_SUBBAND_2430_5:
			printk("2430.5");
			break;
		default:
			printk("?");
		}
	}
 
	printk(" MHz\n");
#endif				/* DEBUG_BASIC_SHOW */
 
#ifdef DEBUG_VERSION_SHOW
	/* Print version information */
	printk(KERN_NOTICE "%s", version);
#endif
}				/* wv_init_info */
 
/********************* IOCTL, STATS & RECONFIG *********************/
/*
 * We found here routines that are called by Linux on different
 * occasions after the configuration and not for transmitting data
 * These may be called when the user use ifconfig, /proc/net/dev
 * or wireless extensions
 */
 
/*------------------------------------------------------------------*/
/*
 * Get the current Ethernet statistics. This may be called with the
 * card open or closed.
 * Used when the user read /proc/net/dev
 */
static en_stats *wavelan_get_stats(device * dev)
{
#ifdef DEBUG_IOCTL_TRACE
	printk(KERN_DEBUG "%s: <>wavelan_get_stats()\n", dev->name);
#endif
 
	return (&((net_local *) dev->priv)->stats);
}
 
/*------------------------------------------------------------------*/
/*
 * Set or clear the multicast filter for this adaptor.
 * num_addrs == -1	Promiscuous mode, receive all packets
 * num_addrs == 0	Normal mode, clear multicast list
 * num_addrs > 0	Multicast mode, receive normal and MC packets,
 *			and do best-effort filtering.
 */
static void wavelan_set_multicast_list(device * dev)
{
	net_local *lp = (net_local *) dev->priv;
 
#ifdef DEBUG_IOCTL_TRACE
	printk(KERN_DEBUG "%s: ->wavelan_set_multicast_list()\n",
	       dev->name);
#endif
 
#ifdef DEBUG_IOCTL_INFO
	printk(KERN_DEBUG
	       "%s: wavelan_set_multicast_list(): setting Rx mode %02X to %d addresses.\n",
	       dev->name, dev->flags, dev->mc_count);
#endif
 
	/* Are we asking for promiscuous mode,
	 * or all multicast addresses (we don't have that!)
	 * or too many multicast addresses for the hardware filter? */
	if ((dev->flags & IFF_PROMISC) ||
	    (dev->flags & IFF_ALLMULTI) ||
	    (dev->mc_count > I82586_MAX_MULTICAST_ADDRESSES)) {
		/*
		 * Enable promiscuous mode: receive all packets.
		 */
		if (!lp->promiscuous) {
			lp->promiscuous = 1;
			lp->mc_count = 0;
 
			wv_82586_reconfig(dev);
 
			/* Tell the kernel that we are doing a really bad job. */
			dev->flags |= IFF_PROMISC;
		}
	} else
		/* Are there multicast addresses to send? */
	if (dev->mc_list != (struct dev_mc_list *) NULL) {
		/*
		 * Disable promiscuous mode, but receive all packets
		 * in multicast list
		 */
#ifdef MULTICAST_AVOID
		if (lp->promiscuous || (dev->mc_count != lp->mc_count))
#endif
		{
			lp->promiscuous = 0;
			lp->mc_count = dev->mc_count;
 
			wv_82586_reconfig(dev);
		}
	} else {
		/*
		 * Switch to normal mode: disable promiscuous mode and 
		 * clear the multicast list.
		 */
		if (lp->promiscuous || lp->mc_count == 0) {
			lp->promiscuous = 0;
			lp->mc_count = 0;
 
			wv_82586_reconfig(dev);
		}
	}
#ifdef DEBUG_IOCTL_TRACE
	printk(KERN_DEBUG "%s: <-wavelan_set_multicast_list()\n",
	       dev->name);
#endif
}
 
/*------------------------------------------------------------------*/
/*
 * This function doesn't exist.
 * (Note : it was a nice way to test the reconfigure stuff...)
 */
#ifdef SET_MAC_ADDRESS
static int wavelan_set_mac_address(device * dev, void *addr)
{
	struct sockaddr *mac = addr;
 
	/* Copy the address. */
	memcpy(dev->dev_addr, mac->sa_data, WAVELAN_ADDR_SIZE);
 
	/* Reconfigure the beast. */
	wv_82586_reconfig(dev);
 
	return 0;
}
#endif				/* SET_MAC_ADDRESS */
 
#ifdef WIRELESS_EXT		/* if wireless extensions exist in the kernel */
 
/*------------------------------------------------------------------*/
/*
 * Frequency setting (for hardware capable of it)
 * It's a bit complicated and you don't really want to look into it.
 * (called in wavelan_ioctl)
 */
static inline int wv_set_frequency(unsigned long ioaddr,	/* I/O port of the card */
				   iw_freq * frequency)
{
	const int BAND_NUM = 10;	/* Number of bands */
	long freq = 0L;		/* offset to 2.4 GHz in .5 MHz */
#ifdef DEBUG_IOCTL_INFO
	int i;
#endif
 
	/* Setting by frequency */
	/* Theoretically, you may set any frequency between
	 * the two limits with a 0.5 MHz precision. In practice,
	 * I don't want you to have trouble with local regulations.
	 */
	if ((frequency->e == 1) &&
	    (frequency->m >= (int) 2.412e8)
	    && (frequency->m <= (int) 2.487e8)) {
		freq = ((frequency->m / 10000) - 24000L) / 5;
	}
 
	/* Setting by channel (same as wfreqsel) */
	/* Warning: each channel is 22 MHz wide, so some of the channels
	 * will interfere. */
	if ((frequency->e == 0) && (frequency->m < BAND_NUM)) {
		/* Get frequency offset. */
		freq = channel_bands[frequency->m] >> 1;
	}
 
	/* Verify that the frequency is allowed. */
	if (freq != 0L) {
		u16 table[10];	/* Authorized frequency table */
 
		/* Read the frequency table. */
		fee_read(ioaddr, 0x71, table, 10);
 
#ifdef DEBUG_IOCTL_INFO
		printk(KERN_DEBUG "Frequency table: ");
		for (i = 0; i < 10; i++) {
			printk(" %04X", table[i]);
		}
		printk("\n");
#endif
 
		/* Look in the table to see whether the frequency is allowed. */
		if (!(table[9 - ((freq - 24) / 16)] &
		      (1 << ((freq - 24) % 16)))) return -EINVAL;	/* not allowed */
	} else
		return -EINVAL;
 
	/* if we get a usable frequency */
	if (freq != 0L) {
		unsigned short area[16];
		unsigned short dac[2];
		unsigned short area_verify[16];
		unsigned short dac_verify[2];
		/* Corresponding gain (in the power adjust value table)
		 * See AT&T WaveLAN Data Manual, REF 407-024689/E, page 3-8
		 * and WCIN062D.DOC, page 6.2.9. */
		unsigned short power_limit[] = { 40, 80, 120, 160, 0 };
		int power_band = 0;	/* Selected band */
		unsigned short power_adjust;	/* Correct value */
 
		/* Search for the gain. */
		power_band = 0;
		while ((freq > power_limit[power_band]) &&
		       (power_limit[++power_band] != 0));
 
		/* Read the first area. */
		fee_read(ioaddr, 0x00, area, 16);
 
		/* Read the DAC. */
		fee_read(ioaddr, 0x60, dac, 2);
 
		/* Read the new power adjust value. */
		fee_read(ioaddr, 0x6B - (power_band >> 1), &power_adjust,
			 1);
		if (power_band & 0x1)
			power_adjust >>= 8;
		else
			power_adjust &= 0xFF;
 
#ifdef DEBUG_IOCTL_INFO
		printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
		for (i = 0; i < 16; i++) {
			printk(" %04X", area[i]);
		}
		printk("\n");
 
		printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
		       dac[0], dac[1]);
#endif
 
		/* Frequency offset (for info only) */
		area[0] = ((freq << 5) & 0xFFE0) | (area[0] & 0x1F);
 
		/* Receiver Principle main divider coefficient */
		area[3] = (freq >> 1) + 2400L - 352L;
		area[2] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
 
		/* Transmitter Main divider coefficient */
		area[13] = (freq >> 1) + 2400L;
		area[12] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
 
		/* Other parts of the area are flags, bit streams or unused. */
 
		/* Set the value in the DAC. */
		dac[1] = ((power_adjust >> 1) & 0x7F) | (dac[1] & 0xFF80);
		dac[0] = ((power_adjust & 0x1) << 4) | (dac[0] & 0xFFEF);
 
		/* Write the first area. */
		fee_write(ioaddr, 0x00, area, 16);
 
		/* Write the DAC. */
		fee_write(ioaddr, 0x60, dac, 2);
 
		/* We now should verify here that the writing of the EEPROM went OK. */
 
		/* Reread the first area. */
		fee_read(ioaddr, 0x00, area_verify, 16);
 
		/* Reread the DAC. */
		fee_read(ioaddr, 0x60, dac_verify, 2);
 
		/* Compare. */
		if (memcmp(area, area_verify, 16 * 2) ||
		    memcmp(dac, dac_verify, 2 * 2)) {
#ifdef DEBUG_IOCTL_ERROR
			printk(KERN_INFO
			       "WaveLAN: wv_set_frequency: unable to write new frequency to EEPROM(?).\n");
#endif
			return -EOPNOTSUPP;
		}
 
		/* We must download the frequency parameters to the
		 * synthesizers (from the EEPROM - area 1)
		 * Note: as the EEPROM is automatically decremented, we set the end
		 * if the area... */
		mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x0F);
		mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
			MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
 
		/* Wait until the download is finished. */
		fee_wait(ioaddr, 100, 100);
 
		/* We must now download the power adjust value (gain) to
		 * the synthesizers (from the EEPROM - area 7 - DAC). */
		mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x61);
		mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
			MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
 
		/* Wait for the download to finish. */
		fee_wait(ioaddr, 100, 100);
 
#ifdef DEBUG_IOCTL_INFO
		/* Verification of what we have done */
 
		printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
		for (i = 0; i < 16; i++) {
			printk(" %04X", area_verify[i]);
		}
		printk("\n");
 
		printk(KERN_DEBUG "WaveLAN EEPROM DAC:  %04X %04X\n",
		       dac_verify[0], dac_verify[1]);
#endif
 
		return 0;
	} else
		return -EINVAL;	/* Bah, never get there... */
}
 
/*------------------------------------------------------------------*/
/*
 * Give the list of available frequencies.
 */
static inline int wv_frequency_list(unsigned long ioaddr,	/* I/O port of the card */
				    iw_freq * list,	/* List of frequencies to fill */
				    int max)
{				/* Maximum number of frequencies */
	u16 table[10];	/* Authorized frequency table */
	long freq = 0L;		/* offset to 2.4 GHz in .5 MHz + 12 MHz */
	int i;			/* index in the table */
	int c = 0;		/* Channel number */
 
	/* Read the frequency table. */
	fee_read(ioaddr, 0x71 /* frequency table */ , table, 10);
 
	/* Check all frequencies. */
	i = 0;
	for (freq = 0; freq < 150; freq++)
		/* Look in the table if the frequency is allowed */
		if (table[9 - (freq / 16)] & (1 << (freq % 16))) {
			/* Compute approximate channel number */
			while ((((channel_bands[c] >> 1) - 24) < freq) &&
			       (c < NELS(channel_bands)))
				c++;
			list[i].i = c;	/* Set the list index */
 
			/* put in the list */
			list[i].m = (((freq + 24) * 5) + 24000L) * 10000;
			list[i++].e = 1;
 
			/* Check number. */
			if (i >= max)
				return (i);
		}
 
	return (i);
}
 
#ifdef WIRELESS_SPY
/*------------------------------------------------------------------*/
/*
 * Gather wireless spy statistics:  for each packet, compare the source
 * address with our list, and if they match, get the statistics.
 * Sorry, but this function really needs the wireless extensions.
 */
static inline void wl_spy_gather(device * dev, u8 * mac,	/* MAC address */
				 u8 * stats)
{				/* Statistics to gather */
	net_local *lp = (net_local *) dev->priv;
	int i;
 
	/* Check all addresses. */
	for (i = 0; i < lp->spy_number; i++)
		/* If match */
		if (!memcmp(mac, lp->spy_address[i], WAVELAN_ADDR_SIZE)) {
			/* Update statistics */
			lp->spy_stat[i].qual = stats[2] & MMR_SGNL_QUAL;
			lp->spy_stat[i].level = stats[0] & MMR_SIGNAL_LVL;
			lp->spy_stat[i].noise = stats[1] & MMR_SILENCE_LVL;
			lp->spy_stat[i].updated = 0x7;
		}
}
#endif				/* WIRELESS_SPY */
 
