URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [drivers/] [parport/] [parport_pc.c] - Rev 1774
Go to most recent revision | Compare with Previous | Blame | View Log
/* Low-level parallel-port routines for 8255-based PC-style hardware. * * Authors: Phil Blundell <Philip.Blundell@pobox.com> * Tim Waugh <tim@cyberelk.demon.co.uk> * Jose Renau <renau@acm.org> * David Campbell <campbell@torque.net> * Andrea Arcangeli * * based on work by Grant Guenther <grant@torque.net> and Phil Blundell. * * Cleaned up include files - Russell King <linux@arm.uk.linux.org> * DMA support - Bert De Jonghe <bert@sophis.be> * Many ECP bugs fixed. Fred Barnes & Jamie Lokier, 1999 * More PCI support now conditional on CONFIG_PCI, 03/2001, Paul G. * Various hacks, Fred Barnes, 04/2001 */ /* This driver should work with any hardware that is broadly compatible * with that in the IBM PC. This applies to the majority of integrated * I/O chipsets that are commonly available. The expected register * layout is: * * base+0 data * base+1 status * base+2 control * * In addition, there are some optional registers: * * base+3 EPP address * base+4 EPP data * base+0x400 ECP config A * base+0x401 ECP config B * base+0x402 ECP control * * All registers are 8 bits wide and read/write. If your hardware differs * only in register addresses (eg because your registers are on 32-bit * word boundaries) then you can alter the constants in parport_pc.h to * accomodate this. * * Note that the ECP registers may not start at offset 0x400 for PCI cards, * but rather will start at port->base_hi. */ #include <linux/config.h> #include <linux/module.h> #include <linux/init.h> #include <linux/sched.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/pci.h> #include <linux/sysctl.h> #include <asm/io.h> #include <asm/dma.h> #include <asm/uaccess.h> #include <linux/parport.h> #include <linux/parport_pc.h> #include <asm/parport.h> #define PARPORT_PC_MAX_PORTS PARPORT_MAX /* ECR modes */ #define ECR_SPP 00 #define ECR_PS2 01 #define ECR_PPF 02 #define ECR_ECP 03 #define ECR_EPP 04 #define ECR_VND 05 #define ECR_TST 06 #define ECR_CNF 07 #define ECR_MODE_MASK 0xe0 #define ECR_WRITE(p,v) frob_econtrol((p),0xff,(v)) #undef DEBUG #ifdef DEBUG #define DPRINTK printk #else #define DPRINTK(stuff...) #endif #define NR_SUPERIOS 3 static struct superio_struct { /* For Super-IO chips autodetection */ int io; int irq; int dma; } superios[NR_SUPERIOS] __devinitdata = { {0,},}; static int user_specified __devinitdata = 0; #if defined(CONFIG_PARPORT_PC_FIFO) || defined(CONFIG_PARPORT_PC_SUPERIO) static int verbose_probing; #endif static int registered_parport; /* frob_control, but for ECR */ static void frob_econtrol (struct parport *pb, unsigned char m, unsigned char v) { unsigned char ectr = 0; if (m != 0xff) ectr = inb (ECONTROL (pb)); DPRINTK (KERN_DEBUG "frob_econtrol(%02x,%02x): %02x -> %02x\n", m, v, ectr, (ectr & ~m) ^ v); outb ((ectr & ~m) ^ v, ECONTROL (pb)); } static void __inline__ frob_set_mode (struct parport *p, int mode) { frob_econtrol (p, ECR_MODE_MASK, mode << 5); } #ifdef CONFIG_PARPORT_PC_FIFO /* Safely change the mode bits in the ECR Returns: 0 : Success -EBUSY: Could not drain FIFO in some finite amount of time, mode not changed! */ static int change_mode(struct parport *p, int m) { const struct parport_pc_private *priv = p->physport->private_data; unsigned char oecr; int mode; DPRINTK(KERN_INFO "parport change_mode ECP-ISA to mode 0x%02x\n",m); if (!priv->ecr) { printk (KERN_DEBUG "change_mode: but there's no ECR!\n"); return 0; } /* Bits <7:5> contain the mode. */ oecr = inb (ECONTROL (p)); mode = (oecr >> 5) & 0x7; if (mode == m) return 0; if (mode >= 2 && !(priv->ctr & 0x20)) { /* This mode resets the FIFO, so we may * have to wait for it to drain first. */ long expire = jiffies + p->physport->cad->timeout; int counter; switch (mode) { case ECR_PPF: /* Parallel Port FIFO mode */ case ECR_ECP: /* ECP Parallel Port mode */ /* Busy wait for 200us */ for (counter = 0; counter < 40; counter++) { if (inb (ECONTROL (p)) & 0x01) break; if (signal_pending (current)) break; udelay (5); } /* Poll slowly. */ while (!(inb (ECONTROL (p)) & 0x01)) { if (time_after_eq (jiffies, expire)) /* The FIFO is stuck. */ return -EBUSY; __set_current_state (TASK_INTERRUPTIBLE); schedule_timeout ((HZ + 99) / 100); if (signal_pending (current)) break; } } } if (mode >= 2 && m >= 2) { /* We have to go through mode 001 */ oecr &= ~(7 << 5); oecr |= ECR_PS2 << 5; ECR_WRITE (p, oecr); } /* Set the mode. */ oecr &= ~(7 << 5); oecr |= m << 5; ECR_WRITE (p, oecr); return 0; } #ifdef CONFIG_PARPORT_1284 /* Find FIFO lossage; FIFO is reset */ static int get_fifo_residue (struct parport *p) { int residue; int cnfga; const struct parport_pc_private *priv = p->physport->private_data; /* Adjust for the contents of the FIFO. */ for (residue = priv->fifo_depth; ; residue--) { if (inb (ECONTROL (p)) & 0x2) /* Full up. */ break; outb (0, FIFO (p)); } printk (KERN_DEBUG "%s: %d PWords were left in FIFO\n", p->name, residue); /* Reset the FIFO. */ frob_set_mode (p, ECR_PS2); /* Now change to config mode and clean up. FIXME */ frob_set_mode (p, ECR_CNF); cnfga = inb (CONFIGA (p)); printk (KERN_DEBUG "%s: cnfgA contains 0x%02x\n", p->name, cnfga); if (!(cnfga & (1<<2))) { printk (KERN_DEBUG "%s: Accounting for extra byte\n", p->name); residue++; } /* Don't care about partial PWords until support is added for * PWord != 1 byte. */ /* Back to PS2 mode. */ frob_set_mode (p, ECR_PS2); DPRINTK (KERN_DEBUG "*** get_fifo_residue: done residue collecting (ecr = 0x%2.2x)\n", inb (ECONTROL (p))); return residue; } #endif /* IEEE 1284 support */ #endif /* FIFO support */ /* * Clear TIMEOUT BIT in EPP MODE * * This is also used in SPP detection. */ static int clear_epp_timeout(struct parport *pb) { unsigned char r; if (!(parport_pc_read_status(pb) & 0x01)) return 1; /* To clear timeout some chips require double read */ parport_pc_read_status(pb); r = parport_pc_read_status(pb); outb (r | 0x01, STATUS (pb)); /* Some reset by writing 1 */ outb (r & 0xfe, STATUS (pb)); /* Others by writing 0 */ r = parport_pc_read_status(pb); return !(r & 0x01); } /* * Access functions. * * Most of these aren't static because they may be used by the * parport_xxx_yyy macros. extern __inline__ versions of several * of these are in parport_pc.h. */ static void parport_pc_interrupt(int irq, void *dev_id, struct pt_regs *regs) { parport_generic_irq(irq, (struct parport *) dev_id, regs); } void parport_pc_write_data(struct parport *p, unsigned char d) { outb (d, DATA (p)); } unsigned char parport_pc_read_data(struct parport *p) { return inb (DATA (p)); } void parport_pc_write_control(struct parport *p, unsigned char d) { const unsigned char wm = (PARPORT_CONTROL_STROBE | PARPORT_CONTROL_AUTOFD | PARPORT_CONTROL_INIT | PARPORT_CONTROL_SELECT); /* Take this out when drivers have adapted to the newer interface. */ if (d & 0x20) { printk (KERN_DEBUG "%s (%s): use data_reverse for this!\n", p->name, p->cad->name); parport_pc_data_reverse (p); } __parport_pc_frob_control (p, wm, d & wm); } unsigned char parport_pc_read_control(struct parport *p) { const unsigned char wm = (PARPORT_CONTROL_STROBE | PARPORT_CONTROL_AUTOFD | PARPORT_CONTROL_INIT | PARPORT_CONTROL_SELECT); const struct parport_pc_private *priv = p->physport->private_data; return priv->ctr & wm; /* Use soft copy */ } unsigned char parport_pc_frob_control (struct parport *p, unsigned char mask, unsigned char val) { const unsigned char wm = (PARPORT_CONTROL_STROBE | PARPORT_CONTROL_AUTOFD | PARPORT_CONTROL_INIT | PARPORT_CONTROL_SELECT); /* Take this out when drivers have adapted to the newer interface. */ if (mask & 0x20) { printk (KERN_DEBUG "%s (%s): use data_%s for this!\n", p->name, p->cad->name, (val & 0x20) ? "reverse" : "forward"); if (val & 0x20) parport_pc_data_reverse (p); else parport_pc_data_forward (p); } /* Restrict mask and val to control lines. */ mask &= wm; val &= wm; return __parport_pc_frob_control (p, mask, val); } unsigned char parport_pc_read_status(struct parport *p) { return inb (STATUS (p)); } void parport_pc_disable_irq(struct parport *p) { __parport_pc_frob_control (p, 0x10, 0); } void parport_pc_enable_irq(struct parport *p) { if (p->irq != PARPORT_IRQ_NONE) __parport_pc_frob_control (p, 0x10, 0x10); } void parport_pc_data_forward (struct parport *p) { __parport_pc_frob_control (p, 0x20, 0); } void parport_pc_data_reverse (struct parport *p) { __parport_pc_frob_control (p, 0x20, 0x20); } void parport_pc_init_state(struct pardevice *dev, struct parport_state *s) { s->u.pc.ctr = 0xc; if (dev->irq_func && dev->port->irq != PARPORT_IRQ_NONE) /* Set ackIntEn */ s->u.pc.ctr |= 0x10; s->u.pc.ecr = 0x34; /* NetMos chip can cause problems 0x24; * D.Gruszka VScom */ } void parport_pc_save_state(struct parport *p, struct parport_state *s) { const struct parport_pc_private *priv = p->physport->private_data; s->u.pc.ctr = priv->ctr; if (priv->ecr) s->u.pc.ecr = inb (ECONTROL (p)); } void parport_pc_restore_state(struct parport *p, struct parport_state *s) { struct parport_pc_private *priv = p->physport->private_data; register unsigned char c = s->u.pc.ctr & priv->ctr_writable; outb (c, CONTROL (p)); priv->ctr = c; if (priv->ecr) ECR_WRITE (p, s->u.pc.ecr); } #ifdef CONFIG_PARPORT_1284 static size_t parport_pc_epp_read_data (struct parport *port, void *buf, size_t length, int flags) { size_t got = 0; if (flags & PARPORT_W91284PIC) { unsigned char status; size_t left = length; /* use knowledge about data lines..: * nFault is 0 if there is at least 1 byte in the Warp's FIFO * pError is 1 if there are 16 bytes in the Warp's FIFO */ status = inb (STATUS (port)); while (!(status & 0x08) && (got < length)) { if ((left >= 16) && (status & 0x20) && !(status & 0x08)) { /* can grab 16 bytes from warp fifo */ if (!