OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [drivers/] [scsi/] [megaraid2.c] - Rev 1275

Go to most recent revision | Compare with Previous | Blame | View Log

/*
 *
 *			Linux MegaRAID device driver
 *
 * Copyright (c) 2002  LSI Logic Corporation.
 *
 *	   This program is free software; you can redistribute it and/or
 *	   modify it under the terms of the GNU General Public License
 *	   as published by the Free Software Foundation; either version
 *	   2 of the License, or (at your option) any later version.
 *
 * Copyright (c) 2002  Red Hat, Inc. All rights reserved.
 *	  - fixes
 *	  - speed-ups (list handling fixes, issued_list, optimizations.)
 *	  - lots of cleanups.
 *
 * Version : v2.10.1 (Dec 03, 2003) - Atul Mukker <Atul.Mukker@lsil.com>
 *
 * Description: Linux device driver for LSI Logic MegaRAID controller
 *
 * Supported controllers: MegaRAID 418, 428, 438, 466, 762, 467, 471, 490, 493
 *					518, 520, 531, 532
 *
 * This driver is supported by LSI Logic, with assistance from Red Hat, Dell,
 * and others. Please send updates to the public mailing list
 * linux-megaraid-devel@dell.com, and subscribe to and read archives of this
 * list at http://lists.us.dell.com/.
 *
 * For history of changes, see ChangeLog.megaraid.
 *
 */
 
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/blk.h>
#include <asm/uaccess.h>
#include <linux/delay.h>
#include <linux/reboot.h>
#include <linux/module.h>
#include <linux/list.h>
 
#include "sd.h"
#include "scsi.h"
#include "hosts.h"
 
#include "megaraid2.h"
 
MODULE_AUTHOR ("LSI Logic Corporation");
MODULE_DESCRIPTION ("LSI Logic MegaRAID driver");
MODULE_LICENSE ("GPL");
 
static unsigned int max_cmd_per_lun = DEF_CMD_PER_LUN;
MODULE_PARM(max_cmd_per_lun, "i");
MODULE_PARM_DESC(max_cmd_per_lun, "Maximum number of commands which can be issued to a single LUN (default=DEF_CMD_PER_LUN=63)");
 
static unsigned short int max_sectors_per_io = MAX_SECTORS_PER_IO;
MODULE_PARM(max_sectors_per_io, "h");
MODULE_PARM_DESC(max_sectors_per_io, "Maximum number of sectors per I/O request (default=MAX_SECTORS_PER_IO=128)");
 
 
static unsigned short int max_mbox_busy_wait = MBOX_BUSY_WAIT;
MODULE_PARM(max_mbox_busy_wait, "h");
MODULE_PARM_DESC(max_mbox_busy_wait, "Maximum wait for mailbox in microseconds if busy (default=MBOX_BUSY_WAIT=10)");
 
#define RDINDOOR(adapter)		readl((adapter)->base + 0x20)
#define RDOUTDOOR(adapter)		readl((adapter)->base + 0x2C)
#define WRINDOOR(adapter,value)		writel(value, (adapter)->base + 0x20)
#define WROUTDOOR(adapter,value)	writel(value, (adapter)->base + 0x2C)
 
/*
 * Global variables
 */
 
static int hba_count;
static adapter_t *hba_soft_state[MAX_CONTROLLERS];
#ifdef CONFIG_PROC_FS
static struct proc_dir_entry *mega_proc_dir_entry;
#endif
 
static struct notifier_block mega_notifier = {
	.notifier_call = megaraid_reboot_notify
};
 
/* For controller re-ordering */
static struct mega_hbas mega_hbas[MAX_CONTROLLERS];
 
/*
 * The File Operations structure for the serial/ioctl interface of the driver
 */
static struct file_operations megadev_fops = {
	.ioctl		= megadev_ioctl,
	.open		= megadev_open,
	.release	= megadev_close,
	.owner		= THIS_MODULE,
};
 