#ifdef HISTOGRAM
/*------------------------------------------------------------------*/
/*
 * This function calculates a histogram of the signal level.
 * As the noise is quite constant, it's like doing it on the SNR.
 * We have defined a set of interval (lp->his_range), and each time
 * the level goes in that interval, we increment the count (lp->his_sum).
 * With this histogram you may detect if one WaveLAN is really weak,
 * or you may also calculate the mean and standard deviation of the level.
 */
static inline void wl_his_gather(device * dev, u8 * stats)
{				/* Statistics to gather */
	net_local *lp = (net_local *) dev->priv;
	u8 level = stats[0] & MMR_SIGNAL_LVL;
	int i;
 
	/* Find the correct interval. */
	i = 0;
	while ((i < (lp->his_number - 1))
	       && (level >= lp->his_range[i++]));
 
	/* Increment interval counter. */
	(lp->his_sum[i])++;
}
#endif				/* HISTOGRAM */
 
/*------------------------------------------------------------------*/
/*
 * Perform ioctl for configuration and information.
 * It is here that the wireless extensions are treated (iwconfig).
 */
static int wavelan_ioctl(struct net_device *dev,	/* device on which the ioctl is applied */
			 struct ifreq *rq,	/* data passed */
			 int cmd)
{				/* ioctl number */
	unsigned long ioaddr = dev->base_addr;
	net_local *lp = (net_local *) dev->priv;	/* lp is not unused */
	struct iwreq *wrq = (struct iwreq *) rq;
	psa_t psa;
	mm_t m;
	unsigned long flags;
	int ret = 0;
	int err = 0;
 
#ifdef DEBUG_IOCTL_TRACE
	printk(KERN_DEBUG "%s: ->wavelan_ioctl(cmd=0x%X)\n", dev->name,
	       cmd);
#endif
 
	/* Disable interrupts and save flags. */
	wv_splhi(lp, &flags);
 
	/* Look what is the request */
	switch (cmd) {
		/* --------------- WIRELESS EXTENSIONS --------------- */
 
	case SIOCGIWNAME:
		strcpy(wrq->u.name, "WaveLAN");
		break;
 
	case SIOCSIWNWID:
		/* Set NWID in WaveLAN. */
		if (!wrq->u.nwid.disabled) {
			/* Set NWID in psa */
			psa.psa_nwid[0] =
			    (wrq->u.nwid.value & 0xFF00) >> 8;
			psa.psa_nwid[1] = wrq->u.nwid.value & 0xFF;
			psa.psa_nwid_select = 0x01;
			psa_write(ioaddr, lp->hacr,
				  (char *) psa.psa_nwid - (char *) &psa,
				  (unsigned char *) psa.psa_nwid, 3);
 
			/* Set NWID in mmc. */
			m.w.mmw_netw_id_l = psa.psa_nwid[1];
			m.w.mmw_netw_id_h = psa.psa_nwid[0];
			mmc_write(ioaddr,
				  (char *) &m.w.mmw_netw_id_l -
				  (char *) &m,
				  (unsigned char *) &m.w.mmw_netw_id_l, 2);
			mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel), 0x00);
		} else {
			/* Disable NWID in the psa. */
			psa.psa_nwid_select = 0x00;
			psa_write(ioaddr, lp->hacr,
				  (char *) &psa.psa_nwid_select -
				  (char *) &psa,
				  (unsigned char *) &psa.psa_nwid_select,
				  1);
 
			/* Disable NWID in the mmc (no filtering). */
			mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel),
				MMW_LOOPT_SEL_DIS_NWID);
		}
		/* update the Wavelan checksum */
		update_psa_checksum(dev, ioaddr, lp->hacr);
		break;
 
	case SIOCGIWNWID:
		/* Read the NWID. */
		psa_read(ioaddr, lp->hacr,
			 (char *) psa.psa_nwid - (char *) &psa,
			 (unsigned char *) psa.psa_nwid, 3);
		wrq->u.nwid.value =
		    (psa.psa_nwid[0] << 8) + psa.psa_nwid[1];
		wrq->u.nwid.disabled = !(psa.psa_nwid_select);
		wrq->u.nwid.fixed = 1;	/* Superfluous */
		break;
 
	case SIOCSIWFREQ:
		/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
		if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
		      (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
			ret = wv_set_frequency(ioaddr, &(wrq->u.freq));
		else
			ret = -EOPNOTSUPP;
		break;
 
	case SIOCGIWFREQ:
		/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable).
		 * Does it work for everybody, especially old cards? */
		if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
		      (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
			unsigned short freq;
 
			/* Ask the EEPROM to read the frequency from the first area. */
			fee_read(ioaddr, 0x00, &freq, 1);
			wrq->u.freq.m = ((freq >> 5) * 5 + 24000L) * 10000;
			wrq->u.freq.e = 1;
		} else {
			psa_read(ioaddr, lp->hacr,
				 (char *) &psa.psa_subband - (char *) &psa,
				 (unsigned char *) &psa.psa_subband, 1);
 
			if (psa.psa_subband <= 4) {
				wrq->u.freq.m =
				    fixed_bands[psa.psa_subband];
				wrq->u.freq.e = (psa.psa_subband != 0);
			} else
				ret = -EOPNOTSUPP;
		}
		break;
 
	case SIOCSIWSENS:
		/* Set the level threshold. */
		/* We should complain loudly if wrq->u.sens.fixed = 0, because we
		 * can't set auto mode... */
		psa.psa_thr_pre_set = wrq->u.sens.value & 0x3F;
		psa_write(ioaddr, lp->hacr,
			  (char *) &psa.psa_thr_pre_set - (char *) &psa,
			  (unsigned char *) &psa.psa_thr_pre_set, 1);
		/* update the Wavelan checksum */
		update_psa_checksum(dev, ioaddr, lp->hacr);
		mmc_out(ioaddr, mmwoff(0, mmw_thr_pre_set),
			psa.psa_thr_pre_set);
		break;
 
	case SIOCGIWSENS:
		/* Read the level threshold. */
		psa_read(ioaddr, lp->hacr,
			 (char *) &psa.psa_thr_pre_set - (char *) &psa,
			 (unsigned char *) &psa.psa_thr_pre_set, 1);
		wrq->u.sens.value = psa.psa_thr_pre_set & 0x3F;
		wrq->u.sens.fixed = 1;
		break;
 
	case SIOCSIWENCODE:
		/* Set encryption key */
		if (!mmc_encr(ioaddr)) {
			ret = -EOPNOTSUPP;
			break;
		}
 
		/* Basic checking... */
		if (wrq->u.encoding.pointer != (caddr_t) 0) {
			/* Check the size of the key */
			if (wrq->u.encoding.length != 8) {
				ret = -EINVAL;
				break;
			}
 
			/* Copy the key in the driver */
			wv_splx(lp, &flags);
			err = copy_from_user(psa.psa_encryption_key,
					     wrq->u.encoding.pointer,
					     wrq->u.encoding.length);
			wv_splhi(lp, &flags);
			if (err) {
				ret = -EFAULT;
				break;
			}
 
			psa.psa_encryption_select = 1;
			psa_write(ioaddr, lp->hacr,
				  (char *) &psa.psa_encryption_select -
				  (char *) &psa,
				  (unsigned char *) &psa.
				  psa_encryption_select, 8 + 1);
 
			mmc_out(ioaddr, mmwoff(0, mmw_encr_enable),
				MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE);
			mmc_write(ioaddr, mmwoff(0, mmw_encr_key),
				  (unsigned char *) &psa.
				  psa_encryption_key, 8);
		}
 
		if (wrq->u.encoding.flags & IW_ENCODE_DISABLED) {	/* disable encryption */
			psa.psa_encryption_select = 0;
			psa_write(ioaddr, lp->hacr,
				  (char *) &psa.psa_encryption_select -
				  (char *) &psa,
				  (unsigned char *) &psa.
				  psa_encryption_select, 1);
 
			mmc_out(ioaddr, mmwoff(0, mmw_encr_enable), 0);
		}
		/* update the Wavelan checksum */
		update_psa_checksum(dev, ioaddr, lp->hacr);
		break;
 
	case SIOCGIWENCODE:
		/* Read the encryption key */
		if (!mmc_encr(ioaddr)) {
			ret = -EOPNOTSUPP;
			break;
		}
 
		/* only super-user can see encryption key */
		if (!capable(CAP_NET_ADMIN)) {
			ret = -EPERM;
			break;
		}
 
		/* Basic checking... */
		if (wrq->u.encoding.pointer != (caddr_t) 0) {
			/* Verify the user buffer */
			ret =
			    verify_area(VERIFY_WRITE,
					wrq->u.encoding.pointer, 8);
			if (ret)
				break;
 
			psa_read(ioaddr, lp->hacr,
				 (char *) &psa.psa_encryption_select -
				 (char *) &psa,
				 (unsigned char *) &psa.
				 psa_encryption_select, 1 + 8);
 
			/* encryption is enabled ? */
			if (psa.psa_encryption_select)
				wrq->u.encoding.flags = IW_ENCODE_ENABLED;
			else
				wrq->u.encoding.flags = IW_ENCODE_DISABLED;
			wrq->u.encoding.flags |= mmc_encr(ioaddr);
 
			/* Copy the key to the user buffer */
			wrq->u.encoding.length = 8;
			wv_splx(lp, &flags);
			if (copy_to_user(wrq->u.encoding.pointer,
					 psa.psa_encryption_key, 8))
				ret = -EFAULT;
			wv_splhi(lp, &flags);
		}
		break;
 
	case SIOCGIWRANGE:
		/* basic checking */
		if (wrq->u.data.pointer != (caddr_t) 0) {
			struct iw_range range;
 
			/* Set the length (very important for backward
			 * compatibility) */
			wrq->u.data.length = sizeof(struct iw_range);
 
			/* Set all the info we don't care or don't know
			 * about to zero */
			memset(&range, 0, sizeof(range));
 
			/* Set the Wireless Extension versions */
			range.we_version_compiled = WIRELESS_EXT;
			range.we_version_source = 9;
 
			/* Set information in the range struct.  */
			range.throughput = 1.6 * 1000 * 1000;	/* don't argue on this ! */
			range.min_nwid = 0x0000;
			range.max_nwid = 0xFFFF;
 
			/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
			if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
			      (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
				range.num_channels = 10;
				range.num_frequency =
				    wv_frequency_list(ioaddr, range.freq,
						      IW_MAX_FREQUENCIES);
			} else
				range.num_channels = range.num_frequency =
				    0;
 
			range.sensitivity = 0x3F;
			range.max_qual.qual = MMR_SGNL_QUAL;
			range.max_qual.level = MMR_SIGNAL_LVL;
			range.max_qual.noise = MMR_SILENCE_LVL;
			range.avg_qual.qual = MMR_SGNL_QUAL; /* Always max */
			/* Need to get better values for those two */
			range.avg_qual.level = 30;
			range.avg_qual.noise = 8;
 
			range.num_bitrates = 1;
			range.bitrate[0] = 2000000;	/* 2 Mb/s */
 
			/* Encryption supported ? */
			if (mmc_encr(ioaddr)) {
				range.encoding_size[0] = 8;	/* DES = 64 bits key */
				range.num_encoding_sizes = 1;
				range.max_encoding_tokens = 1;	/* Only one key possible */
			} else {
				range.num_encoding_sizes = 0;
				range.max_encoding_tokens = 0;
			}
 
			/* Copy structure to the user buffer. */
			wv_splx(lp, &flags);
			if (copy_to_user(wrq->u.data.pointer,
					 &range,
					 sizeof(struct iw_range)))
				ret = -EFAULT;
			wv_splhi(lp, &flags);
		}
		break;
 
	case SIOCGIWPRIV:
		/* Basic checking */
		if (wrq->u.data.pointer != (caddr_t) 0) {
			struct iw_priv_args priv[] = {
				/* { cmd,
				     set_args,
				     get_args,
				     name } */
				{ SIOCSIPQTHR,
				  IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1,
				  0,
				  "setqualthr" },
				{ SIOCGIPQTHR,
				  0,
				  IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1,
				  "getqualthr" },
				{ SIOCSIPHISTO,
				  IW_PRIV_TYPE_BYTE | 16,
				  0,
				  "sethisto" },
				{ SIOCGIPHISTO,
				  0,
				  IW_PRIV_TYPE_INT | 16,
				 "gethisto" },
			};
 
			/* Set the number of available ioctls. */
			wrq->u.data.length = 4;
 