((long)buf & 0x03)) { insl (EPPDATA (port), buf, 4); } else { insb (EPPDATA (port), buf, 16); } buf += 16; got += 16; left -= 16; } else { /* grab single byte from the warp fifo */ *((char *)buf)++ = inb (EPPDATA (port)); got++; left--; } status = inb (STATUS (port)); if (status & 0x01) { /* EPP timeout should never occur... */ printk (KERN_DEBUG "%s: EPP timeout occured while talking to " "w91284pic (should not have done)\n", port->name); clear_epp_timeout (port); } } return got; } if ((flags & PARPORT_EPP_FAST) && (length > 1)) { if (!(((long)buf | length) & 0x03)) { insl (EPPDATA (port), buf, (length >> 2)); } else { insb (EPPDATA (port), buf, length); } if (inb (STATUS (port)) & 0x01) { clear_epp_timeout (port); return -EIO; } return length; } for (; got < length; got++) { *((char*)buf)++ = inb (EPPDATA(port)); if (inb (STATUS (port)) & 0x01) { /* EPP timeout */ clear_epp_timeout (port); break; } } return got; } static size_t parport_pc_epp_write_data (struct parport *port, const void *buf, size_t length, int flags) { size_t written = 0; if ((flags & PARPORT_EPP_FAST) && (length > 1)) { if (!(((long)buf | length) & 0x03)) { outsl (EPPDATA (port), buf, (length >> 2)); } else { outsb (EPPDATA (port), buf, length); } if (inb (STATUS (port)) & 0x01) { clear_epp_timeout (port); return -EIO; } return length; } for (; written < length; written++) { outb (*((char*)buf)++, EPPDATA(port)); if (inb (STATUS(port)) & 0x01) { clear_epp_timeout (port); break; } } return written; } static size_t parport_pc_epp_read_addr (struct parport *port, void *buf, size_t length, int flags) { size_t got = 0; if ((flags & PARPORT_EPP_FAST) && (length > 1)) { insb (EPPADDR (port), buf, length); if (inb (STATUS (port)) & 0x01) { clear_epp_timeout (port); return -EIO; } return length; } for (; got < length; got++) { *((char*)buf)++ = inb (EPPADDR (port)); if (inb (STATUS (port)) & 0x01) { clear_epp_timeout (port); break; } } return got; } static size_t parport_pc_epp_write_addr (struct parport *port, const void *buf, size_t length, int flags) { size_t written = 0; if ((flags & PARPORT_EPP_FAST) && (length > 1)) { outsb (EPPADDR (port), buf, length); if (inb (STATUS (port)) & 0x01) { clear_epp_timeout (port); return -EIO; } return length; } for (; written < length; written++) { outb (*((char*)buf)++, EPPADDR (port)); if (inb (STATUS (port)) & 0x01) { clear_epp_timeout (port); break; } } return written; } static size_t parport_pc_ecpepp_read_data (struct parport *port, void *buf, size_t length, int flags) { size_t got; frob_set_mode (port, ECR_EPP); parport_pc_data_reverse (port); parport_pc_write_control (port, 0x4); got = parport_pc_epp_read_data (port, buf, length, flags); frob_set_mode (port, ECR_PS2); return got; } static size_t parport_pc_ecpepp_write_data (struct parport *port, const void *buf, size_t length, int flags) { size_t written; frob_set_mode (port, ECR_EPP); parport_pc_write_control (port, 0x4); parport_pc_data_forward (port); written = parport_pc_epp_write_data (port, buf, length, flags); frob_set_mode (port, ECR_PS2); return written; } static size_t parport_pc_ecpepp_read_addr (struct parport *port, void *buf, size_t length, int flags) { size_t got; frob_set_mode (port, ECR_EPP); parport_pc_data_reverse (port); parport_pc_write_control (port, 0x4); got = parport_pc_epp_read_addr (port, buf, length, flags); frob_set_mode (port, ECR_PS2); return got; } static size_t parport_pc_ecpepp_write_addr (struct parport *port, const void *buf, size_t length, int flags) { size_t written; frob_set_mode (port, ECR_EPP); parport_pc_write_control (port, 0x4); parport_pc_data_forward (port); written = parport_pc_epp_write_addr (port, buf, length, flags); frob_set_mode (port, ECR_PS2); return written; } #endif /* IEEE 1284 support */ #ifdef CONFIG_PARPORT_PC_FIFO static size_t parport_pc_fifo_write_block_pio (struct parport *port, const void *buf, size_t length) { int ret = 0; const unsigned char *bufp = buf; size_t left = length; long expire = jiffies + port->physport->cad->timeout; const int fifo = FIFO (port); int poll_for = 8; /* 80 usecs */ const struct parport_pc_private *priv = port->physport->private_data; const int fifo_depth = priv->fifo_depth; port = port->physport; /* We don't want to be interrupted every character. */ parport_pc_disable_irq (port); /* set nErrIntrEn and serviceIntr */ frob_econtrol (port, (1<<4) | (1<<2), (1<<4) | (1<<2)); /* Forward mode. */ parport_pc_data_forward (port); /* Must be in PS2 mode */ while (left) { unsigned char byte; unsigned char ecrval = inb (ECONTROL (port)); int i = 0; if (current->need_resched && time_before (jiffies, expire)) /* Can't yield the port. */ schedule (); /* Anyone else waiting for the port? */ if (port->waithead) { printk (KERN_DEBUG "Somebody wants the port\n"); break; } if (ecrval & 0x02) { /* FIFO is full. Wait for interrupt. */ /* Clear serviceIntr */ ECR_WRITE (port, ecrval & ~(1<<2)); false_alarm: ret = parport_wait_event (port, HZ); if (ret < 0) break; ret = 0; if (!time_before (jiffies, expire)) { /* Timed out. */ printk (KERN_DEBUG "FIFO write timed out\n"); break; } ecrval = inb (ECONTROL (port)); if (!(ecrval & (1<<2))) { if (current->need_resched && time_before (jiffies, expire)) schedule (); goto false_alarm; } continue; } /* Can't fail now. */ expire = jiffies + port->cad->timeout; poll: if (signal_pending (current)) break; if (ecrval & 0x01) { /* FIFO is empty. Blast it full. */ const int n = left < fifo_depth ? left : fifo_depth; outsb (fifo, bufp, n); bufp += n; left -= n; /* Adjust the poll time. */ if (i < (poll_for - 2)) poll_for--; continue; } else if (i++ < poll_for) { udelay (10); ecrval = inb (ECONTROL (port)); goto poll; } /* Half-full (call me an optimist) */ byte = *bufp++; outb (byte, fifo); left--; } dump_parport_state ("leave fifo_write_block_pio", port); return length - left; } static size_t parport_pc_fifo_write_block_dma (struct parport *port, const void *buf, size_t length) { int ret = 0; unsigned long dmaflag; size_t left = length; const struct parport_pc_private *priv = port->physport->private_data; dma_addr_t dma_addr, dma_handle; size_t maxlen = 0x10000; /* max 64k per DMA transfer */ unsigned long start = (unsigned long) buf; unsigned long end = (unsigned long) buf + length - 1; dump_parport_state ("enter fifo_write_block_dma", port); if (end < MAX_DMA_ADDRESS) { /* If it would cross a 64k boundary, cap it at the end. */ if ((start ^ end) & ~0xffffUL) maxlen = 0x10000 - (start & 0xffff); dma_addr = dma_handle = pci_map_single(priv->dev, (void *)buf, length, PCI_DMA_TODEVICE); } else { /* above 16 MB we use a bounce buffer as ISA-DMA is not possible */ maxlen = PAGE_SIZE; /* sizeof(priv->dma_buf) */ dma_addr = priv->dma_handle; dma_handle = 0; } port = port->physport; /* We don't want to be interrupted every character. */ parport_pc_disable_irq (port); /* set nErrIntrEn and serviceIntr */ frob_econtrol (port, (1<<4) | (1<<2), (1<<4) | (1<<2)); /* Forward mode. */ parport_pc_data_forward (port); /* Must be in PS2 mode */ while (left) { long expire = jiffies + port->physport->cad->timeout; size_t count = left; if (count > maxlen) count = maxlen; if (!dma_handle) /* bounce buffer ! */ memcpy(priv->dma_buf, buf, count); dmaflag = claim_dma_lock(); disable_dma(port->dma); clear_dma_ff(port->dma); set_dma_mode(port->dma, DMA_MODE_WRITE); set_dma_addr(port->dma, dma_addr); set_dma_count(port->dma, count); /* Set DMA mode */ frob_econtrol (port, 1<<3, 1<<3); /* Clear serviceIntr */ frob_econtrol (port, 1<<2, 0); enable_dma(port->dma); release_dma_lock(dmaflag); /* assume DMA will be successful */ left -= count; buf += count; if (dma_handle) dma_addr += count; /* Wait for interrupt. */ false_alarm: ret = parport_wait_event (port, HZ); if (ret < 0) break; ret = 0; if (!time_before (jiffies, expire)) { /* Timed out. */ printk (KERN_DEBUG "DMA write timed out\n"); break; } /* Is serviceIntr set? */ if (!(inb (ECONTROL (port)) & (1<<2))) { if (current->need_resched) schedule (); goto false_alarm; } dmaflag = claim_dma_lock(); disable_dma(port->dma); clear_dma_ff(port->dma); count = get_dma_residue(port->dma); release_dma_lock(dmaflag); if (current->need_resched) /* Can't yield the port. */ schedule (); /* Anyone else waiting for the port? */ if (port->waithead) { printk (KERN_DEBUG "Somebody wants the port\n"); break; } /* update for possible DMA residue ! */ buf -= count; left += count; if (dma_handle) dma_addr -= count; } /* Maybe got here through break, so adjust for DMA residue! */ dmaflag = claim_dma_lock(); disable_dma(port->dma); clear_dma_ff(port->dma); left += get_dma_residue(port->dma); release_dma_lock(dmaflag); /* Turn off DMA mode */ frob_econtrol (port, 1<<3, 0); if (dma_handle) pci_unmap_single(priv->dev, dma_handle, length, PCI_DMA_TODEVICE); dump_parport_state ("leave fifo_write_block_dma", port); return length - left; } /* Parallel Port FIFO mode (ECP chipsets) */ size_t parport_pc_compat_write_block_pio (struct parport *port, const void *buf, size_t length, int flags) { size_t written; int r; long int expire; const struct parport_pc_private *priv = port->physport->private_data; /* Special case: a timeout of zero means we cannot call schedule(). * Also if O_NONBLOCK is set then use the default implementation. */ if (port->physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK) return parport_ieee1284_write_compat (port, buf, length, flags); /* Set up parallel port FIFO mode.