			/* Copy structure to the user buffer. */
			wv_splx(lp, &flags);
			if (copy_to_user(wrq->u.data.pointer,
					      (u8 *) priv,
					      sizeof(priv)))
				ret = -EFAULT;
			wv_splhi(lp, &flags);
		}
		break;
 
#ifdef WIRELESS_SPY
	case SIOCSIWSPY:
		/* Set the spy list */
 
		/* Check the number of addresses. */
		if (wrq->u.data.length > IW_MAX_SPY) {
			ret = -E2BIG;
			break;
		}
		lp->spy_number = wrq->u.data.length;
 
		/* Are there are addresses to copy? */
		if (lp->spy_number > 0) {
			struct sockaddr address[IW_MAX_SPY];
			int i;
 
			/* Copy addresses to the driver. */
			wv_splx(lp, &flags);
			err = copy_from_user(address,
					     wrq->u.data.pointer,
					     sizeof(struct sockaddr)
					     * lp->spy_number);
			wv_splhi(lp, &flags);
			if (err) {
				ret = -EFAULT;
				break;
			}
 
			/* Copy addresses to the lp structure. */
			for (i = 0; i < lp->spy_number; i++) {
				memcpy(lp->spy_address[i],
				       address[i].sa_data,
				       WAVELAN_ADDR_SIZE);
			}
 
			/* Reset structure. */
			memset(lp->spy_stat, 0x00,
			       sizeof(iw_qual) * IW_MAX_SPY);
 
#ifdef DEBUG_IOCTL_INFO
			printk(KERN_DEBUG
			       "SetSpy:  set of new addresses is: \n");
			for (i = 0; i < wrq->u.data.length; i++)
				printk(KERN_DEBUG
				       "%02X:%02X:%02X:%02X:%02X:%02X \n",
				       lp->spy_address[i][0],
				       lp->spy_address[i][1],
				       lp->spy_address[i][2],
				       lp->spy_address[i][3],
				       lp->spy_address[i][4],
				       lp->spy_address[i][5]);
#endif				/* DEBUG_IOCTL_INFO */
		}
 
		break;
 
	case SIOCGIWSPY:
		/* Get the spy list and spy stats. */
 
		/* Set the number of addresses */
		wrq->u.data.length = lp->spy_number;
 
		/* Does the user want to have the addresses back? */
		if ((lp->spy_number > 0)
		    && (wrq->u.data.pointer != (caddr_t) 0)) {
			struct sockaddr address[IW_MAX_SPY];
			int i;
 
			/* Copy addresses from the lp structure. */
			for (i = 0; i < lp->spy_number; i++) {
				memcpy(address[i].sa_data,
				       lp->spy_address[i],
				       WAVELAN_ADDR_SIZE);
				address[i].sa_family = AF_UNIX;
			}
 
			/* Copy addresses to the user buffer. */
			wv_splx(lp, &flags);
			err = copy_to_user(wrq->u.data.pointer,
					   address,
					   sizeof(struct sockaddr)
					   * lp->spy_number);
 
			/* Copy stats to the user buffer (just after). */
			err |= copy_to_user(wrq->u.data.pointer
					    + (sizeof(struct sockaddr)
					       * lp->spy_number),
					    lp->spy_stat,
					    sizeof(iw_qual) * lp->spy_number);
			wv_splhi(lp, &flags);
			if (err) {
				ret = -EFAULT;
				break;
			}
 
			/* Reset updated flags. */
			for (i = 0; i < lp->spy_number; i++)
				lp->spy_stat[i].updated = 0x0;
		}
		/* if(pointer != NULL) */
		break;
#endif				/* WIRELESS_SPY */
 
		/* ------------------ PRIVATE IOCTL ------------------ */
 
	case SIOCSIPQTHR:
		if (!capable(CAP_NET_ADMIN)) {
			ret = -EPERM;
			break;
		}
		psa.psa_quality_thr = *(wrq->u.name) & 0x0F;
		psa_write(ioaddr, lp->hacr,
			  (char *) &psa.psa_quality_thr - (char *) &psa,
			  (unsigned char *) &psa.psa_quality_thr, 1);
		/* update the Wavelan checksum */
		update_psa_checksum(dev, ioaddr, lp->hacr);
		mmc_out(ioaddr, mmwoff(0, mmw_quality_thr),
			psa.psa_quality_thr);
		break;
 
	case SIOCGIPQTHR:
		psa_read(ioaddr, lp->hacr,
			 (char *) &psa.psa_quality_thr - (char *) &psa,
			 (unsigned char *) &psa.psa_quality_thr, 1);
		*(wrq->u.name) = psa.psa_quality_thr & 0x0F;
		break;
 
#ifdef HISTOGRAM
	case SIOCSIPHISTO:
		/* Verify that the user is root. */
		if (!capable(CAP_NET_ADMIN)) {
			ret = -EPERM;
			break;
		}
 
		/* Check the number of intervals. */
		if (wrq->u.data.length > 16) {
			ret = -E2BIG;
			break;
		}
		lp->his_number = wrq->u.data.length;
 
		/* Are there addresses to copy? */
		if (lp->his_number > 0) {
			/* Copy interval ranges to the driver */
			wv_splx(lp, &flags);
			err = copy_from_user(lp->his_range,
					     wrq->u.data.pointer,
					     sizeof(char) * lp->his_number);
			wv_splhi(lp, &flags);
			if (err) {
				ret = -EFAULT;
				break;
			}
 
			/* Reset structure. */
			memset(lp->his_sum, 0x00, sizeof(long) * 16);
		}
		break;
 
	case SIOCGIPHISTO:
		/* Set the number of intervals. */
		wrq->u.data.length = lp->his_number;
 
		/* Give back the distribution statistics */
		if ((lp->his_number > 0)
		    && (wrq->u.data.pointer != (caddr_t) 0)) {
			/* Copy data to the user buffer. */
			wv_splx(lp, &flags);
			if (copy_to_user(wrq->u.data.pointer,
					 lp->his_sum,
					 sizeof(long) * lp->his_number);
				ret = -EFAULT;
			wv_splhi(lp, &flags);
 
		}		/* if(pointer != NULL) */
		break;
#endif				/* HISTOGRAM */
 
		/* ------------------- OTHER IOCTL ------------------- */
 
	default:
		ret = -EOPNOTSUPP;
	}	/* switch (cmd) */
 
	/* Enable interrupts and restore flags. */
	wv_splx(lp, &flags);
 
#ifdef DEBUG_IOCTL_TRACE
	printk(KERN_DEBUG "%s: <-wavelan_ioctl()\n", dev->name);
#endif
	return ret;
}
 
/*------------------------------------------------------------------*/
/*
 * Get wireless statistics.
 * Called by /proc/net/wireless
 */
static iw_stats *wavelan_get_wireless_stats(device * dev)
{
	unsigned long ioaddr = dev->base_addr;
	net_local *lp = (net_local *) dev->priv;
	mmr_t m;
	iw_stats *wstats;
	unsigned long flags;
 
#ifdef DEBUG_IOCTL_TRACE
	printk(KERN_DEBUG "%s: ->wavelan_get_wireless_stats()\n",
	       dev->name);
#endif
 
	/* Check */
	if (lp == (net_local *) NULL)
		return (iw_stats *) NULL;
 
	/* Disable interrupts and save flags. */
	wv_splhi(lp, &flags);
 
	wstats = &lp->wstats;
 
	/* Get data from the mmc. */
	mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
 
	mmc_read(ioaddr, mmroff(0, mmr_dce_status), &m.mmr_dce_status, 1);
	mmc_read(ioaddr, mmroff(0, mmr_wrong_nwid_l), &m.mmr_wrong_nwid_l,
		 2);
	mmc_read(ioaddr, mmroff(0, mmr_thr_pre_set), &m.mmr_thr_pre_set,
		 4);
 
	mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
 
	/* Copy data to wireless stuff. */
	wstats->status = m.mmr_dce_status & MMR_DCE_STATUS;
	wstats->qual.qual = m.mmr_sgnl_qual & MMR_SGNL_QUAL;
	wstats->qual.level = m.mmr_signal_lvl & MMR_SIGNAL_LVL;
	wstats->qual.noise = m.mmr_silence_lvl & MMR_SILENCE_LVL;
	wstats->qual.updated = (((m. mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 7) 
			| ((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 6) 
			| ((m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) >> 5));
	wstats->discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
	wstats->discard.code = 0L;
	wstats->discard.misc = 0L;
 
	/* Enable interrupts and restore flags. */
	wv_splx(lp, &flags);
 
#ifdef DEBUG_IOCTL_TRACE
	printk(KERN_DEBUG "%s: <-wavelan_get_wireless_stats()\n",
	       dev->name);
#endif
	return &lp->wstats;
}
#endif				/* WIRELESS_EXT */
 
/************************* PACKET RECEPTION *************************/
/*
 * This part deals with receiving the packets.
 * The interrupt handler gets an interrupt when a packet has been
 * successfully received and calls this part.
 */
 
/*------------------------------------------------------------------*/
/*
 * This routine does the actual copying of data (including the Ethernet
 * header structure) from the WaveLAN card to an sk_buff chain that
 * will be passed up to the network interface layer. NOTE: we
 * currently don't handle trailer protocols (neither does the rest of
 * the network interface), so if that is needed, it will (at least in
 * part) be added here.  The contents of the receive ring buffer are
 * copied to a message chain that is then passed to the kernel.
 *
 * Note: if any errors occur, the packet is "dropped on the floor".
 * (called by wv_packet_rcv())
 */
static inline void
wv_packet_read(device * dev, u16 buf_off, int sksize)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;
	struct sk_buff *skb;
 
#ifdef DEBUG_RX_TRACE
	printk(KERN_DEBUG "%s: ->wv_packet_read(0x%X, %d)\n",
	       dev->name, buf_off, sksize);
#endif
 
	/* Allocate buffer for the data */
	if ((skb = dev_alloc_skb(sksize)) == (struct sk_buff *) NULL) {
#ifdef DEBUG_RX_ERROR
		printk(KERN_INFO
		       "%s: wv_packet_read(): could not alloc_skb(%d, GFP_ATOMIC).\n",
		       dev->name, sksize);
#endif
		lp->stats.rx_dropped++;
		return;
	}
 
	skb->dev = dev;
 
	/* Copy the packet to the buffer. */
	obram_read(ioaddr, buf_off, skb_put(skb, sksize), sksize);
	skb->protocol = eth_type_trans(skb, dev);
 
#ifdef DEBUG_RX_INFO
	wv_packet_info(skb->mac.raw, sksize, dev->name, "wv_packet_read");
#endif				/* DEBUG_RX_INFO */
 
	/* Statistics-gathering and associated stuff.
	 * It seem a bit messy with all the define, but it's really simple... */
#if defined(WIRELESS_SPY) || defined(HISTOGRAM)
	if (
#ifdef WIRELESS_SPY
		   (lp->spy_number > 0) ||
#endif				/* WIRELESS_SPY */
#ifdef HISTOGRAM
		   (lp->his_number > 0) ||
#endif				/* HISTOGRAM */
		   0) {
		u8 stats[3];	/* signal level, noise level, signal quality */
 
		/* Read signal level, silence level and signal quality bytes. */
		/* Note: in the PCMCIA hardware, these are part of the frame.  It seems
		 * that for the ISA hardware, it's nowhere to be found in the frame,
		 * so I'm obliged to do this (it has a side effect on /proc/net/wireless).
		 * Any ideas?
		 */
		mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
		mmc_read(ioaddr, mmroff(0, mmr_signal_lvl), stats, 3);
		mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
 
#ifdef DEBUG_RX_INFO
		printk(KERN_DEBUG
		       "%s: wv_packet_read(): Signal level %d/63, Silence level %d/63, signal quality %d/16\n",
		       dev->name, stats[0] & 0x3F, stats[1] & 0x3F,
		       stats[2] & 0x0F);
#endif
 
		/* Spying stuff */
#ifdef WIRELESS_SPY
		wl_spy_gather(dev, skb->mac.raw + WAVELAN_ADDR_SIZE,
			      stats);
#endif				/* WIRELESS_SPY */
#ifdef HISTOGRAM
		wl_his_gather(dev, stats);
#endif				/* HISTOGRAM */
	}
#endif				/* defined(WIRELESS_SPY) || defined(HISTOGRAM) */
 
	/*
	 * Hand the packet to the network module.
	 */
	netif_rx(skb);
 
	/* Keep statistics up to date */
	dev->last_rx = jiffies;
	lp->stats.rx_packets++;
	lp->stats.rx_bytes += sksize;
 
#ifdef DEBUG_RX_TRACE
	printk(KERN_DEBUG "%s: <-wv_packet_read()\n", dev->name);
#endif
}
 
/*------------------------------------------------------------------*/
/*
 * Transfer as many packets as we can
 * from the device RAM.
 * (called in wavelan_interrupt()).
 * Note : the spinlock is already grabbed for us.
 */
static inline void wv_receive(device * dev)
{
	unsigned long ioaddr = dev->base_addr;
	net_local *lp = (net_local *) dev->priv;
	fd_t fd;
	rbd_t rbd;
	int nreaped = 0;
 
#ifdef DEBUG_RX_TRACE
	printk(KERN_DEBUG "%s: ->wv_receive()\n", dev->name);
#endif
 
	/* Loop on each received packet. */
	for (;;) {
		obram_read(ioaddr, lp->rx_head, (unsigned char *) &fd,
			   sizeof(fd));
 
		/* Note about the status :
		 * It start up to be 0 (the value we set). Then, when the RU
		 * grab the buffer to prepare for reception, it sets the
		 * FD_STATUS_B flag. When the RU has finished receiving the
		 * frame, it clears FD_STATUS_B, set FD_STATUS_C to indicate
		 * completion and set the other flags to indicate the eventual
		 * errors. FD_STATUS_OK indicates that the reception was OK.
		 */
 
		/* If the current frame is not complete, we have reached the end. */
		if ((fd.fd_status & FD_STATUS_C) != FD_STATUS_C)
			break;	/* This is how we exit the loop. */
 
		nreaped++;
 
		/* Check whether frame was correctly received. */
		if ((fd.fd_status & FD_STATUS_OK) == FD_STATUS_OK) {
			/* Does the frame contain a pointer to the data?  Let's check. */
			if (fd.fd_rbd_offset != I82586NULL) {
				/* Read the receive buffer descriptor */
				obram_read(ioaddr, fd.fd_rbd_offset,
					   (unsigned char *) &rbd,
					   sizeof(rbd));
 
#ifdef DEBUG_RX_ERROR
				if ((rbd.rbd_status & RBD_STATUS_EOF) !=
				    RBD_STATUS_EOF) printk(KERN_INFO
							   "%s: wv_receive(): missing EOF flag.\n",
							   dev->name);
 
				if ((rbd.rbd_status & RBD_STATUS_F) !=
				    RBD_STATUS_F) printk(KERN_INFO
							 "%s: wv_receive(): missing F flag.\n",
							 dev->name);
#endif				/* DEBUG_RX_ERROR */
 
				/* Read the packet and transmit to Linux */
				wv_packet_read(dev, rbd.rbd_bufl,
					       rbd.
					       rbd_status &
					       RBD_STATUS_ACNT);
			}
#ifdef DEBUG_RX_ERROR
			else	/* if frame has no data */
				printk(KERN_INFO
				       "%s: wv_receive(): frame has no data.\n",
				       dev->name);
#endif
		} else {	/* If reception was no successful */
 
			lp->stats.rx_errors++;
 
#ifdef DEBUG_RX_INFO
			printk(KERN_DEBUG
			       "%s: wv_receive(): frame not received successfully (%X).\n",
			       dev->name, fd.fd_status);
#endif
 
#ifdef DEBUG_RX_ERROR
			if ((fd.fd_status & FD_STATUS_S6) != 0)
				printk(KERN_INFO
				       "%s: wv_receive(): no EOF flag.\n",
				       dev->name);
#endif
 
			if ((fd.fd_status & FD_STATUS_S7) != 0) {
				lp->stats.rx_length_errors++;
#ifdef DEBUG_RX_FAIL
				printk(KERN_DEBUG
				       "%s: wv_receive(): frame too short.\n",
				       dev->name);
#endif
			}
 
			if ((fd.fd_status & FD_STATUS_S8) != 0) {
				lp->stats.rx_over_errors++;
#ifdef DEBUG_RX_FAIL
				printk(KERN_DEBUG
				       "%s: wv_receive(): rx DMA overrun.\n",
				       dev->name);
#endif
			}
 
			if ((fd.fd_status & FD_STATUS_S9) != 0) {
				lp->stats.rx_fifo_errors++;
#ifdef DEBUG_RX_FAIL
				printk(KERN_DEBUG
				       "%s: wv_receive(): ran out of resources.\n",
				       dev->name);
#endif
			}
 
			if ((fd.fd_status & FD_STATUS_S10) != 0) {
				lp->stats.rx_frame_errors++;
#ifdef DEBUG_RX_FAIL
				printk(KERN_DEBUG
				       "%s: wv_receive(): alignment error.\n",
				       dev->name);
#endif
			}
 
			if ((fd.fd_status & FD_STATUS_S11) != 0) {
				lp->stats.rx_crc_errors++;
#ifdef DEBUG_RX_FAIL
				printk(KERN_DEBUG
				       "%s: wv_receive(): CRC error.\n",
				       dev->name);
#endif
			}
		}
 
		fd.fd_status = 0;
		obram_write(ioaddr, fdoff(lp->rx_head, fd_status),
			    (unsigned char *) &fd.fd_status,
			    sizeof(fd.fd_status));
 
		fd.fd_command = FD_COMMAND_EL;
		obram_write(ioaddr, fdoff(lp->rx_head, fd_command),
			    (unsigned char *) &fd.fd_command,
			    sizeof(fd.fd_command));
 
		fd.fd_command = 0;
		obram_write(ioaddr, fdoff(lp->rx_last, fd_command),
			    (unsigned char *) &fd.fd_command,
			    sizeof(fd.fd_command));
 
		lp->rx_last = lp->rx_head;
		lp->rx_head = fd.fd_link_offset;
	}			/* for(;;) -> loop on all frames */
 
#ifdef DEBUG_RX_INFO
	if (nreaped > 1)
		printk(KERN_DEBUG "%s: wv_receive(): reaped %d\n",
		       dev->name, nreaped);
#endif
#ifdef DEBUG_RX_TRACE
	printk(KERN_DEBUG "%s: <-wv_receive()\n", dev->name);
#endif
}
 
/*********************** PACKET TRANSMISSION ***********************/
/*
 * This part deals with sending packets through the WaveLAN.
 *
 */
 
/*------------------------------------------------------------------*/
/*
 * This routine fills in the appropriate registers and memory
 * locations on the WaveLAN card and starts the card off on
 * the transmit.
 *
 * The principle:
 * Each block contains a transmit command, a NOP command,
 * a transmit block descriptor and a buffer.
 * The CU read the transmit block which point to the tbd,
 * read the tbd and the content of the buffer.
 * When it has finish with it, it goes to the next command
 * which in our case is the NOP. The NOP points on itself,
 * so the CU stop here.
 * When we add the next block, we modify the previous nop
 * to make it point on the new tx command.
 * Simple, isn't it ?
 *
 * (called in wavelan_packet_xmit())
 */
static inline int wv_packet_write(device * dev, void *buf, short length)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;
	unsigned short txblock;
	unsigned short txpred;
	unsigned short tx_addr;
	unsigned short nop_addr;
	unsigned short tbd_addr;
	unsigned short buf_addr;
	ac_tx_t tx;
	ac_nop_t nop;
	tbd_t tbd;
	int clen = length;
	unsigned long flags;
 
#ifdef DEBUG_TX_TRACE
	printk(KERN_DEBUG "%s: ->wv_packet_write(%d)\n", dev->name,
	       length);
#endif
 
	/* Do we need some padding? */
	if (clen < ETH_ZLEN)
		clen = ETH_ZLEN;
 
	wv_splhi(lp, &flags);
 
	/* Check nothing bad has happened */
	if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
#ifdef DEBUG_TX_ERROR
		printk(KERN_INFO "%s: wv_packet_write(): Tx queue full.\n",
		       dev->name);
#endif
		wv_splx(lp, &flags);
		return 1;
	}
 
	/* Calculate addresses of next block and previous block. */
	txblock = lp->tx_first_free;
	txpred = txblock - TXBLOCKZ;
	if (txpred < OFFSET_CU)
		txpred += NTXBLOCKS * TXBLOCKZ;
	lp->tx_first_free += TXBLOCKZ;
	if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
		lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
 
	lp->tx_n_in_use++;
 
	/* Calculate addresses of the different parts of the block. */
	tx_addr = txblock;
	nop_addr = tx_addr + sizeof(tx);
	tbd_addr = nop_addr + sizeof(nop);
	buf_addr = tbd_addr + sizeof(tbd);
 
	/*
	 * Transmit command
	 */
	tx.tx_h.ac_status = 0;
	obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
		    (unsigned char *) &tx.tx_h.ac_status,
		    sizeof(tx.tx_h.ac_status));
 
	/*
	 * NOP command
	 */
	nop.nop_h.ac_status = 0;
	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
		    (unsigned char *) &nop.nop_h.ac_status,
		    sizeof(nop.nop_h.ac_status));
	nop.nop_h.ac_link = nop_addr;
	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
		    (unsigned char *) &nop.nop_h.ac_link,
		    sizeof(nop.nop_h.ac_link));
 
	/*
	 * Transmit buffer descriptor
	 */
	tbd.tbd_status = TBD_STATUS_EOF | (TBD_STATUS_ACNT & clen);
	tbd.tbd_next_bd_offset = I82586NULL;
	tbd.tbd_bufl = buf_addr;
	tbd.tbd_bufh = 0;
	obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd, sizeof(tbd));
 
	/*
	 * Data
	 */
	obram_write(ioaddr, buf_addr, buf, length);
 
	/*
	 * Overwrite the predecessor NOP link
	 * so that it points to this txblock.
	 */
	nop_addr = txpred + sizeof(tx);
	nop.nop_h.ac_status = 0;
	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
		    (unsigned char *) &nop.nop_h.ac_status,
		    sizeof(nop.nop_h.ac_status));
	nop.nop_h.ac_link = txblock;
	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
		    (unsigned char *) &nop.nop_h.ac_link,
		    sizeof(nop.nop_h.ac_link));
 
	/* Make sure the watchdog will keep quiet for a while */
	dev->trans_start = jiffies;
 
	/* Keep stats up to date. */
	lp->stats.tx_bytes += length;
 
	if (lp->tx_first_in_use == I82586NULL)
		lp->tx_first_in_use = txblock;
 
	if (lp->tx_n_in_use < NTXBLOCKS - 1)
		netif_wake_queue(dev);
 
	wv_splx(lp, &flags);
 
#ifdef DEBUG_TX_INFO
	wv_packet_info((u8 *) buf, length, dev->name,
		       "wv_packet_write");
#endif				/* DEBUG_TX_INFO */
 
#ifdef DEBUG_TX_TRACE
	printk(KERN_DEBUG "%s: <-wv_packet_write()\n", dev->name);
#endif
 
	return 0;
}
 
/*------------------------------------------------------------------*/
/*
 * This routine is called when we want to send a packet (NET3 callback)
 * In this routine, we check if the harware is ready to accept
 * the packet.  We also prevent reentrance.  Then we call the function
 * to send the packet.
 */
static int wavelan_packet_xmit(struct sk_buff *skb, device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long flags;
 
#ifdef DEBUG_TX_TRACE
	printk(KERN_DEBUG "%s: ->wavelan_packet_xmit(0x%X)\n", dev->name,
	       (unsigned) skb);
#endif
 
	if(skb->len < ETH_ZLEN)
	{
		skb = skb_padto(skb, ETH_ZLEN);
		if(skb == NULL)
			return 0;
	}
 
	/*
	 * Block a timer-based transmit from overlapping.
	 * In other words, prevent reentering this routine.
	 */
	netif_stop_queue(dev);
 
	/* If somebody has asked to reconfigure the controller, 
	 * we can do it now.
	 */
	if (lp->reconfig_82586) {
		wv_splhi(lp, &flags);
		wv_82586_config(dev);
		wv_splx(lp, &flags);
		/* Check that we can continue */
		if (lp->tx_n_in_use == (NTXBLOCKS - 1))
			return 1;
	}
#ifdef DEBUG_TX_ERROR
	if (skb->next)
		printk(KERN_INFO "skb has next\n");
#endif
 
	/* Write packet on the card */
	if(wv_packet_write(dev, skb->data, skb->len))
		return 1;	/* We failed */
 
	dev_kfree_skb(skb);
 
#ifdef DEBUG_TX_TRACE
	printk(KERN_DEBUG "%s: <-wavelan_packet_xmit()\n", dev->name);
#endif
	return 0;
}
 
/*********************** HARDWARE CONFIGURATION ***********************/
/*
 * This part does the real job of starting and configuring the hardware.
 */
 