*/ parport_pc_data_forward (port); /* Must be in PS2 mode */ parport_pc_frob_control (port, PARPORT_CONTROL_STROBE, 0); r = change_mode (port, ECR_PPF); /* Parallel port FIFO */ if (r) printk (KERN_DEBUG "%s: Warning change_mode ECR_PPF failed\n", port->name); port->physport->ieee1284.phase = IEEE1284_PH_FWD_DATA; /* Write the data to the FIFO. */ if (port->dma != PARPORT_DMA_NONE) written = parport_pc_fifo_write_block_dma (port, buf, length); else written = parport_pc_fifo_write_block_pio (port, buf, length); /* Finish up. */ /* For some hardware we don't want to touch the mode until * the FIFO is empty, so allow 4 seconds for each position * in the fifo. */ expire = jiffies + (priv->fifo_depth * HZ * 4); do { /* Wait for the FIFO to empty */ r = change_mode (port, ECR_PS2); if (r != -EBUSY) { break; } } while (time_before (jiffies, expire)); if (r == -EBUSY) { printk (KERN_DEBUG "%s: FIFO is stuck\n", port->name); /* Prevent further data transfer. */ frob_set_mode (port, ECR_TST); /* Adjust for the contents of the FIFO. */ for (written -= priv->fifo_depth; ; written++) { if (inb (ECONTROL (port)) & 0x2) { /* Full up. */ break; } outb (0, FIFO (port)); } /* Reset the FIFO and return to PS2 mode. */ frob_set_mode (port, ECR_PS2); } r = parport_wait_peripheral (port, PARPORT_STATUS_BUSY, PARPORT_STATUS_BUSY); if (r) printk (KERN_DEBUG "%s: BUSY timeout (%d) in compat_write_block_pio\n", port->name, r); port->physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE; return written; } /* ECP */ #ifdef CONFIG_PARPORT_1284 size_t parport_pc_ecp_write_block_pio (struct parport *port, const void *buf, size_t length, int flags) { size_t written; int r; long int expire; const struct parport_pc_private *priv = port->physport->private_data; /* Special case: a timeout of zero means we cannot call schedule(). * Also if O_NONBLOCK is set then use the default implementation. */ if (port->physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK) return parport_ieee1284_ecp_write_data (port, buf, length, flags); /* Switch to forward mode if necessary. */ if (port->physport->ieee1284.phase != IEEE1284_PH_FWD_IDLE) { /* Event 47: Set nInit high. */ parport_frob_control (port, PARPORT_CONTROL_INIT | PARPORT_CONTROL_AUTOFD, PARPORT_CONTROL_INIT | PARPORT_CONTROL_AUTOFD); /* Event 49: PError goes high. */ r = parport_wait_peripheral (port, PARPORT_STATUS_PAPEROUT, PARPORT_STATUS_PAPEROUT); if (r) { printk (KERN_DEBUG "%s: PError timeout (%d) " "in ecp_write_block_pio\n", port->name, r); } } /* Set up ECP parallel port mode.*/ parport_pc_data_forward (port); /* Must be in PS2 mode */ parport_pc_frob_control (port, PARPORT_CONTROL_STROBE | PARPORT_CONTROL_AUTOFD, 0); r = change_mode (port, ECR_ECP); /* ECP FIFO */ if (r) printk (KERN_DEBUG "%s: Warning change_mode ECR_ECP failed\n", port->name); port->physport->ieee1284.phase = IEEE1284_PH_FWD_DATA; /* Write the data to the FIFO. */ if (port->dma != PARPORT_DMA_NONE) written = parport_pc_fifo_write_block_dma (port, buf, length); else written = parport_pc_fifo_write_block_pio (port, buf, length); /* Finish up. */ /* For some hardware we don't want to touch the mode until * the FIFO is empty, so allow 4 seconds for each position * in the fifo. */ expire = jiffies + (priv->fifo_depth * (HZ * 4)); do { /* Wait for the FIFO to empty */ r = change_mode (port, ECR_PS2); if (r != -EBUSY) { break; } } while (time_before (jiffies, expire)); if (r == -EBUSY) { printk (KERN_DEBUG "%s: FIFO is stuck\n", port->name); /* Prevent further data transfer. */ frob_set_mode (port, ECR_TST); /* Adjust for the contents of the FIFO. */ for (written -= priv->fifo_depth; ; written++) { if (inb (ECONTROL (port)) & 0x2) { /* Full up. */ break; } outb (0, FIFO (port)); } /* Reset the FIFO and return to PS2 mode. */ frob_set_mode (port, ECR_PS2); /* Host transfer recovery. */ parport_pc_data_reverse (port); /* Must be in PS2 mode */ udelay (5); parport_frob_control (port, PARPORT_CONTROL_INIT, 0); r = parport_wait_peripheral (port, PARPORT_STATUS_PAPEROUT, 0); if (r) printk (KERN_DEBUG "%s: PE,1 timeout (%d) " "in ecp_write_block_pio\n", port->name, r); parport_frob_control (port, PARPORT_CONTROL_INIT, PARPORT_CONTROL_INIT); r = parport_wait_peripheral (port, PARPORT_STATUS_PAPEROUT, PARPORT_STATUS_PAPEROUT); if (r) printk (KERN_DEBUG "%s: PE,2 timeout (%d) " "in ecp_write_block_pio\n", port->name, r); } r = parport_wait_peripheral (port, PARPORT_STATUS_BUSY, PARPORT_STATUS_BUSY); if(r) printk (KERN_DEBUG "%s: BUSY timeout (%d) in ecp_write_block_pio\n", port->name, r); port->physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE; return written; } size_t parport_pc_ecp_read_block_pio (struct parport *port, void *buf, size_t length, int flags) { size_t left = length; size_t fifofull; int r; const int fifo = FIFO(port); const struct parport_pc_private *priv = port->physport->private_data; const int fifo_depth = priv->fifo_depth; char *bufp = buf; port = port->physport; DPRINTK (KERN_DEBUG "parport_pc: parport_pc_ecp_read_block_pio\n"); dump_parport_state ("enter fcn", port); /* Special case: a timeout of zero means we cannot call schedule(). * Also if O_NONBLOCK is set then use the default implementation. */ if (port->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK) return parport_ieee1284_ecp_read_data (port, buf, length, flags); if (port->ieee1284.mode == IEEE1284_MODE_ECPRLE) { /* If the peripheral is allowed to send RLE compressed * data, it is possible for a byte to expand to 128 * bytes in the FIFO. */ fifofull = 128; } else { fifofull = fifo_depth; } /* If the caller wants less than a full FIFO's worth of data, * go through software emulation. Otherwise we may have to throw * away data. */ if (length < fifofull) return parport_ieee1284_ecp_read_data (port, buf, length, flags); if (port->ieee1284.phase != IEEE1284_PH_REV_IDLE) { /* change to reverse-idle phase (must be in forward-idle) */ /* Event 38: Set nAutoFd low (also make sure nStrobe is high) */ parport_frob_control (port, PARPORT_CONTROL_AUTOFD | PARPORT_CONTROL_STROBE, PARPORT_CONTROL_AUTOFD); parport_pc_data_reverse (port); /* Must be in PS2 mode */ udelay (5); /* Event 39: Set nInit low to initiate bus reversal */ parport_frob_control (port, PARPORT_CONTROL_INIT, 0); /* Event 40: Wait for nAckReverse (PError) to go low */ r = parport_wait_peripheral (port, PARPORT_STATUS_PAPEROUT, 0); if (r) { printk (KERN_DEBUG "%s: PE timeout Event 40 (%d) " "in ecp_read_block_pio\n", port->name, r); return 0; } } /* Set up ECP FIFO mode.*/ /* parport_pc_frob_control (port, PARPORT_CONTROL_STROBE | PARPORT_CONTROL_AUTOFD, PARPORT_CONTROL_AUTOFD); */ r = change_mode (port, ECR_ECP); /* ECP FIFO */ if (r) printk (KERN_DEBUG "%s: Warning change_mode ECR_ECP failed\n", port->name); port->ieee1284.phase = IEEE1284_PH_REV_DATA; /* the first byte must be collected manually */ dump_parport_state ("pre 43", port); /* Event 43: Wait for nAck to go low */ r = parport_wait_peripheral (port, PARPORT_STATUS_ACK, 0); if (r) { /* timed out while reading -- no data */ printk (KERN_DEBUG "PIO read timed out (initial byte)\n"); goto out_no_data; } /* read byte */ *bufp++ = inb (DATA (port)); left--; dump_parport_state ("43-44", port); /* Event 44: nAutoFd (HostAck) goes high to acknowledge */ parport_pc_frob_control (port, PARPORT_CONTROL_AUTOFD, 0); dump_parport_state ("pre 45", port); /* Event 45: Wait for nAck to go high */ /* r = parport_wait_peripheral (port, PARPORT_STATUS_ACK, PARPORT_STATUS_ACK); */ dump_parport_state ("post 45", port); r = 0; if (r) { /* timed out while waiting for peripheral to respond to ack */ printk (KERN_DEBUG "ECP PIO read timed out (waiting for nAck)\n"); /* keep hold of the byte we've got already */ goto out_no_data; } /* Event 46: nAutoFd (HostAck) goes low to accept more data */ parport_pc_frob_control (port, PARPORT_CONTROL_AUTOFD, PARPORT_CONTROL_AUTOFD); dump_parport_state ("rev idle", port); /* Do the transfer. */ while (left > fifofull) { int ret; long int expire = jiffies + port->cad->timeout; unsigned char ecrval = inb (ECONTROL (port)); if (current->need_resched && time_before (jiffies, expire)) /* Can't yield the port. */ schedule (); /* At this point, the FIFO may already be full. In * that case ECP is already holding back the * peripheral (assuming proper design) with a delayed * handshake. Work fast to avoid a peripheral * timeout. */ if (ecrval & 0x01) { /* FIFO is empty. Wait for interrupt. */ dump_parport_state ("FIFO empty", port); /* Anyone else waiting for the port? */ if (port->waithead) { printk (KERN_DEBUG "Somebody wants the port\n"); break; } /* Clear serviceIntr */ ECR_WRITE (port, ecrval & ~(1<<2)); false_alarm: dump_parport_state ("waiting", port); ret = parport_wait_event (port, HZ); DPRINTK (KERN_DEBUG "parport_wait_event returned %d\n", ret); if (ret < 0) break; ret = 0; if (!time_before (jiffies, expire)) { /* Timed out. */ dump_parport_state ("timeout", port); printk (KERN_DEBUG "PIO read timed out\n"); break; } ecrval = inb (ECONTROL (port)); if (!(ecrval & (1<<2))) { if (current->need_resched && time_before (jiffies, expire)) { schedule (); } goto false_alarm; } /* Depending on how the FIFO threshold was * set, how long interrupt service took, and * how fast the peripheral is, we might be * lucky and have a just filled FIFO. */ continue; } if (ecrval & 0x02) { /* FIFO is full. */ dump_parport_state ("FIFO full", port); insb (fifo, bufp, fifo_depth); bufp += fifo_depth; left -= fifo_depth; continue; } DPRINTK (KERN_DEBUG "*** ecp_read_block_pio: reading one byte from the FIFO\n"); /* FIFO not filled. We will cycle this loop for a while * and either the peripheral will fill it faster, * tripping a fast empty with insb, or we empty it. */ *bufp++ = inb (fifo); left--; } /* scoop up anything left in the FIFO */ while (left && !(inb (ECONTROL (port) & 0x01))) { *bufp++ = inb (fifo); left--; } port->ieee1284.phase = IEEE1284_PH_REV_IDLE; dump_parport_state ("rev idle2", port); out_no_data: /* Go to forward idle mode to shut the peripheral up (event 47). */ parport_frob_control (port, PARPORT_CONTROL_INIT, PARPORT_CONTROL_INIT); /* event 49: PError goes high */ r = parport_wait_peripheral (port, PARPORT_STATUS_PAPEROUT, PARPORT_STATUS_PAPEROUT); if (r) { printk (KERN_DEBUG "%s: PE timeout FWDIDLE (%d) in ecp_read_block_pio\n", port->name, r); } port->ieee1284.phase = IEEE1284_PH_FWD_IDLE; /* Finish up. */ { int lost = get_fifo_residue (port); if (lost) /* Shouldn't happen with compliant peripherals. */ printk (KERN_DEBUG "%s: DATA LOSS (%d bytes)!