/*--------------------------------------------------------------------*/
/*
 * Routine to initialize the Modem Management Controller.
 * (called by wv_hw_reset())
 */
static inline int wv_mmc_init(device * dev)
{
	unsigned long ioaddr = dev->base_addr;
	net_local *lp = (net_local *) dev->priv;
	psa_t psa;
	mmw_t m;
	int configured;
 
#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: ->wv_mmc_init()\n", dev->name);
#endif
 
	/* Read the parameter storage area. */
	psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
 
#ifdef USE_PSA_CONFIG
	configured = psa.psa_conf_status & 1;
#else
	configured = 0;
#endif
 
	/* Is the PSA is not configured */
	if (!configured) {
		/* User will be able to configure NWID later (with iwconfig). */
		psa.psa_nwid[0] = 0;
		psa.psa_nwid[1] = 0;
 
		/* no NWID checking since NWID is not set */
		psa.psa_nwid_select = 0;
 
		/* Disable encryption */
		psa.psa_encryption_select = 0;
 
		/* Set to standard values:
		 * 0x04 for AT,
		 * 0x01 for MCA,
		 * 0x04 for PCMCIA and 2.00 card (AT&T 407-024689/E document)
		 */
		if (psa.psa_comp_number & 1)
			psa.psa_thr_pre_set = 0x01;
		else
			psa.psa_thr_pre_set = 0x04;
		psa.psa_quality_thr = 0x03;
 
		/* It is configured */
		psa.psa_conf_status |= 1;
 
#ifdef USE_PSA_CONFIG
		/* Write the psa. */
		psa_write(ioaddr, lp->hacr,
			  (char *) psa.psa_nwid - (char *) &psa,
			  (unsigned char *) psa.psa_nwid, 4);
		psa_write(ioaddr, lp->hacr,
			  (char *) &psa.psa_thr_pre_set - (char *) &psa,
			  (unsigned char *) &psa.psa_thr_pre_set, 1);
		psa_write(ioaddr, lp->hacr,
			  (char *) &psa.psa_quality_thr - (char *) &psa,
			  (unsigned char *) &psa.psa_quality_thr, 1);
		psa_write(ioaddr, lp->hacr,
			  (char *) &psa.psa_conf_status - (char *) &psa,
			  (unsigned char *) &psa.psa_conf_status, 1);
		/* update the Wavelan checksum */
		update_psa_checksum(dev, ioaddr, lp->hacr);
#endif
	}
 
	/* Zero the mmc structure. */
	memset(&m, 0x00, sizeof(m));
 
	/* Copy PSA info to the mmc. */
	m.mmw_netw_id_l = psa.psa_nwid[1];
	m.mmw_netw_id_h = psa.psa_nwid[0];
 
	if (psa.psa_nwid_select & 1)
		m.mmw_loopt_sel = 0x00;
	else
		m.mmw_loopt_sel = MMW_LOOPT_SEL_DIS_NWID;
 
	memcpy(&m.mmw_encr_key, &psa.psa_encryption_key,
	       sizeof(m.mmw_encr_key));
 
	if (psa.psa_encryption_select)
		m.mmw_encr_enable =
		    MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE;
	else
		m.mmw_encr_enable = 0;
 
	m.mmw_thr_pre_set = psa.psa_thr_pre_set & 0x3F;
	m.mmw_quality_thr = psa.psa_quality_thr & 0x0F;
 
	/*
	 * Set default modem control parameters.
	 * See NCR document 407-0024326 Rev. A.
	 */
	m.mmw_jabber_enable = 0x01;
	m.mmw_freeze = 0;
	m.mmw_anten_sel = MMW_ANTEN_SEL_ALG_EN;
	m.mmw_ifs = 0x20;
	m.mmw_mod_delay = 0x04;
	m.mmw_jam_time = 0x38;
 
	m.mmw_des_io_invert = 0;
	m.mmw_decay_prm = 0;
	m.mmw_decay_updat_prm = 0;
 
	/* Write all info to MMC. */
	mmc_write(ioaddr, 0, (u8 *) & m, sizeof(m));
 
	/* The following code starts the modem of the 2.00 frequency
	 * selectable cards at power on.  It's not strictly needed for the
	 * following boots.
	 * The original patch was by Joe Finney for the PCMCIA driver, but
	 * I've cleaned it up a bit and added documentation.
	 * Thanks to Loeke Brederveld from Lucent for the info.
	 */
 
	/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable)
	 * Does it work for everybody, especially old cards? */
	/* Note: WFREQSEL verifies that it is able to read a sensible
	 * frequency from EEPROM (address 0x00) and that MMR_FEE_STATUS_ID
	 * is 0xA (Xilinx version) or 0xB (Ariadne version).
	 * My test is more crude but does work. */
	if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
	      (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
		/* We must download the frequency parameters to the
		 * synthesizers (from the EEPROM - area 1)
		 * Note: as the EEPROM is automatically decremented, we set the end
		 * if the area... */
		m.mmw_fee_addr = 0x0F;
		m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
		mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
			  (unsigned char *) &m.mmw_fee_ctrl, 2);
 
		/* Wait until the download is finished. */
		fee_wait(ioaddr, 100, 100);
 
#ifdef DEBUG_CONFIG_INFO
		/* The frequency was in the last word downloaded. */
		mmc_read(ioaddr, (char *) &m.mmw_fee_data_l - (char *) &m,
			 (unsigned char *) &m.mmw_fee_data_l, 2);
 
		/* Print some info for the user. */
		printk(KERN_DEBUG
		       "%s: WaveLAN 2.00 recognised (frequency select).  Current frequency = %ld\n",
		       dev->name,
		       ((m.
			 mmw_fee_data_h << 4) | (m.mmw_fee_data_l >> 4)) *
		       5 / 2 + 24000L);
#endif
 
		/* We must now download the power adjust value (gain) to
		 * the synthesizers (from the EEPROM - area 7 - DAC). */
		m.mmw_fee_addr = 0x61;
		m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
		mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
			  (unsigned char *) &m.mmw_fee_ctrl, 2);
 
		/* Wait until the download is finished. */
	}
	/* if 2.00 card */
#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: <-wv_mmc_init()\n", dev->name);
#endif
	return 0;
}
 
/*------------------------------------------------------------------*/
/*
 * Construct the fd and rbd structures.
 * Start the receive unit.
 * (called by wv_hw_reset())
 */
static inline int wv_ru_start(device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;
	u16 scb_cs;
	fd_t fd;
	rbd_t rbd;
	u16 rx;
	u16 rx_next;
	int i;
 
#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: ->wv_ru_start()\n", dev->name);
#endif
 
	obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
		   (unsigned char *) &scb_cs, sizeof(scb_cs));
	if ((scb_cs & SCB_ST_RUS) == SCB_ST_RUS_RDY)
		return 0;
 
	lp->rx_head = OFFSET_RU;
 
	for (i = 0, rx = lp->rx_head; i < NRXBLOCKS; i++, rx = rx_next) {
		rx_next =
		    (i == NRXBLOCKS - 1) ? lp->rx_head : rx + RXBLOCKZ;
 
		fd.fd_status = 0;
		fd.fd_command = (i == NRXBLOCKS - 1) ? FD_COMMAND_EL : 0;
		fd.fd_link_offset = rx_next;
		fd.fd_rbd_offset = rx + sizeof(fd);
		obram_write(ioaddr, rx, (unsigned char *) &fd, sizeof(fd));
 
		rbd.rbd_status = 0;
		rbd.rbd_next_rbd_offset = I82586NULL;
		rbd.rbd_bufl = rx + sizeof(fd) + sizeof(rbd);
		rbd.rbd_bufh = 0;
		rbd.rbd_el_size = RBD_EL | (RBD_SIZE & MAXDATAZ);
		obram_write(ioaddr, rx + sizeof(fd),
			    (unsigned char *) &rbd, sizeof(rbd));
 
		lp->rx_last = rx;
	}
 
	obram_write(ioaddr, scboff(OFFSET_SCB, scb_rfa_offset),
		    (unsigned char *) &lp->rx_head, sizeof(lp->rx_head));
 
	scb_cs = SCB_CMD_RUC_GO;
	obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
		    (unsigned char *) &scb_cs, sizeof(scb_cs));
 
	set_chan_attn(ioaddr, lp->hacr);
 
	for (i = 1000; i > 0; i--) {
		obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
			   (unsigned char *) &scb_cs, sizeof(scb_cs));
		if (scb_cs == 0)
			break;
 
		udelay(10);
	}
 
	if (i <= 0) {
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_INFO
		       "%s: wavelan_ru_start(): board not accepting command.\n",
		       dev->name);
#endif
		return -1;
	}
#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: <-wv_ru_start()\n", dev->name);
#endif
	return 0;
}
 
/*------------------------------------------------------------------*/
/*
 * Initialise the transmit blocks.
 * Start the command unit executing the NOP
 * self-loop of the first transmit block.
 *
 * Here we create the list of send buffers used to transmit packets
 * between the PC and the command unit. For each buffer, we create a
 * buffer descriptor (pointing on the buffer), a transmit command
 * (pointing to the buffer descriptor) and a NOP command.
 * The transmit command is linked to the NOP, and the NOP to itself.
 * When we will have finished executing the transmit command, we will
 * then loop on the NOP. By releasing the NOP link to a new command,
 * we may send another buffer.
 *
 * (called by wv_hw_reset())
 */
static inline int wv_cu_start(device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;
	int i;
	u16 txblock;
	u16 first_nop;
	u16 scb_cs;
 
#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: ->wv_cu_start()\n", dev->name);
#endif
 
	lp->tx_first_free = OFFSET_CU;
	lp->tx_first_in_use = I82586NULL;
 
	for (i = 0, txblock = OFFSET_CU;
	     i < NTXBLOCKS; i++, txblock += TXBLOCKZ) {
		ac_tx_t tx;
		ac_nop_t nop;
		tbd_t tbd;
		unsigned short tx_addr;
		unsigned short nop_addr;
		unsigned short tbd_addr;
		unsigned short buf_addr;
 
		tx_addr = txblock;
		nop_addr = tx_addr + sizeof(tx);
		tbd_addr = nop_addr + sizeof(nop);
		buf_addr = tbd_addr + sizeof(tbd);
 
		tx.tx_h.ac_status = 0;
		tx.tx_h.ac_command = acmd_transmit | AC_CFLD_I;
		tx.tx_h.ac_link = nop_addr;
		tx.tx_tbd_offset = tbd_addr;
		obram_write(ioaddr, tx_addr, (unsigned char *) &tx,
			    sizeof(tx));
 
		nop.nop_h.ac_status = 0;
		nop.nop_h.ac_command = acmd_nop;
		nop.nop_h.ac_link = nop_addr;
		obram_write(ioaddr, nop_addr, (unsigned char *) &nop,
			    sizeof(nop));
 
		tbd.tbd_status = TBD_STATUS_EOF;
		tbd.tbd_next_bd_offset = I82586NULL;
		tbd.tbd_bufl = buf_addr;
		tbd.tbd_bufh = 0;
		obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd,
			    sizeof(tbd));
	}
 
	first_nop =
	    OFFSET_CU + (NTXBLOCKS - 1) * TXBLOCKZ + sizeof(ac_tx_t);
	obram_write(ioaddr, scboff(OFFSET_SCB, scb_cbl_offset),
		    (unsigned char *) &first_nop, sizeof(first_nop));
 
	scb_cs = SCB_CMD_CUC_GO;
	obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
		    (unsigned char *) &scb_cs, sizeof(scb_cs));
 
	set_chan_attn(ioaddr, lp->hacr);
 
	for (i = 1000; i > 0; i--) {
		obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
			   (unsigned char *) &scb_cs, sizeof(scb_cs));
		if (scb_cs == 0)
			break;
 
		udelay(10);
	}
 
	if (i <= 0) {
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_INFO
		       "%s: wavelan_cu_start(): board not accepting command.\n",
		       dev->name);
#endif
		return -1;
	}
 
	lp->tx_n_in_use = 0;
	netif_start_queue(dev);
#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: <-wv_cu_start()\n", dev->name);
#endif
	return 0;
}
 
/*------------------------------------------------------------------*/
/*
 * This routine does a standard configuration of the WaveLAN 
 * controller (i82586).
 *
 * It initialises the scp, iscp and scb structure
 * The first two are just pointers to the next.
 * The last one is used for basic configuration and for basic
 * communication (interrupt status).
 *
 * (called by wv_hw_reset())
 */
static inline int wv_82586_start(device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;
	scp_t scp;		/* system configuration pointer */
	iscp_t iscp;		/* intermediate scp */
	scb_t scb;		/* system control block */
	ach_t cb;		/* Action command header */
	u8 zeroes[512];
	int i;
 
#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: ->wv_82586_start()\n", dev->name);
#endif
 
	/*
	 * Clear the onboard RAM.
	 */
	memset(&zeroes[0], 0x00, sizeof(zeroes));
	for (i = 0; i < I82586_MEMZ; i += sizeof(zeroes))
		obram_write(ioaddr, i, &zeroes[0], sizeof(zeroes));
 
	/*
	 * Construct the command unit structures:
	 * scp, iscp, scb, cb.
	 */
	memset(&scp, 0x00, sizeof(scp));
	scp.scp_sysbus = SCP_SY_16BBUS;
	scp.scp_iscpl = OFFSET_ISCP;
	obram_write(ioaddr, OFFSET_SCP, (unsigned char *) &scp,
		    sizeof(scp));
 
	memset(&iscp, 0x00, sizeof(iscp));
	iscp.iscp_busy = 1;
	iscp.iscp_offset = OFFSET_SCB;
	obram_write(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
		    sizeof(iscp));
 
	/* Our first command is to reset the i82586. */
	memset(&scb, 0x00, sizeof(scb));
	scb.scb_command = SCB_CMD_RESET;
	scb.scb_cbl_offset = OFFSET_CU;
	scb.scb_rfa_offset = OFFSET_RU;
	obram_write(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
		    sizeof(scb));
 
	set_chan_attn(ioaddr, lp->hacr);
 
	/* Wait for command to finish. */
	for (i = 1000; i > 0; i--) {
		obram_read(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
			   sizeof(iscp));
 
		if (iscp.iscp_busy == (unsigned short) 0)
			break;
 
		udelay(10);
	}
 
	if (i <= 0) {
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_INFO
		       "%s: wv_82586_start(): iscp_busy timeout.\n",
		       dev->name);
#endif
		return -1;
	}
 
	/* Check command completion. */
	for (i = 15; i > 0; i--) {
		obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
			   sizeof(scb));
 
		if (scb.scb_status == (SCB_ST_CX | SCB_ST_CNA))
			break;
 
		udelay(10);
	}
 
	if (i <= 0) {
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_INFO
		       "%s: wv_82586_start(): status: expected 0x%02x, got 0x%02x.\n",
		       dev->name, SCB_ST_CX | SCB_ST_CNA, scb.scb_status);
#endif
		return -1;
	}
 
	wv_ack(dev);
 
	/* Set the action command header. */
	memset(&cb, 0x00, sizeof(cb));
	cb.ac_command = AC_CFLD_EL | (AC_CFLD_CMD & acmd_diagnose);
	cb.ac_link = OFFSET_CU;
	obram_write(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
 
	if (wv_synchronous_cmd(dev, "diag()") == -1)
		return -1;
 
	obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
	if (cb.ac_status & AC_SFLD_FAIL) {
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_INFO
		       "%s: wv_82586_start(): i82586 Self Test failed.\n",
		       dev->name);
#endif
		return -1;
	}
#ifdef DEBUG_I82586_SHOW
	wv_scb_show(ioaddr);
#endif
 
#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: <-wv_82586_start()\n", dev->name);
#endif
	return 0;
}
 
/*------------------------------------------------------------------*/
/*
 * This routine does a standard configuration of the WaveLAN
 * controller (i82586).
 *
 * This routine is a violent hack. We use the first free transmit block
 * to make our configuration. In the buffer area, we create the three
 * configuration commands (linked). We make the previous NOP point to
 * the beginning of the buffer instead of the tx command. After, we go
 * as usual to the NOP command.
 * Note that only the last command (mc_set) will generate an interrupt.
 *
 * (called by wv_hw_reset(), wv_82586_reconfig(), wavelan_packet_xmit())
 */
static void wv_82586_config(device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;
	unsigned short txblock;
	unsigned short txpred;
	unsigned short tx_addr;
	unsigned short nop_addr;
	unsigned short tbd_addr;
	unsigned short cfg_addr;
	unsigned short ias_addr;
	unsigned short mcs_addr;
	ac_tx_t tx;
	ac_nop_t nop;
	ac_cfg_t cfg;		/* Configure action */
	ac_ias_t ias;		/* IA-setup action */
	ac_mcs_t mcs;		/* Multicast setup */
	struct dev_mc_list *dmi;
 
#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: ->wv_82586_config()\n", dev->name);
#endif
 
	/* Check nothing bad has happened */
	if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_INFO "%s: wv_82586_config(): Tx queue full.\n",
		       dev->name);
#endif
		return;
	}
 
	/* Calculate addresses of next block and previous block. */
	txblock = lp->tx_first_free;
	txpred = txblock - TXBLOCKZ;
	if (txpred < OFFSET_CU)
		txpred += NTXBLOCKS * TXBLOCKZ;
	lp->tx_first_free += TXBLOCKZ;
	if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
		lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
 
	lp->tx_n_in_use++;
 
	/* Calculate addresses of the different parts of the block. */
	tx_addr = txblock;
	nop_addr = tx_addr + sizeof(tx);
	tbd_addr = nop_addr + sizeof(nop);
	cfg_addr = tbd_addr + sizeof(tbd_t);	/* beginning of the buffer */
	ias_addr = cfg_addr + sizeof(cfg);
	mcs_addr = ias_addr + sizeof(ias);
 
	/*
	 * Transmit command
	 */
	tx.tx_h.ac_status = 0xFFFF;	/* Fake completion value */
	obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
		    (unsigned char *) &tx.tx_h.ac_status,
		    sizeof(tx.tx_h.ac_status));
 
	/*
	 * NOP command
	 */
	nop.nop_h.ac_status = 0;
	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
		    (unsigned char *) &nop.nop_h.ac_status,
		    sizeof(nop.nop_h.ac_status));
	nop.nop_h.ac_link = nop_addr;
	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
		    (unsigned char *) &nop.nop_h.ac_link,
		    sizeof(nop.nop_h.ac_link));
 
	/* Create a configure action. */
	memset(&cfg, 0x00, sizeof(cfg));
 
	/*
	 * For Linux we invert AC_CFG_ALOC() so as to conform
	 * to the way that net packets reach us from above.
	 * (See also ac_tx_t.)
	 *
	 * Updated from Wavelan Manual WCIN085B
	 */
	cfg.cfg_byte_cnt =
	    AC_CFG_BYTE_CNT(sizeof(ac_cfg_t) - sizeof(ach_t));
	cfg.cfg_fifolim = AC_CFG_FIFOLIM(4);
	cfg.cfg_byte8 = AC_CFG_SAV_BF(1) | AC_CFG_SRDY(0);
	cfg.cfg_byte9 = AC_CFG_ELPBCK(0) |
	    AC_CFG_ILPBCK(0) |
	    AC_CFG_PRELEN(AC_CFG_PLEN_2) |
	    AC_CFG_ALOC(1) | AC_CFG_ADDRLEN(WAVELAN_ADDR_SIZE);
	cfg.cfg_byte10 = AC_CFG_BOFMET(1) |
	    AC_CFG_ACR(6) | AC_CFG_LINPRIO(0);
	cfg.cfg_ifs = 0x20;
	cfg.cfg_slotl = 0x0C;
	cfg.cfg_byte13 = AC_CFG_RETRYNUM(15) | AC_CFG_SLTTMHI(0);
	cfg.cfg_byte14 = AC_CFG_FLGPAD(0) |
	    AC_CFG_BTSTF(0) |
	    AC_CFG_CRC16(0) |
	    AC_CFG_NCRC(0) |
	    AC_CFG_TNCRS(1) |
	    AC_CFG_MANCH(0) |
	    AC_CFG_BCDIS(0) | AC_CFG_PRM(lp->promiscuous);
	cfg.cfg_byte15 = AC_CFG_ICDS(0) |
	    AC_CFG_CDTF(0) | AC_CFG_ICSS(0) | AC_CFG_CSTF(0);
/*
  cfg.cfg_min_frm_len = AC_CFG_MNFRM(64);
*/
	cfg.cfg_min_frm_len = AC_CFG_MNFRM(8);
 
	cfg.cfg_h.ac_command = (AC_CFLD_CMD & acmd_configure);
	cfg.cfg_h.ac_link = ias_addr;
	obram_write(ioaddr, cfg_addr, (unsigned char *) &cfg, sizeof(cfg));
 
	/* Set up the MAC address */
	memset(&ias, 0x00, sizeof(ias));
	ias.ias_h.ac_command = (AC_CFLD_CMD & acmd_ia_setup);
	ias.ias_h.ac_link = mcs_addr;
	memcpy(&ias.ias_addr[0], (unsigned char *) &dev->dev_addr[0],
	       sizeof(ias.ias_addr));
	obram_write(ioaddr, ias_addr, (unsigned char *) &ias, sizeof(ias));
 
	/* Initialize adapter's Ethernet multicast addresses */
	memset(&mcs, 0x00, sizeof(mcs));
	mcs.mcs_h.ac_command = AC_CFLD_I | (AC_CFLD_CMD & acmd_mc_setup);
	mcs.mcs_h.ac_link = nop_addr;
	mcs.mcs_cnt = WAVELAN_ADDR_SIZE * lp->mc_count;
	obram_write(ioaddr, mcs_addr, (unsigned char *) &mcs, sizeof(mcs));
 
	/* Any address to set? */
	if (lp->mc_count) {
		for (dmi = dev->mc_list; dmi; dmi = dmi->next)
			outsw(PIOP1(ioaddr), (u16 *) dmi->dmi_addr,
			      WAVELAN_ADDR_SIZE >> 1);
 
#ifdef DEBUG_CONFIG_INFO
		printk(KERN_DEBUG
		       "%s: wv_82586_config(): set %d multicast addresses:\n",
		       dev->name, lp->mc_count);
		for (dmi = dev->mc_list; dmi; dmi = dmi->next)
			printk(KERN_DEBUG
			       " %02x:%02x:%02x:%02x:%02x:%02x\n",
			       dmi->dmi_addr[0], dmi->dmi_addr[1],
			       dmi->dmi_addr[2], dmi->dmi_addr[3],
			       dmi->dmi_addr[4], dmi->dmi_addr[5]);
#endif
	}
 
	/*
	 * Overwrite the predecessor NOP link
	 * so that it points to the configure action.
	 */
	nop_addr = txpred + sizeof(tx);
	nop.nop_h.ac_status = 0;
	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
		    (unsigned char *) &nop.nop_h.ac_status,
		    sizeof(nop.nop_h.ac_status));
	nop.nop_h.ac_link = cfg_addr;
	obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
		    (unsigned char *) &nop.nop_h.ac_link,
		    sizeof(nop.nop_h.ac_link));
 
	/* Job done, clear the flag */
	lp->reconfig_82586 = 0;
 
	if (lp->tx_first_in_use == I82586NULL)
		lp->tx_first_in_use = txblock;
 
	if (lp->tx_n_in_use == (NTXBLOCKS - 1))
		netif_stop_queue(dev);
 
#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: <-wv_82586_config()\n", dev->name);
#endif
}
 
/*------------------------------------------------------------------*/
/*
 * This routine, called by wavelan_close(), gracefully stops the 
 * WaveLAN controller (i82586).
 * (called by wavelan_close())
 */
static inline void wv_82586_stop(device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;
	u16 scb_cmd;
 
#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: ->wv_82586_stop()\n", dev->name);
#endif
 
	/* Suspend both command unit and receive unit. */
	scb_cmd =
	    (SCB_CMD_CUC & SCB_CMD_CUC_SUS) | (SCB_CMD_RUC &
					       SCB_CMD_RUC_SUS);
	obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
		    (unsigned char *) &scb_cmd, sizeof(scb_cmd));
	set_chan_attn(ioaddr, lp->hacr);
 
	/* No more interrupts */
	wv_ints_off(dev);
 
#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: <-wv_82586_stop()\n", dev->name);
#endif
}
 
/*------------------------------------------------------------------*/
/*
 * Totally reset the WaveLAN and restart it.
 * Performs the following actions:
 *	1. A power reset (reset DMA)
 *	2. Initialize the radio modem (using wv_mmc_init)
 *	3. Reset & Configure LAN controller (using wv_82586_start)
 *	4. Start the LAN controller's command unit
 *	5. Start the LAN controller's receive unit
 * (called by wavelan_interrupt(), wavelan_watchdog() & wavelan_open())
 */
static int wv_hw_reset(device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long ioaddr = dev->base_addr;
 