\n", port->name, lost); } dump_parport_state ("fwd idle", port); return length - left; } #endif /* IEEE 1284 support */ #endif /* Allowed to use FIFO/DMA */ /* * ****************************************** * INITIALISATION AND MODULE STUFF BELOW HERE * ****************************************** */ void parport_pc_inc_use_count(void) { #ifdef MODULE MOD_INC_USE_COUNT; #endif } void parport_pc_dec_use_count(void) { #ifdef MODULE MOD_DEC_USE_COUNT; #endif } struct parport_operations parport_pc_ops = { parport_pc_write_data, parport_pc_read_data, parport_pc_write_control, parport_pc_read_control, parport_pc_frob_control, parport_pc_read_status, parport_pc_enable_irq, parport_pc_disable_irq, parport_pc_data_forward, parport_pc_data_reverse, parport_pc_init_state, parport_pc_save_state, parport_pc_restore_state, parport_pc_inc_use_count, parport_pc_dec_use_count, parport_ieee1284_epp_write_data, parport_ieee1284_epp_read_data, parport_ieee1284_epp_write_addr, parport_ieee1284_epp_read_addr, parport_ieee1284_ecp_write_data, parport_ieee1284_ecp_read_data, parport_ieee1284_ecp_write_addr, parport_ieee1284_write_compat, parport_ieee1284_read_nibble, parport_ieee1284_read_byte, }; #ifdef CONFIG_PARPORT_PC_SUPERIO /* Super-IO chipset detection, Winbond, SMSC */ static void __devinit show_parconfig_smsc37c669(int io, int key) { int cr1,cr4,cra,cr23,cr26,cr27,i=0; static const char *modes[]={ "SPP and Bidirectional (PS/2)", "EPP and SPP", "ECP", "ECP and EPP" }; outb(key,io); outb(key,io); outb(1,io); cr1=inb(io+1); outb(4,io); cr4=inb(io+1); outb(0x0a,io); cra=inb(io+1); outb(0x23,io); cr23=inb(io+1); outb(0x26,io); cr26=inb(io+1); outb(0x27,io); cr27=inb(io+1); outb(0xaa,io); if (verbose_probing) { printk (KERN_INFO "SMSC 37c669 LPT Config: cr_1=0x%02x, 4=0x%02x, " "A=0x%2x, 23=0x%02x, 26=0x%02x, 27=0x%02x\n", cr1,cr4,cra,cr23,cr26,cr27); /* The documentation calls DMA and IRQ-Lines by letters, so the board maker can/will wire them appropriately/randomly... G=reserved H=IDE-irq, */ printk (KERN_INFO "SMSC LPT Config: io=0x%04x, irq=%c, dma=%c, " "fifo threshold=%d\n", cr23*4, (cr27 &0x0f) ? 'A'-1+(cr27 &0x0f): '-', (cr26 &0x0f) ? 'A'-1+(cr26 &0x0f): '-', cra & 0x0f); printk(KERN_INFO "SMSC LPT Config: enabled=%s power=%s\n", (cr23*4 >=0x100) ?"yes":"no", (cr1 & 4) ? "yes" : "no"); printk(KERN_INFO "SMSC LPT Config: Port mode=%s, EPP version =%s\n", (cr1 & 0x08 ) ? "Standard mode only (SPP)" : modes[cr4 & 0x03], (cr4 & 0x40) ? "1.7" : "1.9"); } /* Heuristics ! BIOS setup for this mainboard device limits the choices to standard settings, i.e. io-address and IRQ are related, however DMA can be 1 or 3, assume DMA_A=DMA1, DMA_C=DMA3 (this is true e.g. for TYAN 1564D Tomcat IV) */ if(cr23*4 >=0x100) { /* if active */ while((superios[i].io!= 0) && (i<NR_SUPERIOS)) i++; if(i==NR_SUPERIOS) printk(KERN_INFO "Super-IO: too many chips!\n"); else { int d; switch (cr23*4) { case 0x3bc: superios[i].io = 0x3bc; superios[i].irq = 7; break; case 0x378: superios[i].io = 0x378; superios[i].irq = 7; break; case 0x278: superios[i].io = 0x278; superios[i].irq = 5; } d=(cr26 &0x0f); if((d==1) || (d==3)) superios[i].dma= d; else superios[i].dma= PARPORT_DMA_NONE; } } } static void __devinit show_parconfig_winbond(int io, int key) { int cr30,cr60,cr61,cr70,cr74,crf0,i=0; static const char *modes[] = { "Standard (SPP) and Bidirectional(PS/2)", /* 0 */ "EPP-1.9 and SPP", "ECP", "ECP and EPP-1.9", "Standard (SPP)", "EPP-1.7 and SPP", /* 5 */ "undefined!", "ECP and EPP-1.7" }; static char *irqtypes[] = { "pulsed low, high-Z", "follows nACK" }; /* The registers are called compatible-PnP because the register layout is modelled after ISA-PnP, the access method is just another ... */ outb(key,io); outb(key,io); outb(0x07,io); /* Register 7: Select Logical Device */ outb(0x01,io+1); /* LD1 is Parallel Port */ outb(0x30,io); cr30=inb(io+1); outb(0x60,io); cr60=inb(io+1); outb(0x61,io); cr61=inb(io+1); outb(0x70,io); cr70=inb(io+1); outb(0x74,io); cr74=inb(io+1); outb(0xf0,io); crf0=inb(io+1); outb(0xaa,io); if (verbose_probing) { printk(KERN_INFO "Winbond LPT Config: cr_30=%02x 60,61=%02x%02x " "70=%02x 74=%02x, f0=%02x\n", cr30,cr60,cr61,cr70,cr74,crf0); printk(KERN_INFO "Winbond LPT Config: active=%s, io=0x%02x%02x irq=%d, ", (cr30 & 0x01) ? "yes":"no", cr60,cr61,cr70&0x0f ); if ((cr74 & 0x07) > 3) printk("dma=none\n"); else printk("dma=%d\n",cr74 & 0x07); printk(KERN_INFO "Winbond LPT Config: irqtype=%s, ECP fifo threshold=%d\n", irqtypes[crf0>>7], (crf0>>3)&0x0f); printk(KERN_INFO "Winbond LPT Config: Port mode=%s\n", modes[crf0 & 0x07]); } if(cr30 & 0x01) { /* the settings can be interrogated later ... */ while((superios[i].io!= 0) && (i<NR_SUPERIOS)) i++; if(i==NR_SUPERIOS) printk(KERN_INFO "Super-IO: too many chips!\n"); else { superios[i].io = (cr60<<8)|cr61; superios[i].irq = cr70&0x0f; superios[i].dma = (((cr74 & 0x07) > 3) ? PARPORT_DMA_NONE : (cr74 & 0x07)); } } } static void __devinit decode_winbond(int efer, int key, int devid, int devrev, int oldid) { const char *type = "unknown"; int id,progif=2; if (devid == devrev) /* simple heuristics, we happened to read some non-winbond register */ return; id=(devid<<8) | devrev; /* Values are from public data sheets pdf files, I can just confirm 83977TF is correct :-) */ if (id == 0x9771) type="83977F/AF"; else if (id == 0x9773) type="83977TF / SMSC 97w33x/97w34x"; else if (id == 0x9774) type="83977ATF"; else if ((id & ~0x0f) == 0x5270) type="83977CTF / SMSC 97w36x"; else if ((id & ~0x0f) == 0x52f0) type="83977EF / SMSC 97w35x"; else if ((id & ~0x0f) == 0x5210) type="83627"; else if ((id & ~0x0f) == 0x6010) type="83697HF"; else if ((oldid &0x0f ) == 0x0a) { type="83877F"; progif=1;} else if ((oldid &0x0f ) == 0x0b) { type="83877AF"; progif=1;} else if ((oldid &0x0f ) == 0x0c) { type="83877TF"; progif=1;} else if ((oldid &0x0f ) == 0x0d) { type="83877ATF"; progif=1;} else progif=0; if (verbose_probing) printk(KERN_INFO "Winbond chip at EFER=0x%x key=0x%02x " "devid=%02x devrev=%02x oldid=%02x type=%s\n", efer, key, devid, devrev, oldid, type); if (progif == 2) show_parconfig_winbond(efer,key); } static void __devinit decode_smsc(int efer, int key, int devid, int devrev) { const char *type = "unknown"; void (*func)(int io, int key); int id; if (devid == devrev) /* simple heuristics, we happened to read some non-smsc register */ return; func=NULL; id=(devid<<8) | devrev; if (id==0x0302) {type="37c669"; func=show_parconfig_smsc37c669;} else if (id==0x6582) type="37c665IR"; else if (devid==0x65) type="37c665GT"; else if (devid==0x66) type="37c666GT"; if (verbose_probing) printk(KERN_INFO "SMSC chip at EFER=0x%x " "key=0x%02x devid=%02x devrev=%02x type=%s\n", efer, key, devid, devrev, type); if (func) func(efer,key); } static void __devinit winbond_check(int io, int key) { int devid,devrev,oldid,x_devid,x_devrev,x_oldid; /* First probe without key */ outb(0x20,io); x_devid=inb(io+1); outb(0x21,io); x_devrev=inb(io+1); outb(0x09,io); x_oldid=inb(io+1); outb(key,io); outb(key,io); /* Write Magic Sequence to EFER, extended funtion enable register */ outb(0x20,io); /* Write EFIR, extended function index register */ devid=inb(io+1); /* Read EFDR, extended function data register */ outb(0x21,io); devrev=inb(io+1); outb(0x09,io); oldid=inb(io+1); outb(0xaa,io); /* Magic Seal */ if ((x_devid == devid) && (x_devrev == devrev) && (x_oldid == oldid)) return; /* protection against false positives */ decode_winbond(io,key,devid,devrev,oldid); } static void __devinit winbond_check2(int io,int key) { int devid,devrev,oldid,x_devid,x_devrev,x_oldid; /* First probe without the key */ outb(0x20,io+2); x_devid=inb(io+2); outb(0x21,io+1); x_devrev=inb(io+2); outb(0x09,io+1); x_oldid=inb(io+2); outb(key,io); /* Write Magic Byte to EFER, extended funtion enable register */ outb(0x20,io+2); /* Write EFIR, extended function index register */ devid=inb(io+2); /* Read EFDR, extended function data register */ outb(0x21,io+1); devrev=inb(io+2); outb(0x09,io+1); oldid=inb(io+2); outb(0xaa,io); /* Magic Seal */ if ((x_devid == devid) && (x_devrev == devrev) && (x_oldid == oldid)) return; /* protection against false positives */ decode_winbond(io,key,devid,devrev,oldid); } static void __devinit smsc_check(int io, int key) { int id,rev,oldid,oldrev,x_id,x_rev,x_oldid,x_oldrev; /* First probe without the key */ outb(0x0d,io); x_oldid=inb(io+1); outb(0x0e,io); x_oldrev=inb(io+1); outb(0x20,io); x_id=inb(io+1); outb(0x21,io); x_rev=inb(io+1); outb(key,io); outb(key,io); /* Write Magic Sequence to EFER, extended funtion enable register */ outb(0x0d,io); /* Write EFIR, extended function index register */ oldid=inb(io+1); /* Read EFDR, extended function data register */ outb(0x0e,io); oldrev=inb(io+1); outb(0x20,io); id=inb(io+1); outb(0x21,io); rev=inb(io+1); outb(0xaa,io); /* Magic Seal */ if ((x_id == id) && (x_oldrev == oldrev) && (x_oldid == oldid) && (x_rev == rev)) return; /* protection against false positives */ decode_smsc(io,key,oldid,oldrev); } static void __devinit detect_and_report_winbond (void) { if (verbose_probing) printk(KERN_DEBUG "Winbond Super-IO detection, now testing ports 3F0,370,250,4E,2E ...\n"); winbond_check(0x3f0,0x87); winbond_check(0x370,0x87); winbond_check(0x2e ,0x87); winbond_check(0x4e ,0x87); winbond_check(0x3f0,0x86); winbond_check2(0x250,0x88); winbond_check2(0x250,0x89); } static void __devinit detect_and_report_smsc (void) { if (verbose_probing) printk(KERN_DEBUG "SMSC Super-IO detection, now testing Ports 2F0, 370 ...