#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: ->wv_hw_reset(dev=0x%x)\n", dev->name,
	       (unsigned int) dev);
#endif
 
	/* Increase the number of resets done. */
	lp->nresets++;
 
	wv_hacr_reset(ioaddr);
	lp->hacr = HACR_DEFAULT;
 
	if ((wv_mmc_init(dev) < 0) || (wv_82586_start(dev) < 0))
		return -1;
 
	/* Enable the card to send interrupts. */
	wv_ints_on(dev);
 
	/* Start card functions */
	if (wv_cu_start(dev) < 0)
		return -1;
 
	/* Setup the controller and parameters */
	wv_82586_config(dev);
 
	/* Finish configuration with the receive unit */
	if (wv_ru_start(dev) < 0)
		return -1;
 
#ifdef DEBUG_CONFIG_TRACE
	printk(KERN_DEBUG "%s: <-wv_hw_reset()\n", dev->name);
#endif
	return 0;
}
 
/*------------------------------------------------------------------*/
/*
 * Check if there is a WaveLAN at the specific base address.
 * As a side effect, this reads the MAC address.
 * (called in wavelan_probe() and init_module())
 */
static int wv_check_ioaddr(unsigned long ioaddr, u8 * mac)
{
	int i;			/* Loop counter */
 
	/* Check if the base address if available. */
	if (check_region(ioaddr, sizeof(ha_t)))
		return -EADDRINUSE;	/* ioaddr already used */
 
	/* Reset host interface */
	wv_hacr_reset(ioaddr);
 
	/* Read the MAC address from the parameter storage area. */
	psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_univ_mac_addr),
		 mac, 6);
 
	/*
	 * Check the first three octets of the address for the manufacturer's code.
	 * Note: if this can't find your WaveLAN card, you've got a
	 * non-NCR/AT&T/Lucent ISA card.  See wavelan.p.h for detail on
	 * how to configure your card.
	 */
	for (i = 0; i < (sizeof(MAC_ADDRESSES) / sizeof(char) / 3); i++)
		if ((mac[0] == MAC_ADDRESSES[i][0]) &&
		    (mac[1] == MAC_ADDRESSES[i][1]) &&
		    (mac[2] == MAC_ADDRESSES[i][2]))
			return 0;
 
#ifdef DEBUG_CONFIG_INFO
	printk(KERN_WARNING
	       "WaveLAN (0x%3X): your MAC address might be %02X:%02X:%02X.\n",
	       ioaddr, mac[0], mac[1], mac[2]);
#endif
	return -ENODEV;
}
 
/************************ INTERRUPT HANDLING ************************/
 
/*
 * This function is the interrupt handler for the WaveLAN card. This
 * routine will be called whenever: 
 */
static void wavelan_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	device *dev;
	unsigned long ioaddr;
	net_local *lp;
	u16 hasr;
	u16 status;
	u16 ack_cmd;
 
	dev = dev_id;
 
#ifdef DEBUG_INTERRUPT_TRACE
	printk(KERN_DEBUG "%s: ->wavelan_interrupt()\n", dev->name);
#endif
 
	lp = (net_local *) dev->priv;
	ioaddr = dev->base_addr;
 
#ifdef DEBUG_INTERRUPT_INFO
	/* Check state of our spinlock */
	if(spin_is_locked(&lp->spinlock))
		printk(KERN_DEBUG
		       "%s: wavelan_interrupt(): spinlock is already locked !!!\n",
		       dev->name);
#endif
 
	/* Prevent reentrancy. We need to do that because we may have
	 * multiple interrupt handler running concurrently.
	 * It is safe because wv_splhi() disables interrupts before acquiring
	 * the spinlock. */
	spin_lock(&lp->spinlock);
 
	/* Check modem interrupt */
	if ((hasr = hasr_read(ioaddr)) & HASR_MMC_INTR) {
		u8 dce_status;
 
		/*
		 * Interrupt from the modem management controller.
		 * This will clear it -- ignored for now.
		 */
		mmc_read(ioaddr, mmroff(0, mmr_dce_status), &dce_status,
			 sizeof(dce_status));
#ifdef DEBUG_INTERRUPT_ERROR
		printk(KERN_INFO
		       "%s: wavelan_interrupt(): unexpected mmc interrupt: status 0x%04x.\n",
		       dev->name, dce_status);
#endif
	}
 
	/* Check if not controller interrupt */
	if ((hasr & HASR_82586_INTR) == 0) {
#ifdef DEBUG_INTERRUPT_ERROR
		printk(KERN_INFO
		       "%s: wavelan_interrupt(): interrupt not coming from i82586\n",
		       dev->name);
#endif
		spin_unlock (&lp->spinlock);
		return;
	}
 
	/* Read interrupt data. */
	obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
		   (unsigned char *) &status, sizeof(status));
 
	/*
	 * Acknowledge the interrupt(s).
	 */
	ack_cmd = status & SCB_ST_INT;
	obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
		    (unsigned char *) &ack_cmd, sizeof(ack_cmd));
	set_chan_attn(ioaddr, lp->hacr);
 
#ifdef DEBUG_INTERRUPT_INFO
	printk(KERN_DEBUG "%s: wavelan_interrupt(): status 0x%04x.\n",
	       dev->name, status);
#endif
 
	/* Command completed. */
	if ((status & SCB_ST_CX) == SCB_ST_CX) {
#ifdef DEBUG_INTERRUPT_INFO
		printk(KERN_DEBUG
		       "%s: wavelan_interrupt(): command completed.\n",
		       dev->name);
#endif
		wv_complete(dev, ioaddr, lp);
	}
 
	/* Frame received. */
	if ((status & SCB_ST_FR) == SCB_ST_FR) {
#ifdef DEBUG_INTERRUPT_INFO
		printk(KERN_DEBUG
		       "%s: wavelan_interrupt(): received packet.\n",
		       dev->name);
#endif
		wv_receive(dev);
	}
 
	/* Check the state of the command unit. */
	if (((status & SCB_ST_CNA) == SCB_ST_CNA) ||
	    (((status & SCB_ST_CUS) != SCB_ST_CUS_ACTV) &&
	     (netif_running(dev)))) {
#ifdef DEBUG_INTERRUPT_ERROR
		printk(KERN_INFO
		       "%s: wavelan_interrupt(): CU inactive -- restarting\n",
		       dev->name);
#endif
		wv_hw_reset(dev);
	}
 
	/* Check the state of the command unit. */
	if (((status & SCB_ST_RNR) == SCB_ST_RNR) ||
	    (((status & SCB_ST_RUS) != SCB_ST_RUS_RDY) &&
	     (netif_running(dev)))) {
#ifdef DEBUG_INTERRUPT_ERROR
		printk(KERN_INFO
		       "%s: wavelan_interrupt(): RU not ready -- restarting\n",
		       dev->name);
#endif
		wv_hw_reset(dev);
	}
 
	/* Release spinlock */
	spin_unlock (&lp->spinlock);
 
#ifdef DEBUG_INTERRUPT_TRACE
	printk(KERN_DEBUG "%s: <-wavelan_interrupt()\n", dev->name);
#endif
}
 
/*------------------------------------------------------------------*/
/*
 * Watchdog: when we start a transmission, a timer is set for us in the
 * kernel.  If the transmission completes, this timer is disabled. If
 * the timer expires, we are called and we try to unlock the hardware.
 */
static void wavelan_watchdog(device *	dev)
{
	net_local *	lp = (net_local *)dev->priv;
	u_long		ioaddr = dev->base_addr;
	unsigned long	flags;
	unsigned int	nreaped;
 
#ifdef DEBUG_INTERRUPT_TRACE
	printk(KERN_DEBUG "%s: ->wavelan_watchdog()\n", dev->name);
#endif
 
#ifdef DEBUG_INTERRUPT_ERROR
	printk(KERN_INFO "%s: wavelan_watchdog: watchdog timer expired\n",
	       dev->name);
#endif
 
	/* Check that we came here for something */
	if (lp->tx_n_in_use <= 0) {
		return;
	}
 
	wv_splhi(lp, &flags);
 
	/* Try to see if some buffers are not free (in case we missed
	 * an interrupt */
	nreaped = wv_complete(dev, ioaddr, lp);
 
#ifdef DEBUG_INTERRUPT_INFO
	printk(KERN_DEBUG
	       "%s: wavelan_watchdog(): %d reaped, %d remain.\n",
	       dev->name, nreaped, lp->tx_n_in_use);
#endif
 
#ifdef DEBUG_PSA_SHOW
	{
		psa_t psa;
		psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
		wv_psa_show(&psa);
	}
#endif
#ifdef DEBUG_MMC_SHOW
	wv_mmc_show(dev);
#endif
#ifdef DEBUG_I82586_SHOW
	wv_cu_show(dev);
#endif
 
	/* If no buffer has been freed */
	if (nreaped == 0) {
#ifdef DEBUG_INTERRUPT_ERROR
		printk(KERN_INFO
		       "%s: wavelan_watchdog(): cleanup failed, trying reset\n",
		       dev->name);
#endif
		wv_hw_reset(dev);
	}
 
	/* At this point, we should have some free Tx buffer ;-) */
	if (lp->tx_n_in_use < NTXBLOCKS - 1)
		netif_wake_queue(dev);
 
	wv_splx(lp, &flags);
 
#ifdef DEBUG_INTERRUPT_TRACE
	printk(KERN_DEBUG "%s: <-wavelan_watchdog()\n", dev->name);
#endif
}
 
/********************* CONFIGURATION CALLBACKS *********************/
/*
 * Here are the functions called by the Linux networking code (NET3)
 * for initialization, configuration and deinstallations of the 
 * WaveLAN ISA hardware.
 */
 
/*------------------------------------------------------------------*/
/*
 * Configure and start up the WaveLAN PCMCIA adaptor.
 * Called by NET3 when it "opens" the device.
 */
static int wavelan_open(device * dev)
{
	net_local *	lp = (net_local *)dev->priv;
	unsigned long	flags;
 
#ifdef DEBUG_CALLBACK_TRACE
	printk(KERN_DEBUG "%s: ->wavelan_open(dev=0x%x)\n", dev->name,
	       (unsigned int) dev);
#endif
 
	/* Check irq */
	if (dev->irq == 0) {
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_WARNING "%s: wavelan_open(): no IRQ\n",
		       dev->name);
#endif
		return -ENXIO;
	}
 
	if (request_irq(dev->irq, &wavelan_interrupt, 0, "WaveLAN", dev) != 0) 
	{
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_WARNING "%s: wavelan_open(): invalid IRQ\n",
		       dev->name);
#endif
		return -EAGAIN;
	}
 
	wv_splhi(lp, &flags);
 
	if (wv_hw_reset(dev) != -1) {
		netif_start_queue(dev);
	} else {
		free_irq(dev->irq, dev);
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_INFO
		       "%s: wavelan_open(): impossible to start the card\n",
		       dev->name);
#endif
		wv_splx(lp, &flags);
		return -EAGAIN;
	}
	wv_splx(lp, &flags);
 
#ifdef DEBUG_CALLBACK_TRACE
	printk(KERN_DEBUG "%s: <-wavelan_open()\n", dev->name);
#endif
	return 0;
}
 
/*------------------------------------------------------------------*/
/*
 * Shut down the WaveLAN ISA card.
 * Called by NET3 when it "closes" the device.
 */
static int wavelan_close(device * dev)
{
	net_local *lp = (net_local *) dev->priv;
	unsigned long flags;
 
#ifdef DEBUG_CALLBACK_TRACE
	printk(KERN_DEBUG "%s: ->wavelan_close(dev=0x%x)\n", dev->name,
	       (unsigned int) dev);
#endif
 
	netif_stop_queue(dev);
 
	/*
	 * Flush the Tx and disable Rx.
	 */
	wv_splhi(lp, &flags);
	wv_82586_stop(dev);
	wv_splx(lp, &flags);
 
	free_irq(dev->irq, dev);
 
#ifdef DEBUG_CALLBACK_TRACE
	printk(KERN_DEBUG "%s: <-wavelan_close()\n", dev->name);
#endif
	return 0;
}
 
/*------------------------------------------------------------------*/
/*
 * Probe an I/O address, and if the WaveLAN is there configure the
 * device structure
 * (called by wavelan_probe() and via init_module()).
 */
static int __init wavelan_config(device * dev)
{
	unsigned long ioaddr = dev->base_addr;
	u8 irq_mask;
	int irq;
	net_local *lp;
 
#ifdef DEBUG_CALLBACK_TRACE
	printk(KERN_DEBUG "%s: ->wavelan_config(dev=0x%x, ioaddr=0x%lx)\n",
	       dev->name, (unsigned int) dev, ioaddr);
#endif
 
	/* Check IRQ argument on command line. */
	if (dev->irq != 0) {
		irq_mask = wv_irq_to_psa(dev->irq);
 
		if (irq_mask == 0) {
#ifdef DEBUG_CONFIG_ERROR
			printk(KERN_WARNING
			       "%s: wavelan_config(): invalid IRQ %d ignored.\n",
			       dev->name, dev->irq);
#endif
			dev->irq = 0;
		} else {
#ifdef DEBUG_CONFIG_INFO
			printk(KERN_DEBUG
			       "%s: wavelan_config(): changing IRQ to %d\n",
			       dev->name, dev->irq);
#endif
			psa_write(ioaddr, HACR_DEFAULT,
				  psaoff(0, psa_int_req_no), &irq_mask, 1);
			/* update the Wavelan checksum */
			update_psa_checksum(dev, ioaddr, HACR_DEFAULT);
			wv_hacr_reset(ioaddr);
		}
	}
 
	psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_int_req_no),
		 &irq_mask, 1);
	if ((irq = wv_psa_to_irq(irq_mask)) == -1) {
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_INFO
		       "%s: wavelan_config(): could not wavelan_map_irq(%d).\n",
		       dev->name, irq_mask);
#endif
		return -EAGAIN;
	}
 
	dev->irq = irq;
 
	if (!request_region(ioaddr, sizeof(ha_t), "wavelan"))
		return -EBUSY;
 
	dev->mem_start = 0x0000;
	dev->mem_end = 0x0000;
	dev->if_port = 0;
 
	/* Initialize device structures */
	dev->priv = kmalloc(sizeof(net_local), GFP_KERNEL);
	if (dev->priv == NULL) {
		release_region(ioaddr, sizeof(ha_t));
		return -ENOMEM;
	}
	memset(dev->priv, 0x00, sizeof(net_local));
	lp = (net_local *) dev->priv;
 
	/* Back link to the device structure. */
	lp->dev = dev;
	/* Add the device at the beginning of the linked list. */
	lp->next = wavelan_list;
	wavelan_list = lp;
 
	lp->hacr = HACR_DEFAULT;
 
	/* Multicast stuff */
	lp->promiscuous = 0;
	lp->mc_count = 0;
 
	/* Init spinlock */
	spin_lock_init(&lp->spinlock);
 
	/*
	 * Fill in the fields of the device structure
	 * with generic Ethernet values.
	 */
	ether_setup(dev);
 
	SET_MODULE_OWNER(dev);
	dev->open = wavelan_open;
	dev->stop = wavelan_close;
	dev->hard_start_xmit = wavelan_packet_xmit;
	dev->get_stats = wavelan_get_stats;
	dev->set_multicast_list = &wavelan_set_multicast_list;
        dev->tx_timeout		= &wavelan_watchdog;
        dev->watchdog_timeo	= WATCHDOG_JIFFIES;
#ifdef SET_MAC_ADDRESS
	dev->set_mac_address = &wavelan_set_mac_address;
#endif				/* SET_MAC_ADDRESS */
 
#ifdef WIRELESS_EXT		/* if wireless extension exists in the kernel */
	dev->do_ioctl = wavelan_ioctl;
	dev->get_wireless_stats = wavelan_get_wireless_stats;
#endif
 
	dev->mtu = WAVELAN_MTU;
 
	/* Display nice information. */
	wv_init_info(dev);
 
#ifdef DEBUG_CALLBACK_TRACE
	printk(KERN_DEBUG "%s: <-wavelan_config()\n", dev->name);
#endif
	return 0;
}
 
/*------------------------------------------------------------------*/
/*
 * Check for a network adaptor of this type.  Return '0' iff one 
 * exists.  There seem to be different interpretations of
 * the initial value of dev->base_addr.
 * We follow the example in drivers/net/ne.c.
 * (called in "Space.c")
 */
int __init wavelan_probe(device * dev)
{
	short base_addr;
	mac_addr mac;		/* MAC address (check existence of WaveLAN) */
	int i;
	int r;
 
#ifdef DEBUG_CALLBACK_TRACE
	printk(KERN_DEBUG
	       "%s: ->wavelan_probe(dev=0x%x (base_addr=0x%x))\n",
	       dev->name, (unsigned int) dev,
	       (unsigned int) dev->base_addr);
#endif
 
#ifdef	STRUCT_CHECK
	if (wv_struct_check() != (char *) NULL) {
		printk(KERN_WARNING
		       "%s: wavelan_probe(): structure/compiler botch: \"%s\"\n",
		       dev->name, wv_struct_check());
		return -ENODEV;
	}
#endif				/* STRUCT_CHECK */
 
	/* Check the value of the command line parameter for base address. */
	base_addr = dev->base_addr;
 
	/* Don't probe at all. */
	if (base_addr < 0) {
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_WARNING
		       "%s: wavelan_probe(): invalid base address\n",
		       dev->name);
#endif
		return -ENXIO;
	}
 
	/* Check a single specified location. */
	if (base_addr > 0x100) {
		/* Check if there is something at this base address */
		if ((r = wv_check_ioaddr(base_addr, mac)) == 0) {
			memcpy(dev->dev_addr, mac, 6);	/* Copy MAC address. */
			r = wavelan_config(dev);
		}
#ifdef DEBUG_CONFIG_INFO
		if (r != 0)
			printk(KERN_DEBUG
			       "%s: wavelan_probe(): no device at specified base address (0x%X) or address already in use\n",
			       dev->name, base_addr);
#endif
 
#ifdef DEBUG_CALLBACK_TRACE
		printk(KERN_DEBUG "%s: <-wavelan_probe()\n", dev->name);
#endif
		return r;
	}
 
	/* Scan all possible addresses of the WaveLAN hardware. */
	for (i = 0; i < NELS(iobase); i++) {
		/* Check whether there is something at this base address. */
		if (wv_check_ioaddr(iobase[i], mac) == 0) {
			dev->base_addr = iobase[i];	/* Copy base address. */
			memcpy(dev->dev_addr, mac, 6);	/* Copy MAC address. */
			if (wavelan_config(dev) == 0) {
#ifdef DEBUG_CALLBACK_TRACE
				printk(KERN_DEBUG
				       "%s: <-wavelan_probe()\n",
				       dev->name);
#endif
				return 0;
			}
		}
	}
 
	/* We may have touched base_addr.  Another driver may not like it. */
	dev->base_addr = base_addr;
 
#ifdef DEBUG_CONFIG_INFO
	printk(KERN_DEBUG "%s: wavelan_probe(): no device found\n",
	       dev->name);
#endif
 
	return -ENODEV;
}
 
/****************************** MODULE ******************************/
/*
 * Module entry point: insertion and removal
 */
 
#ifdef	MODULE
/*------------------------------------------------------------------*/
/*
 * Insertion of the module
 * I'm now quite proud of the multi-device support.
 */
int init_module(void)
{
	mac_addr mac;		/* MAC address (check WaveLAN existence) */
	int ret = -EIO;		/* Return error if no cards found */
	int i;
 
#ifdef DEBUG_MODULE_TRACE
	printk(KERN_DEBUG "-> init_module()\n");
#endif
 
	/* If probing is asked */
	if (io[0] == 0) {
#ifdef DEBUG_CONFIG_ERROR
		printk(KERN_WARNING
		       "WaveLAN init_module(): doing device probing (bad !)\n");
		printk(KERN_WARNING
		       "Specify base addresses while loading module to correct the problem\n");
#endif
 
		/* Copy the basic set of address to be probed. */
		for (i = 0; i < NELS(iobase); i++)
			io[i] = iobase[i];
	}
 
 
	/* Loop on all possible base addresses. */
	i = -1;
	while ((io[++i] != 0) && (i < NELS(io))) {
		/* Check if there is something at this base address. */
		if (wv_check_ioaddr(io[i], mac) == 0) {
			device *dev;
 
			/* Create device and set basic arguments. */
			dev =
			    kmalloc(sizeof(struct net_device), GFP_KERNEL);
			if (dev == NULL) {
				ret = -ENOMEM;
				break;
			}
			memset(dev, 0x00, sizeof(struct net_device));
			memcpy(dev->name, name[i], IFNAMSIZ);	/* Copy name */
			dev->base_addr = io[i];
			dev->irq = irq[i];
			dev->init = &wavelan_config;
			memcpy(dev->dev_addr, mac, 6);	/* Copy MAC address. */
 
			/* Try to create the device. */
			if (register_netdev(dev) != 0) {
				/* Deallocate everything. */
				/* Note: if dev->priv is mallocated, there is no way to fail. */
				kfree(dev);
			} else {
				/* If at least one device OK, we do not fail */
				ret = 0;
			}
		}		/* if there is something at the address */
	}			/* Loop on all addresses. */
 
#ifdef DEBUG_CONFIG_ERROR
	if (wavelan_list == (net_local *) NULL)
		printk(KERN_WARNING
		       "WaveLAN init_module(): no device found\n");
#endif
 
#ifdef DEBUG_MODULE_TRACE
	printk(KERN_DEBUG "<- init_module()\n");
#endif
	return ret;
}
 
/*------------------------------------------------------------------*/
/*
 * Removal of the module
 */
void cleanup_module(void)
{
#ifdef DEBUG_MODULE_TRACE
	printk(KERN_DEBUG "-> cleanup_module()\n");
#endif
 
	/* Loop on all devices and release them. */
	while (wavelan_list != (net_local *) NULL) {
		device *dev = wavelan_list->dev;
 
#ifdef DEBUG_CONFIG_INFO
		printk(KERN_DEBUG
		       "%s: cleanup_module(): removing device at 0x%x\n",
		       dev->name, (unsigned int) dev);
#endif
 
		/* Release the ioport region. */
		release_region(dev->base_addr, sizeof(ha_t));
 
		/* Definitely remove the device. */
		unregister_netdev(dev);
 
		/* Unlink the device. */
		wavelan_list = wavelan_list->next;
 
		/* Free pieces. */
		kfree(dev->priv);
		kfree(dev);
	}
 
#ifdef DEBUG_MODULE_TRACE
	printk(KERN_DEBUG "<- cleanup_module()\n");
#endif
}
#endif				/* MODULE */
MODULE_LICENSE("GPL");
 
/*
 * This software may only be used and distributed
 * according to the terms of the GNU General Public License.
 *
 * This software was developed as a component of the
 * Linux operating system.
 * It is based on other device drivers and information
 * either written or supplied by:
 *	Ajay Bakre (bakre@paul.rutgers.edu),
 *	Donald Becker (becker@scyld.com),
 *	Loeke Brederveld (Loeke.Brederveld@Utrecht.NCR.com),
 *	Anders Klemets (klemets@it.kth.se),
 *	Vladimir V. Kolpakov (w@stier.koenig.ru),
 *	Marc Meertens (Marc.Meertens@Utrecht.NCR.com),
 *	Pauline Middelink (middelin@polyware.iaf.nl),
 *	Robert Morris (rtm@das.harvard.edu),
 *	Jean Tourrilhes (jt@hplb.hpl.hp.com),
 *	Girish Welling (welling@paul.rutgers.edu),
 *
 * Thanks go also to:
 *	James Ashton (jaa101@syseng.anu.edu.au),
 *	Alan Cox (alan@redhat.com),
 *	Allan Creighton (allanc@cs.usyd.edu.au),
 *	Matthew Geier (matthew@cs.usyd.edu.au),
 *	Remo di Giovanni (remo@cs.usyd.edu.au),
 *	Eckhard Grah (grah@wrcs1.urz.uni-wuppertal.de),
 *	Vipul Gupta (vgupta@cs.binghamton.edu),
 *	Mark Hagan (mhagan@wtcpost.daytonoh.NCR.COM),
 *	Tim Nicholson (tim@cs.usyd.edu.au),
 *	Ian Parkin (ian@cs.usyd.edu.au),
 *	John Rosenberg (johnr@cs.usyd.edu.au),
 *	George Rossi (george@phm.gov.au),
 *	Arthur Scott (arthur@cs.usyd.edu.au),
 *	Peter Storey,
 * for their assistance and advice.
 *
 * Please send bug reports, updates, comments to:
 *
 * Bruce Janson                                    Email:  bruce@cs.usyd.edu.au
 * Basser Department of Computer Science           Phone:  +61-2-9351-3423
 * University of Sydney, N.S.W., 2006, AUSTRALIA   Fax:    +61-2-9351-3838
 */
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.