\n"); smsc_check(0x3f0,0x55); smsc_check(0x370,0x55); smsc_check(0x3f0,0x44); smsc_check(0x370,0x44); } #endif /* CONFIG_PARPORT_PC_SUPERIO */ static int __devinit get_superio_dma (struct parport *p) { int i=0; while( (superios[i].io != p->base) && (i<NR_SUPERIOS)) i++; if (i!=NR_SUPERIOS) return superios[i].dma; return PARPORT_DMA_NONE; } static int __devinit get_superio_irq (struct parport *p) { int i=0; while( (superios[i].io != p->base) && (i<NR_SUPERIOS)) i++; if (i!=NR_SUPERIOS) return superios[i].irq; return PARPORT_IRQ_NONE; } /* --- Mode detection ------------------------------------- */ /* * Checks for port existence, all ports support SPP MODE * Returns: * 0 : No parallel port at this adress * PARPORT_MODE_PCSPP : SPP port detected * (if the user specified an ioport himself, * this shall always be the case!) * */ static int __devinit parport_SPP_supported(struct parport *pb) { unsigned char r, w; /* * first clear an eventually pending EPP timeout * I (sailer@ife.ee.ethz.ch) have an SMSC chipset * that does not even respond to SPP cycles if an EPP * timeout is pending */ clear_epp_timeout(pb); /* Do a simple read-write test to make sure the port exists. */ w = 0xc; outb (w, CONTROL (pb)); /* Is there a control register that we can read from? Some * ports don't allow reads, so read_control just returns a * software copy. Some ports _do_ allow reads, so bypass the * software copy here. In addition, some bits aren't * writable. */ r = inb (CONTROL (pb)); if ((r & 0xf) == w) { w = 0xe; outb (w, CONTROL (pb)); r = inb (CONTROL (pb)); outb (0xc, CONTROL (pb)); if ((r & 0xf) == w) return PARPORT_MODE_PCSPP; } if (user_specified) /* That didn't work, but the user thinks there's a * port here. */ printk (KERN_INFO "parport 0x%lx (WARNING): CTR: " "wrote 0x%02x, read 0x%02x\n", pb->base, w, r); /* Try the data register. The data lines aren't tri-stated at * this stage, so we expect back what we wrote. */ w = 0xaa; parport_pc_write_data (pb, w); r = parport_pc_read_data (pb); if (r == w) { w = 0x55; parport_pc_write_data (pb, w); r = parport_pc_read_data (pb); if (r == w) return PARPORT_MODE_PCSPP; } if (user_specified) { /* Didn't work, but the user is convinced this is the * place. */ printk (KERN_INFO "parport 0x%lx (WARNING): DATA: " "wrote 0x%02x, read 0x%02x\n", pb->base, w, r); printk (KERN_INFO "parport 0x%lx: You gave this address, " "but there is probably no parallel port there!\n", pb->base); } /* It's possible that we can't read the control register or * the data register. In that case just believe the user. */ if (user_specified) return PARPORT_MODE_PCSPP; return 0; } /* Check for ECR * * Old style XT ports alias io ports every 0x400, hence accessing ECR * on these cards actually accesses the CTR. * * Modern cards don't do this but reading from ECR will return 0xff * regardless of what is written here if the card does NOT support * ECP. * * We first check to see if ECR is the same as CTR. If not, the low * two bits of ECR aren't writable, so we check by writing ECR and * reading it back to see if it's what we expect. */ static int __devinit parport_ECR_present(struct parport *pb) { struct parport_pc_private *priv = pb->private_data; unsigned char r = 0xc; outb (r, CONTROL (pb)); if ((inb (ECONTROL (pb)) & 0x3) == (r & 0x3)) { outb (r ^ 0x2, CONTROL (pb)); /* Toggle bit 1 */ r = inb (CONTROL (pb)); if ((inb (ECONTROL (pb)) & 0x2) == (r & 0x2)) goto no_reg; /* Sure that no ECR register exists */ } if ((inb (ECONTROL (pb)) & 0x3 ) != 0x1) goto no_reg; ECR_WRITE (pb, 0x34); if (inb (ECONTROL (pb)) != 0x35) goto no_reg; priv->ecr = 1; outb (0xc, CONTROL (pb)); /* Go to mode 000 */ frob_set_mode (pb, ECR_SPP); return 1; no_reg: outb (0xc, CONTROL (pb)); return 0; } #ifdef CONFIG_PARPORT_1284 /* Detect PS/2 support. * * Bit 5 (0x20) sets the PS/2 data direction; setting this high * allows us to read data from the data lines. In theory we would get back * 0xff but any peripheral attached to the port may drag some or all of the * lines down to zero. So if we get back anything that isn't the contents * of the data register we deem PS/2 support to be present. * * Some SPP ports have "half PS/2" ability - you can't turn off the line * drivers, but an external peripheral with sufficiently beefy drivers of * its own can overpower them and assert its own levels onto the bus, from * where they can then be read back as normal. Ports with this property * and the right type of device attached are likely to fail the SPP test, * (as they will appear to have stuck bits) and so the fact that they might * be misdetected here is rather academic. */ static int __devinit parport_PS2_supported(struct parport *pb) { int ok = 0; clear_epp_timeout(pb); /* try to tri-state the buffer */ parport_pc_data_reverse (pb); parport_pc_write_data(pb, 0x55); if (parport_pc_read_data(pb) != 0x55) ok++; parport_pc_write_data(pb, 0xaa); if (parport_pc_read_data(pb) != 0xaa) ok++; /* cancel input mode */ parport_pc_data_forward (pb); if (ok) { pb->modes |= PARPORT_MODE_TRISTATE; } else { struct parport_pc_private *priv = pb->private_data; priv->ctr_writable &= ~0x20; } return ok; } #ifdef CONFIG_PARPORT_PC_FIFO static int __devinit parport_ECP_supported(struct parport *pb) { int i; int config, configb; int pword; struct parport_pc_private *priv = pb->private_data; /* Translate ECP intrLine to ISA irq value */ static const int intrline[]= { 0, 7, 9, 10, 11, 14, 15, 5 }; /* If there is no ECR, we have no hope of supporting ECP. */ if (!priv->ecr) return 0; /* Find out FIFO depth */ ECR_WRITE (pb, ECR_SPP << 5); /* Reset FIFO */ ECR_WRITE (pb, ECR_TST << 5); /* TEST FIFO */ for (i=0; i < 1024 && !(inb (ECONTROL (pb)) & 0x02); i++) outb (0xaa, FIFO (pb)); /* * Using LGS chipset it uses ECR register, but * it doesn't support ECP or FIFO MODE */ if (i == 1024) { ECR_WRITE (pb, ECR_SPP << 5); return 0; } priv->fifo_depth = i; if (verbose_probing) printk (KERN_DEBUG "0x%lx: FIFO is %d bytes\n", pb->base, i); /* Find out writeIntrThreshold */ frob_econtrol (pb, 1<<2, 1<<2); frob_econtrol (pb, 1<<2, 0); for (i = 1; i <= priv->fifo_depth; i++) { inb (FIFO (pb)); udelay (50); if (inb (ECONTROL (pb)) & (1<<2)) break; } if (i <= priv->fifo_depth) { if (verbose_probing) printk (KERN_DEBUG "0x%lx: writeIntrThreshold is %d\n", pb->base, i); } else /* Number of bytes we know we can write if we get an interrupt. */ i = 0; priv->writeIntrThreshold = i; /* Find out readIntrThreshold */ frob_set_mode (pb, ECR_PS2); /* Reset FIFO and enable PS2 */ parport_pc_data_reverse (pb); /* Must be in PS2 mode */ frob_set_mode (pb, ECR_TST); /* Test FIFO */ frob_econtrol (pb, 1<<2, 1<<2); frob_econtrol (pb, 1<<2, 0); for (i = 1; i <= priv->fifo_depth; i++) { outb (0xaa, FIFO (pb)); if (inb (ECONTROL (pb)) & (1<<2)) break; } if (i <= priv->fifo_depth) { if (verbose_probing) printk (KERN_INFO "0x%lx: readIntrThreshold is %d\n", pb->base, i); } else /* Number of bytes we can read if we get an interrupt. */ i = 0; priv->readIntrThreshold = i; ECR_WRITE (pb, ECR_SPP << 5); /* Reset FIFO */ ECR_WRITE (pb, 0xf4); /* Configuration mode */ config = inb (CONFIGA (pb)); pword = (config >> 4) & 0x7; switch (pword) { case 0: pword = 2; printk (KERN_WARNING "0x%lx: Unsupported pword size!\n", pb->base); break; case 2: pword = 4; printk (KERN_WARNING "0x%lx: Unsupported pword size!\n", pb->base); break; default: printk (KERN_WARNING "0x%lx: Unknown implementation ID\n", pb->base); /* Assume 1 */ case 1: pword = 1; } priv->pword = pword; if (verbose_probing) { printk (KERN_DEBUG "0x%lx: PWord is %d bits\n", pb->base, 8 * pword); printk (KERN_DEBUG "0x%lx: Interrupts are ISA-%s\n", pb->base, config & 0x80 ? "Level" : "Pulses"); configb = inb (CONFIGB (pb)); printk (KERN_DEBUG "0x%lx: ECP port cfgA=0x%02x cfgB=0x%02x\n", pb->base, config, configb); printk (KERN_DEBUG "0x%lx: ECP settings irq=", pb->base); if ((configb >>3) & 0x07) printk("%d",intrline[(configb >>3) & 0x07]); else printk("<none or set by other means>"); printk (" dma="); if( (configb & 0x03 ) == 0x00) printk("<none or set by other means>\n"); else printk("%d\n",configb & 0x07); } /* Go back to mode 000 */ frob_set_mode (pb, ECR_SPP); return 1; } #endif static int __devinit parport_ECPPS2_supported(struct parport *pb) { const struct parport_pc_private *priv = pb->private_data; int result; unsigned char oecr; if (!priv->ecr) return 0; oecr = inb (ECONTROL (pb)); ECR_WRITE (pb, ECR_PS2 << 5); result = parport_PS2_supported(pb); ECR_WRITE (pb, oecr); return result; } /* EPP mode detection */ static int __devinit parport_EPP_supported(struct parport *pb) { const struct parport_pc_private *priv = pb->private_data; /* * Theory: * Bit 0 of STR is the EPP timeout bit, this bit is 0 * when EPP is possible and is set high when an EPP timeout * occurs (EPP uses the HALT line to stop the CPU while it does * the byte transfer, an EPP timeout occurs if the attached * device fails to respond after 10 micro seconds). * * This bit is cleared by either reading it (National Semi) * or writing a 1 to the bit (SMC, UMC, WinBond), others ??? * This bit is always high in non EPP modes. */ /* If EPP timeout bit clear then EPP available */ if (!clear_epp_timeout(pb)) { return 0; /* No way to clear timeout */ } /* Check for Intel bug. */ if (priv->ecr) { unsigned char i; for (i = 0x00; i < 0x80; i += 0x20) { ECR_WRITE (pb, i); if (clear_epp_timeout (pb)) { /* Phony EPP in ECP. */ return 0; } } } pb->modes |= PARPORT_MODE_EPP; /* Set up access functions to use EPP hardware. */ pb->ops->epp_read_data = parport_pc_epp_read_data; pb->ops->epp_write_data = parport_pc_epp_write_data; pb->ops->epp_read_addr = parport_pc_epp_read_addr; pb->ops->epp_write_addr = parport_pc_epp_write_addr; return 1; } static int __devinit parport_ECPEPP_supported(struct parport *pb) { struct parport_pc_private *priv = pb->private_data; int result; unsigned char oecr; if (!priv->ecr) { return 0; } oecr = inb (ECONTROL (pb)); /* Search for SMC style EPP+ECP mode */ ECR_WRITE (pb, 0x80); outb (0x04, CONTROL (pb)); result = parport_EPP_supported(pb); ECR_WRITE (pb, oecr); if (result) { /* Set up access functions to use ECP+EPP hardware. */ pb->ops->epp_read_data = parport_pc_ecpepp_read_data; pb->ops->epp_write_data = parport_pc_ecpepp_write_data; pb->ops->epp_read_addr = parport_pc_ecpepp_read_addr; pb->ops->epp_write_addr = parport_pc_ecpepp_write_addr; } return result; } #else /* No IEEE 1284 support */ /* Don't bother probing for modes we know we won't use. */ static int __devinit parport_PS2_supported(struct parport *pb) { return 0; } #ifdef CONFIG_PARPORT_PC_FIFO static int __devinit parport_ECP_supported(struct parport *pb) { return 0; } #endif static int __devinit parport_EPP_supported(struct parport *pb) { return 0; } static int __devinit parport_ECPEPP_supported(struct parport *pb){return 0;} static int __devinit parport_ECPPS2_supported(struct parport *pb){return 0;} #endif /* No IEEE 1284 support */ /* --- IRQ detection -------------------------------------- */ /* Only if supports ECP mode */ static int __devinit programmable_irq_support(struct parport *pb) { int irq, intrLine; unsigned char oecr = inb (ECONTROL (pb)); static const int lookup[8] = { PARPORT_IRQ_NONE, 7, 9, 10, 11, 14, 15, 5 }; ECR_WRITE (pb, ECR_CNF << 5); /* Configuration MODE */ intrLine = (inb (CONFIGB (pb)) >> 3) & 0x07; irq = lookup[intrLine]; ECR_WRITE (pb, oecr); return irq; } static int __devinit irq_probe_ECP(struct parport *pb) { int i; unsigned long irqs; sti(); irqs = probe_irq_on(); ECR_WRITE (pb, ECR_SPP << 5); /* Reset FIFO */ ECR_WRITE (pb, (ECR_TST << 5) | 0x04); ECR_WRITE (pb, ECR_TST << 5); /* If Full FIFO sure that writeIntrThreshold is generated */ for (i=0; i < 1024 && !(inb (ECONTROL (pb)) & 0x02) ; i++) outb (0xaa, FIFO (pb)); pb->irq = probe_irq_off(irqs); ECR_WRITE (pb, ECR_SPP << 5); if (pb->irq <= 0) pb->irq = PARPORT_IRQ_NONE; return pb->irq; } /* * This detection seems that only works in National Semiconductors * This doesn't work in SMC, LGS, and Winbond */ static int __devinit irq_probe_EPP(struct parport *pb) { #ifndef ADVANCED_DETECT return PARPORT_IRQ_NONE; #else int irqs; unsigned char oecr; if (pb->modes & PARPORT_MODE_PCECR) oecr = inb (ECONTROL (pb)); sti(); irqs = probe_irq_on(); if (pb->modes & PARPORT_MODE_PCECR) frob_econtrol (pb, 0x10, 0x10); clear_epp_timeout(pb); parport_pc_frob_control (pb, 0x20, 0x20); parport_pc_frob_control (pb, 0x10, 0x10); clear_epp_timeout(pb); /* Device isn't expecting an EPP read * and generates an IRQ. */ parport_pc_read_epp(pb); udelay(20); pb->irq = probe_irq_off (irqs); if (pb->modes & PARPORT_MODE_PCECR) ECR_WRITE (pb, oecr); parport_pc_write_control(pb, 0xc); if (pb->irq <= 0) pb->irq = PARPORT_IRQ_NONE; return pb->irq; #endif /* Advanced detection */ } static int __devinit irq_probe_SPP(struct parport *pb) { /* Don't even try to do this. */ return PARPORT_IRQ_NONE; } /* We will attempt to share interrupt requests since other devices * such as sound cards and network cards seem to like using the * printer IRQs. * * When ECP is available we can autoprobe for IRQs. * NOTE: If we can autoprobe it, we can register the IRQ. */ static int __devinit parport_irq_probe(struct parport *pb) { struct parport_pc_private *priv = pb->private_data; if (priv->ecr) { pb->irq = programmable_irq_support(pb); if (pb->irq == PARPORT_IRQ_NONE) pb->irq = irq_probe_ECP(pb); } if ((pb->irq == PARPORT_IRQ_NONE) && priv->ecr && (pb->modes & PARPORT_MODE_EPP)) pb->irq = irq_probe_EPP(pb); clear_epp_timeout(pb); if (pb->irq == PARPORT_IRQ_NONE && (pb->modes & PARPORT_MODE_EPP)) pb->irq = irq_probe_EPP(pb); clear_epp_timeout(pb); if (pb->irq == PARPORT_IRQ_NONE) pb->irq = irq_probe_SPP(pb); if (pb->irq == PARPORT_IRQ_NONE) pb->irq = get_superio_irq(pb); return pb->irq; } /* --- DMA detection -------------------------------------- */ /* Only if chipset conforms to ECP ISA Interface Standard */ static int __devinit programmable_dma_support (struct parport *p) { unsigned char oecr = inb (ECONTROL (p)); int dma; frob_set_mode (p, ECR_CNF); dma = inb (CONFIGB(p)) & 0x07; /* 000: Indicates jumpered 8-bit DMA if read-only. 100: Indicates jumpered 16-bit DMA if read-only. */ if ((dma & 0x03) == 0) dma = PARPORT_DMA_NONE; ECR_WRITE (p, oecr); return dma; } static int __devinit parport_dma_probe (struct parport *p) { const struct parport_pc_private *priv = p->private_data; if (priv->ecr) p->dma = programmable_dma_support(p); /* ask ECP chipset first */ if (p->dma == PARPORT_DMA_NONE) { /* ask known Super-IO chips proper, although these claim ECP compatible, some don't report their DMA conforming to ECP standards */ p->dma = get_superio_dma(p); } return p->dma; } /* --- Initialisation code -------------------------------- */ struct parport *parport_pc_probe_port (unsigned long int base, unsigned long int base_hi, int irq, int dma, struct pci_dev *dev) { struct parport_pc_private *priv; struct parport_operations *ops; struct parport tmp; struct parport *p = &tmp; int probedirq = PARPORT_IRQ_NONE; if (check_region(base, 3)) return NULL; priv = kmalloc (sizeof (struct parport_pc_private), GFP_KERNEL); if (!priv) { printk (KERN_DEBUG "parport (0x%lx): no memory!\n", base); return NULL; } ops = kmalloc (sizeof (struct parport_operations), GFP_KERNEL); if (!ops) { printk (KERN_DEBUG "parport (0x%lx): no memory for ops!\n", base); kfree (priv); return NULL; } memcpy (ops, &parport_pc_ops, sizeof (struct parport_operations)); priv->ctr = 0xc; priv->ctr_writable = ~0x10; priv->ecr = 0; priv->fifo_depth = 0; priv->dma_buf = 0; priv->dma_handle = 0; priv->dev = dev; p->base = base; p->base_hi = base_hi; p->irq = irq; p->dma = dma; p->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_SAFEININT; p->ops = ops; p->private_data = priv; p->physport = p; if (base_hi && !check_region(base_hi,3)) parport_ECR_present(p); if (base != 0x3bc) { if (!check_region(base+0x3, 5)) { if (!parport_EPP_supported(p)) parport_ECPEPP_supported(p); } } if (!parport_SPP_supported (p)) { /* No port. */ kfree (priv); kfree (ops); return NULL; } if (priv->ecr) parport_ECPPS2_supported(p); else parport_PS2_supported (p); if (!(p = parport_register_port(base, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, ops))) { kfree (priv); kfree (ops); return NULL; } p->base_hi = base_hi; p->modes = tmp.modes; p->size = (p->modes & PARPORT_MODE_EPP)?8:3; p->private_data = priv; printk(KERN_INFO "%s: PC-style at 0x%lx", p->name, p->base); if (p->base_hi && priv->ecr) printk(" (0x%lx)", p->base_hi); p->irq = irq; p->dma = dma; if (p->irq == PARPORT_IRQ_AUTO) { p->irq = PARPORT_IRQ_NONE; parport_irq_probe(p); } else if (p->irq == PARPORT_IRQ_PROBEONLY) { p->irq = PARPORT_IRQ_NONE; parport_irq_probe(p); probedirq = p->irq; p->irq = PARPORT_IRQ_NONE; } if (p->irq != PARPORT_IRQ_NONE) { printk(", irq %d", p->irq); priv->ctr_writable |= 0x10; if (p->dma == PARPORT_DMA_AUTO) { p->dma = PARPORT_DMA_NONE; parport_dma_probe(p); } } if (p->dma == PARPORT_DMA_AUTO) /* To use DMA, giving the irq is mandatory (see above) */ p->dma = PARPORT_DMA_NONE; #ifdef CONFIG_PARPORT_PC_FIFO if (parport_ECP_supported(p) && p->dma != PARPORT_DMA_NOFIFO && priv->fifo_depth > 0 && p->irq != PARPORT_IRQ_NONE) { p->modes |= PARPORT_MODE_ECP | PARPORT_MODE_COMPAT; p->ops->compat_write_data = parport_pc_compat_write_block_pio; #ifdef CONFIG_PARPORT_1284 p->ops->ecp_write_data = parport_pc_ecp_write_block_pio; /* currently broken, but working on it.. (FB) */ /* p->ops->ecp_read_data = parport_pc_ecp_read_block_pio; */ #endif /* IEEE 1284 support */ if (p->dma != PARPORT_DMA_NONE) { printk(", dma %d", p->dma); p->modes |= PARPORT_MODE_DMA; } else printk(", using FIFO"); } else /* We can't use the DMA channel after all. */ p->dma = PARPORT_DMA_NONE; #endif /* Allowed to use FIFO/DMA */ printk(" ["); #define printmode(x) {if(p->modes&PARPORT_MODE_##x){printk("%s%s",f?",":"",#x);f++;}} { int f = 0; printmode(PCSPP); printmode(TRISTATE); printmode(COMPAT) printmode(EPP); printmode(ECP); printmode(DMA); } #undef printmode #ifndef CONFIG_PARPORT_1284 printk ("(,...)"); #endif /* CONFIG_PARPORT_1284 */ printk("]\n"); if (probedirq != PARPORT_IRQ_NONE) printk(KERN_INFO "%s: irq %d detected\n", p->name, probedirq); parport_proc_register(p); request_region (p->base, 3, p->name); if (p->size > 3) request_region (p->base + 3, p->size - 3, p->name); if (p->modes & PARPORT_MODE_ECP) request_region (p->base_hi, 3, p->name); if (p->irq != PARPORT_IRQ_NONE) { if (request_irq (p->irq, parport_pc_interrupt, 0, p->name, p)) { printk (KERN_WARNING "%s: irq %d in use, " "resorting to polled operation\n", p->name, p->irq); p->irq = PARPORT_IRQ_NONE; p->dma = PARPORT_DMA_NONE; } #ifdef CONFIG_PARPORT_PC_FIFO if (p->dma != PARPORT_DMA_NONE) { if (request_dma (p->dma, p->name)) { printk (KERN_WARNING "%s: dma %d in use, " "resorting to PIO operation\n", p->name, p->dma); p->dma = PARPORT_DMA_NONE; } else { priv->dma_buf = pci_alloc_consistent(priv->dev, PAGE_SIZE, &priv->dma_handle); if (! priv->dma_buf) { printk (KERN_WARNING "%s: " "cannot get buffer for DMA, " "resorting to PIO operation\n", p->name); free_dma(p->dma); p->dma = PARPORT_DMA_NONE; } } } #endif /* CONFIG_PARPORT_PC_FIFO */ } /* Done probing. Now put the port into a sensible start-up state. */ if (priv->ecr) /* * Put the ECP detected port in PS2 mode. * Do this also for ports that have ECR but don't do ECP. */ ECR_WRITE (p, 0x34); parport_pc_write_data(p, 0); parport_pc_data_forward (p); /* Now that we've told the sharing engine about the port, and found out its characteristics, let the high-level drivers know about it. */ parport_announce_port (p); return p; } void parport_pc_unregister_port (struct parport *p) { #ifdef CONFIG_PARPORT_PC_FIFO struct parport_pc_private *priv = p->private_data; #endif /* CONFIG_PARPORT_PC_FIFO */ struct parport_operations *ops = p->ops; if (p->dma != PARPORT_DMA_NONE) free_dma(p->dma); if (p->irq != PARPORT_IRQ_NONE) free_irq(p->irq, p); release_region(p->base, 3); if (p->size > 3) release_region(p->base + 3, p->size - 3); if (p->modes & PARPORT_MODE_ECP) release_region(p->base_hi, 3); parport_proc_unregister(p); #ifdef CONFIG_PARPORT_PC_FIFO if (priv->dma_buf) pci_free_consistent(priv->dev, PAGE_SIZE, priv->dma_buf, priv->dma_handle); #endif /* CONFIG_PARPORT_PC_FIFO */ kfree (p->private_data); parport_unregister_port(p); kfree (ops); /* hope no-one cached it */ } #ifdef CONFIG_PCI /* ITE support maintained by Rich Liu <richliu@poorman.org> */ static int __devinit sio_ite_8872_probe (struct pci_dev *pdev, int autoirq, int autodma) { short inta_addr[6] = { 0x2A0, 0x2C0, 0x220, 0x240, 0x1E0 }; u32 ite8872set; u32 ite8872_lpt, ite8872_lpthi; u8 ite8872_irq, type; int irq; int i; DPRINTK (KERN_DEBUG "sio_ite_8872_probe()\n"); // make sure which one chip for(i = 0; i < 5; i++) { if (check_region (inta_addr[i], 0x8) >= 0) { int test; pci_write_config_dword (pdev, 0x60, 0xe7000000 | inta_addr[i]); pci_write_config_dword (pdev, 0x78, 0x00000000 | inta_addr[i]); test = inb (inta_addr[i]); if (test != 0xff) break; } } if(i >= 5) { printk (KERN_INFO "parport_pc: cannot find ITE8872 INTA\n"); return 0; } type = inb (inta_addr[i] + 0x18); type &= 0x0f; switch (type) { case 0x2: printk (KERN_INFO "parport_pc: ITE8871 found (1P)\n"); ite8872set = 0x64200000; break; case 0xa: printk (KERN_INFO "parport_pc: ITE8875 found (1P)\n"); ite8872set = 0x64200000; break; case 0xe: printk (KERN_INFO "parport_pc: ITE8872 found (2S1P)\n"); ite8872set = 0x64e00000; break; case 0x6: printk (KERN_INFO "parport_pc: ITE8873 found (1S)\n"); return 0; case 0x8: DPRINTK (KERN_DEBUG "parport_pc: ITE8874 found (2S)\n"); return 0; default: printk (KERN_INFO "parport_pc: unknown ITE887x\n"); printk (KERN_INFO "parport_pc: please mail 'lspci -nvv' " "output to Rich.Liu@ite.com.tw\n"); return 0; } pci_read_config_byte (pdev, 0x3c, &ite8872_irq); pci_read_config_dword (pdev, 0x1c, &ite8872_lpt); ite8872_lpt &= 0x0000ff00; pci_read_config_dword (pdev, 0x20, &ite8872_lpthi); ite8872_lpthi &= 0x0000ff00; pci_write_config_dword (pdev, 0x6c, 0xe3000000 | ite8872_lpt); pci_write_config_dword (pdev, 0x70, 0xe3000000 | ite8872_lpthi); pci_write_config_dword (pdev, 0x80, (ite8872_lpthi<<16) | ite8872_lpt); // SET SPP&EPP , Parallel Port NO DMA , Enable All Function // SET Parallel IRQ pci_write_config_dword (pdev, 0x9c, ite8872set | (ite8872_irq * 0x11111)); DPRINTK (KERN_DEBUG "ITE887x: The IRQ is %d.\n", ite8872_irq); DPRINTK (KERN_DEBUG "ITE887x: The PARALLEL I/O port is 0x%x.\n", ite8872_lpt); DPRINTK (KERN_DEBUG "ITE887x: The PARALLEL I/O porthi is 0x%x.\n", ite8872_lpthi); /* Let the user (or defaults) steer us away from interrupts */ irq = ite8872_irq; if (autoirq != PARPORT_IRQ_AUTO) irq = PARPORT_IRQ_NONE; if (parport_pc_probe_port (ite8872_lpt, ite8872_lpthi, irq, PARPORT_DMA_NONE, NULL)) { printk (KERN_INFO "parport_pc: ITE 8872 parallel port: io=0x%X", ite8872_lpt); if (irq != PARPORT_IRQ_NONE) printk (", irq=%d", irq); printk ("\n"); return 1; } return 0; } /* Via support maintained by Jeff Garzik <jgarzik@pobox.com> */ static int __devinit sio_via_686a_probe (struct pci_dev *pdev, int autoirq, int autodma) { u8 tmp; int dma, irq; unsigned port1, port2, have_eppecp; /* * unlock super i/o configuration, set 0x85_1 */ pci_read_config_byte (pdev, 0x85, &tmp); tmp |= (1 << 1); pci_write_config_byte (pdev, 0x85, tmp); /* * Super I/O configuration, index port == 3f0h, data port == 3f1h */ /* 0xE2_1-0: Parallel Port Mode / Enable */ outb (0xE2, 0x3F0); tmp = inb (0x3F1); if ((tmp & 0x03) == 0x03) { printk (KERN_INFO "parport_pc: Via 686A parallel port disabled in BIOS\n"); return 0; } /* 0xE6: Parallel Port I/O Base Address, bits 9-2 */ outb (0xE6, 0x3F0); port1 = inb (0x3F1) << 2; switch (port1) { case 0x3bc: port2 = 0x7bc; break; case 0x378: port2 = 0x778; break; case 0x278: port2 = 0x678; break; default: printk (KERN_INFO "parport_pc: Weird Via 686A parport base 0x%X, ignoring\n", port1); return 0; } /* 0xF0_5: EPP+ECP enable */ outb (0xF0, 0x3F0); have_eppecp = (inb (0x3F1) & (1 << 5)); /* * lock super i/o configuration, clear 0x85_1 */ pci_read_config_byte (pdev, 0x85, &tmp); tmp &= ~(1 << 1); pci_write_config_byte (pdev, 0x85, tmp); /* * Get DMA and IRQ from PCI->ISA bridge PCI config registers */ /* 0x50_3-2: PnP Routing for Parallel Port DRQ */ pci_read_config_byte (pdev, 0x50, &tmp); dma = ((tmp >> 2) & 0x03); /* 0x51_7-4: PnP Routing for Parallel Port IRQ */ pci_read_config_byte (pdev, 0x51, &tmp); irq = ((tmp >> 4) & 0x0F); /* filter bogus IRQs */ switch (irq) { case 0: case 2: case 8: case 13: irq = PARPORT_IRQ_NONE; break; default: /* do nothing */ break; } /* if ECP not enabled, DMA is not enabled, assumed bogus 'dma' value */ if (!have_eppecp) dma = PARPORT_DMA_NONE; /* Let the user (or defaults) steer us away from interrupts and DMA */ if (autoirq != PARPORT_IRQ_AUTO) { irq = PARPORT_IRQ_NONE; dma = PARPORT_DMA_NONE; } if (autodma != PARPORT_DMA_AUTO) dma = PARPORT_DMA_NONE; /* finally, do the probe with values obtained */ if (parport_pc_probe_port (port1, port2, irq, dma, NULL)) { printk (KERN_INFO "parport_pc: Via 686A parallel port: io=0x%X", port1); if (irq != PARPORT_IRQ_NONE) printk (", irq=%d", irq); if (dma != PARPORT_DMA_NONE) printk (", dma=%d", dma); printk ("\n"); return 1; } printk (KERN_WARNING "parport_pc: Strange, can't probe Via 686A parallel port: io=0x%X, irq=%d, dma=%d\n", port1, irq, dma); return 0; } enum parport_pc_sio_types { sio_via_686a = 0, /* Via VT82C686A motherboard Super I/O */ sio_ite_8872, last_sio }; /* each element directly indexed from enum list, above */ static struct parport_pc_superio { int (*probe) (struct pci_dev *pdev, int autoirq, int autodma); } parport_pc_superio_info[] __devinitdata = { { sio_via_686a_probe, }, { sio_ite_8872_probe, }, }; enum parport_pc_pci_cards { siig_1p_10x = last_sio, siig_2p_10x, siig_1p_20x, siig_2p_20x, lava_parallel, lava_parallel_dual_a, lava_parallel_dual_b, boca_ioppar, plx_9050, timedia_4078a, timedia_4079h, timedia_4085h, timedia_4088a, timedia_4089a, timedia_4095a, timedia_4096a, timedia_4078u, timedia_4079a, timedia_4085u, timedia_4079r, timedia_4079s, timedia_4079d, timedia_4079e, timedia_4079f, timedia_9079a, timedia_9079b, timedia_9079c, timedia_4006a, timedia_4014, timedia_4008a, timedia_4018, timedia_9018a, syba_2p_epp, syba_1p_ecp, titan_010l, titan_1284p2, avlab_1p, avlab_2p, oxsemi_954, oxsemi_840, aks_0100, mobility_pp, }; /* each element directly indexed from enum list, above * (but offset by last_sio) */ static struct parport_pc_pci { int numports; struct { /* BAR (base address registers) numbers in the config space header */ int lo; int hi; /* -1 if not there, >6 for offset-method (max BAR is 6) */ } addr[4]; /* If set, this is called immediately after pci_enable_device. * If it returns non-zero, no probing will take place and the * ports will not be used. */ int (*preinit_hook) (struct pci_dev *pdev, int autoirq, int autodma); /* If set, this is called after probing for ports. If 'failed' * is non-zero we couldn't use any of the ports. */ void (*postinit_hook) (struct pci_dev *pdev, int failed); } cards[] __devinitdata = { /* siig_1p_10x */ { 1, { { 2, 3 }, } }, /* siig_2p_10x */ { 2, { { 2, 3 }, { 4, 5 }, } }, /* siig_1p_20x */ { 1, { { 0, 1 }, } }, /* siig_2p_20x */ { 2, { { 0, 1 }, { 2, 3 }, } }, /* lava_parallel */ { 1, { { 0, -1 }, } }, /* lava_parallel_dual_a */ { 1, { { 0, -1 }, } }, /* lava_parallel_dual_b */ { 1, { { 0, -1 }, } }, /* boca_ioppar */ { 1, { { 0, -1 }, } }, /* plx_9050 */ { 2, { { 4, -1 }, { 5, -1 }, } }, /* timedia_4078a */ { 1, { { 2, -1 }, } }, /* timedia_4079h */ { 1, { { 2, 3 }, } }, /* timedia_4085h */ { 2, { { 2, -1 }, { 4, -1 }, } }, /* timedia_4088a */ { 2, { { 2, 3 }, { 4, 5 }, } }, /* timedia_4089a */ { 2, { { 2, 3 }, { 4, 5 }, } }, /* timedia_4095a */ { 2, { { 2, 3 }, { 4, 5 }, } }, /* timedia_4096a */ { 2, { { 2, 3 }, { 4, 5 }, } }, /* timedia_4078u */ { 1, { { 2, -1 }, } }, /* timedia_4079a */ { 1, { { 2, 3 }, } }, /* timedia_4085u */ { 2, { { 2, -1 }, { 4, -1 }, } }, /* timedia_4079r */ { 1, { { 2, 3 }, } }, /* timedia_4079s */ { 1, { { 2, 3 }, } }, /* timedia_4079d */ { 1, { { 2, 3 }, } }, /* timedia_4079e */ { 1, { { 2, 3 }, } }, /* timedia_4079f */ { 1, { { 2, 3 }, } }, /* timedia_9079a */ { 1, { { 2, 3 }, } }, /* timedia_9079b */ { 1, { { 2, 3 }, } }, /* timedia_9079c */ { 1, { { 2, 3 }, } }, /* timedia_4006a */ { 1, { { 0, -1 }, } }, /* timedia_4014 */ { 2, { { 0, -1 }, { 2, -1 }, } }, /* timedia_4008a */ { 1, { { 0, 1 }, } }, /* timedia_4018 */ { 2, { { 0, 1 }, { 2, 3 }, } }, /* timedia_9018a */ { 2, { { 0, 1 }, { 2, 3 }, } }, /* SYBA uses fixed offsets in a 1K io window */ /* syba_2p_epp AP138B */ { 2, { { 0, 0x078 }, { 0, 0x178 }, } }, /* syba_1p_ecp W83787 */ { 1, { { 0, 0x078 }, } }, /* titan_010l */ { 1, { { 3, -1 }, } }, /* titan_1284p2 */ { 2, { { 0, 1 }, { 2, 3 }, } }, /* avlab_1p */ { 1, { { 0, 1}, } }, /* avlab_2p */ { 2, { { 0, 1}, { 2, 3 },} }, /* The Oxford Semi cards are unusual: 954 doesn't support ECP, * and 840 locks up if you write 1 to bit 2! */ /* oxsemi_954 */ { 1, { { 0, -1 }, } }, /* oxsemi_840 */ { 1, { { 0, -1 }, } }, /* aks_0100 */ { 1, { { 0, -1 }, } }, /* mobility_pp */ { 1, { { 0, 1 }, } }, }; static struct pci_device_id parport_pc_pci_tbl[] __devinitdata = { /* Super-IO onboard chips */ { 0x1106, 0x0686, PCI_ANY_ID, PCI_ANY_ID, 0, 0, sio_via_686a }, { PCI_VENDOR_ID_ITE, PCI_DEVICE_ID_ITE_8872, PCI_ANY_ID, PCI_ANY_ID, 0, 0, sio_ite_8872 }, /* PCI cards */ { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_1P_10x, PCI_ANY_ID, PCI_ANY_ID, 0, 0, siig_1p_10x }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2P_10x, PCI_ANY_ID, PCI_ANY_ID, 0, 0, siig_2p_10x }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_1P_20x, PCI_ANY_ID, PCI_ANY_ID, 0, 0, siig_1p_20x }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2P_20x, PCI_ANY_ID, PCI_ANY_ID, 0, 0, siig_2p_20x }, { PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_PARALLEL, PCI_ANY_ID, PCI_ANY_ID, 0, 0, lava_parallel }, { PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_DUAL_PAR_A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, lava_parallel_dual_a }, { PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_DUAL_PAR_B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, lava_parallel_dual_b }, { PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_BOCA_IOPPAR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, boca_ioppar }, { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9050, PCI_SUBVENDOR_ID_EXSYS, PCI_SUBDEVICE_ID_EXSYS_4014, 0,0, plx_9050 }, /* PCI_VENDOR_ID_TIMEDIA/SUNIX has many differing cards ...*/ { 0x1409, 0x7168, 0x1409, 0x4078, 0, 0, timedia_4078a }, { 0x1409, 0x7168, 0x1409, 0x4079, 0, 0, timedia_4079h }, { 0x1409, 0x7168, 0x1409, 0x4085, 0, 0, timedia_4085h }, { 0x1409, 0x7168, 0x1409, 0x4088, 0, 0, timedia_4088a }, { 0x1409, 0x7168, 0x1409, 0x4089, 0, 0, timedia_4089a }, { 0x1409, 0x7168, 0x1409, 0x4095, 0, 0, timedia_4095a }, { 0x1409, 0x7168, 0x1409, 0x4096, 0, 0, timedia_4096a }, { 0x1409, 0x7168, 0x1409, 0x5078, 0, 0, timedia_4078u }, { 0x1409, 0x7168, 0x1409, 0x5079, 0, 0, timedia_4079a }, { 0x1409, 0x7168, 0x1409, 0x5085, 0, 0, timedia_4085u }, { 0x1409, 0x7168, 0x1409, 0x6079, 0, 0, timedia_4079r }, { 0x1409, 0x7168, 0x1409, 0x7079, 0, 0, timedia_4079s }, { 0x1409, 0x7168, 0x1409, 0x8079, 0, 0, timedia_4079d }, { 0x1409, 0x7168, 0x1409, 0x9079, 0, 0, timedia_4079e }, { 0x1409, 0x7168, 0x1409, 0xa079, 0, 0, timedia_4079f }, { 0x1409, 0x7168, 0x1409, 0xb079, 0, 0, timedia_9079a }, { 0x1409, 0x7168, 0x1409, 0xc079, 0, 0, timedia_9079b }, { 0x1409, 0x7168, 0x1409, 0xd079, 0, 0, timedia_9079c }, { 0x1409, 0x7268, 0x1409, 0x0101, 0, 0, timedia_4006a }, { 0x1409, 0x7268, 0x1409, 0x0102, 0, 0, timedia_4014 }, { 0x1409, 0x7268, 0x1409, 0x0103, 0, 0, timedia_4008a }, { 0x1409, 0x7268, 0x1409, 0x0104, 0, 0, timedia_4018 }, { 0x1409, 0x7268, 0x1409, 0x9018, 0, 0, timedia_9018a }, { 0x14f2, 0x0121, PCI_ANY_ID, PCI_ANY_ID, 0, 0, mobility_pp }, { PCI_VENDOR_ID_SYBA, PCI_DEVICE_ID_SYBA_2P_EPP, PCI_ANY_ID, PCI_ANY_ID, 0, 0, syba_2p_epp }, { PCI_VENDOR_ID_SYBA, PCI_DEVICE_ID_SYBA_1P_ECP, PCI_ANY_ID, PCI_ANY_ID, 0, 0, syba_1p_ecp }, { PCI_VENDOR_ID_TITAN, PCI_DEVICE_ID_TITAN_010L, PCI_ANY_ID, PCI_ANY_ID, 0, 0, titan_010l }, { 0x9710, 0x9815, 0x1000, 0x0020, 0, 0, titan_1284p2 }, /* PCI_VENDOR_ID_AVLAB/Intek21 has another bunch of cards ...*/ { 0x14db, 0x2120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, avlab_1p}, /* AFAVLAB_TK9902 */ { 0x14db, 0x2121, PCI_ANY_ID, PCI_ANY_ID, 0, 0, avlab_2p}, { PCI_VENDOR_ID_OXSEMI, PCI_DEVICE_ID_OXSEMI_16PCI954PP, PCI_ANY_ID, PCI_ANY_ID, 0, 0, oxsemi_954 }, { PCI_VENDOR_ID_OXSEMI, PCI_DEVICE_ID_OXSEMI_12PCI840, PCI_ANY_ID, PCI_ANY_ID, 0, 0, oxsemi_840 }, { PCI_VENDOR_ID_AKS, PCI_DEVICE_ID_AKS_ALADDINCARD, PCI_ANY_ID, PCI_ANY_ID, 0, 0, aks_0100 }, { 0, } /* terminate list */ }; MODULE_DEVICE_TABLE(pci,parport_pc_pci_tbl); static int __devinit parport_pc_pci_probe (struct pci_dev *dev, const struct pci_device_id *id) { int err, count, n, i = id->driver_data; if (i < last_sio) /* This is an onboard Super-IO and has already been probed */ return 0; /* This is a PCI card */ i -= last_sio; count = 0; if ((err = pci_enable_device (dev)) != 0) return err; if (cards[i].preinit_hook && cards[i].preinit_hook (dev, PARPORT_IRQ_NONE, PARPORT_DMA_NONE)) return -ENODEV; for (n = 0; n < cards[i].numports; n++) { int lo = cards[i].addr[n].lo; int hi = cards[i].addr[n].hi; unsigned long io_lo, io_hi; io_lo = pci_resource_start (dev, lo); io_hi = 0; if ((hi >= 0) && (hi <= 6)) io_hi = pci_resource_start (dev, hi); else if (hi > 6) io_lo += hi; /* Reinterpret the meaning of "hi" as an offset (see SYBA def.) */ /* TODO: test if sharing interrupts works */ printk (KERN_DEBUG "PCI parallel port detected: %04x:%04x, " "I/O at %#lx(%#lx)\n", parport_pc_pci_tbl[i + last_sio].vendor, parport_pc_pci_tbl[i + last_sio].device, io_lo, io_hi); if (parport_pc_probe_port (io_lo, io_hi, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, dev)) count++; } if (cards[i].postinit_hook) cards[i].postinit_hook (dev, count == 0); return count == 0 ? -ENODEV : 0; } static struct pci_driver parport_pc_pci_driver = { name: "parport_pc", id_table: parport_pc_pci_tbl, probe: parport_pc_pci_probe, }; static int __init parport_pc_init_superio (int autoirq, int autodma) { const struct pci_device_id *id; struct pci_dev *pdev; int ret = 0; pci_for_each_dev(pdev) { id = pci_match_device (parport_pc_pci_tbl, pdev); if (id == NULL || id->driver_data >= last_sio) continue; if (parport_pc_superio_info[id->driver_data].probe (pdev, autoirq, autodma)) { ret++; } } return ret; /* number of devices found */ } #else static struct pci_driver parport_pc_pci_driver; static int __init parport_pc_init_superio(int autoirq, int autodma) {return 0;} #endif /* CONFIG_PCI */ /* This is called by parport_pc_find_nonpci_ports (in asm/parport.h) */ static int __init __attribute__((unused)) parport_pc_find_isa_ports (int autoirq, int autodma) { int count = 0; if (parport_pc_probe_port(0x3bc, 0x7bc, autoirq, autodma, NULL)) count++; if (parport_pc_probe_port(0x378, 0x778, autoirq, autodma, NULL)) count++; if (parport_pc_probe_port(0x278, 0x678, autoirq, autodma, NULL)) count++; return count; } /* This function is called by parport_pc_init if the user didn't * specify any ports to probe. Its job is to find some ports. Order * is important here -- we want ISA ports to be registered first, * followed by PCI cards (for least surprise), but before that we want * to do chipset-specific tests for some onboard ports that we know * about. * * autoirq is PARPORT_IRQ_NONE, PARPORT_IRQ_AUTO, or PARPORT_IRQ_PROBEONLY * autodma is PARPORT_DMA_NONE or PARPORT_DMA_AUTO */ static int __init parport_pc_find_ports (int autoirq, int autodma) { int count = 0, r; #ifdef CONFIG_PARPORT_PC_SUPERIO detect_and_report_winbond (); detect_and_report_smsc (); #endif /* Onboard SuperIO chipsets that show themselves on the PCI bus. */ count += parport_pc_init_superio (autoirq, autodma); /* ISA ports and whatever (see asm/parport.h). */ count += parport_pc_find_nonpci_ports (autoirq, autodma); r = pci_register_driver (&parport_pc_pci_driver); if (r >= 0) { registered_parport = 1; count += r; } return count; } int __init parport_pc_init (int *io, int *io_hi, int *irq, int *dma) { int count = 0, i = 0; if (io && *io) { /* Only probe the ports we were given. */ user_specified = 1; do { if ((*io_hi) == PARPORT_IOHI_AUTO) *io_hi = 0x400 + *io; if (parport_pc_probe_port(*(io++), *(io_hi++), *(irq++), *(dma++), NULL)) count++; } while (*io && (++i < PARPORT_PC_MAX_PORTS)); } else { count += parport_pc_find_ports (irq[0], dma[0]); } return count; } /* Exported symbols. */ EXPORT_SYMBOL (parport_pc_probe_port); EXPORT_SYMBOL (parport_pc_unregister_port); #ifdef MODULE static int io[PARPORT_PC_MAX_PORTS+1] = { [0 ... PARPORT_PC_MAX_PORTS] = 0 }; static int io_hi[PARPORT_PC_MAX_PORTS+1] = { [0 ... PARPORT_PC_MAX_PORTS] = PARPORT_IOHI_AUTO }; static int dmaval[PARPORT_PC_MAX_PORTS] = { [0 ... PARPORT_PC_MAX_PORTS-1] = PARPORT_DMA_NONE }; static int irqval[PARPORT_PC_MAX_PORTS] = { [0 ... PARPORT_PC_MAX_PORTS-1] = PARPORT_IRQ_PROBEONLY }; static const char *irq[PARPORT_PC_MAX_PORTS] = { NULL, }; static const char *dma[PARPORT_PC_MAX_PORTS] = { NULL, }; MODULE_AUTHOR("Phil Blundell, Tim Waugh, others"); MODULE_DESCRIPTION("PC-style parallel port driver"); MODULE_LICENSE("GPL"); MODULE_PARM_DESC(io, "Base I/O address (SPP regs)"); MODULE_PARM(io, "1-" __MODULE_STRING(PARPORT_PC_MAX_PORTS) "i"); MODULE_PARM_DESC(io_hi, "Base I/O address (ECR)"); MODULE_PARM(io_hi, "1-" __MODULE_STRING(PARPORT_PC_MAX_PORTS) "i"); MODULE_PARM_DESC(irq, "IRQ line"); MODULE_PARM(irq, "1-" __MODULE_STRING(PARPORT_PC_MAX_PORTS) "s"); MODULE_PARM_DESC(dma, "DMA channel"); MODULE_PARM(dma, "1-" __MODULE_STRING(PARPORT_PC_MAX_PORTS) "s"); #if defined(CONFIG_PARPORT_PC_FIFO) || defined(CONFIG_PARPORT_PC_SUPERIO) MODULE_PARM_DESC(verbose_probing, "Log chit-chat during initialisation"); MODULE_PARM(verbose_probing, "i"); #endif int init_module(void) { /* Work out how many ports we have, then get parport_share to parse the irq values. */ unsigned int i; int ret; for (i = 0; i < PARPORT_PC_MAX_PORTS && io[i]; i++); if (i) { if (parport_parse_irqs(i, irq, irqval)) return 1; if (parport_parse_dmas(i, dma, dmaval)) return 1; } else { /* The user can make us use any IRQs or DMAs we find. */ int val; if (irq[0] && !parport_parse_irqs (1, irq, &val)) switch (val) { case PARPORT_IRQ_NONE: case PARPORT_IRQ_AUTO: irqval[0] = val; break; default: printk (KERN_WARNING "parport_pc: irq specified " "without base address. Use 'io=' " "to specify one\n"); } if (dma[0] && !parport_parse_dmas (1, dma, &val)) switch (val) { case PARPORT_DMA_NONE: case PARPORT_DMA_AUTO: dmaval[0] = val; break; default: printk (KERN_WARNING "parport_pc: dma specified " "without base address. Use 'io=' " "to specify one\n"); } } ret = !parport_pc_init (io, io_hi, irqval, dmaval); if (ret && registered_parport) pci_unregister_driver (&parport_pc_pci_driver); return ret; } void cleanup_module(void) { /* We ought to keep track of which ports are actually ours. */ struct parport *p = parport_enumerate(), *tmp; if (!user_specified) pci_unregister_driver (&parport_pc_pci_driver); while (p) { tmp = p->next; if (p->modes & PARPORT_MODE_PCSPP) parport_pc_unregister_port (p); p = tmp; } } #endif
Go to most recent revision | Compare with Previous | Blame | View Log