/*
 * Array to structures for storing the information about the controllers. This
 * information is sent to the user level applications, when they do an ioctl
 * for this information.
 */
static struct mcontroller mcontroller[MAX_CONTROLLERS];
 
/* The current driver version */
static u32 driver_ver = 0x02100000;
 
/* major number used by the device for character interface */
static int major;
 
#define IS_RAID_CH(hba, ch)	(((hba)->mega_ch_class >> (ch)) & 0x01)
 
 
/*
 * Debug variable to print some diagnostic messages
 */
static int trace_level;
 
/*
 * megaraid_validate_parms()
 *
 * Validate that any module parms passed in
 * have proper values.
 */
static void
megaraid_validate_parms(void)
{
	if( (max_cmd_per_lun <= 0) || (max_cmd_per_lun > MAX_CMD_PER_LUN) )
		max_cmd_per_lun = MAX_CMD_PER_LUN;
	if( max_mbox_busy_wait > MBOX_BUSY_WAIT )
		max_mbox_busy_wait = MBOX_BUSY_WAIT;
}
 
 
/**
 * megaraid_detect()
 * @host_template - Our soft state maintained by mid-layer
 *
 * the detect entry point for the mid-layer.
 * We scan the PCI bus for our controllers and start them.
 *
 * Note: PCI_DEVICE_ID_PERC4_DI below represents the PERC4/Di class of
 * products. All of them share the same vendor id, device id, and subsystem
 * vendor id but different subsystem ids. As of now, driver does not use the
 * subsystem id.
 * PERC4E device ids are for the PCI-Express controllers
 */
static int
megaraid_detect(Scsi_Host_Template *host_template)
{
	int	i;
	u16	dev_sw_table[] = {	/* Table of all supported
					   vendor/device ids */
 
		PCI_VENDOR_ID_LSI_LOGIC,	PCI_DEVICE_ID_LSI_SATA_PCIX,
		PCI_VENDOR_ID_LSI_LOGIC,	PCI_DEVICE_ID_PERC4E_DC_SC,
		PCI_VENDOR_ID_DELL,		PCI_DEVICE_ID_PERC4E_SI_DI,
		PCI_VENDOR_ID_DELL,		PCI_DEVICE_ID_DISCOVERY,
		PCI_VENDOR_ID_DELL,		PCI_DEVICE_ID_PERC4_DI,
		PCI_VENDOR_ID_LSI_LOGIC,	PCI_DEVICE_ID_PERC4_QC_VERDE,
		PCI_VENDOR_ID_AMI,		PCI_DEVICE_ID_AMI_MEGARAID,
		PCI_VENDOR_ID_AMI,		PCI_DEVICE_ID_AMI_MEGARAID2,
		PCI_VENDOR_ID_AMI,		PCI_DEVICE_ID_AMI_MEGARAID3,
		PCI_VENDOR_ID_INTEL,		PCI_DEVICE_ID_AMI_MEGARAID3,
		PCI_VENDOR_ID_LSI_LOGIC,	PCI_DEVICE_ID_AMI_MEGARAID3 };
 
 
	printk(KERN_NOTICE "megaraid: " MEGARAID_VERSION);
 
	megaraid_validate_parms();
 
	/*
	 * Scan PCI bus for our all devices.
	 */
	for( i = 0; i < sizeof(dev_sw_table)/sizeof(u16); i += 2 ) {
 
		mega_find_card(host_template, dev_sw_table[i],
				dev_sw_table[i+1]);
	}
 
	if(hba_count) {
		/*
		 * re-order hosts so that one with bootable logical drive
		 * comes first
		 */
		mega_reorder_hosts();
 
#ifdef CONFIG_PROC_FS
		mega_proc_dir_entry = proc_mkdir("megaraid", &proc_root);
 
		if(!mega_proc_dir_entry) {
			printk(KERN_WARNING
				"megaraid: failed to create megaraid root\n");
		}
		else {
			for(i = 0; i < hba_count; i++) {
				mega_create_proc_entry(i, mega_proc_dir_entry);
			}
		}
#endif
 
		/*
		 * Register the driver as a character device, for applications
		 * to access it for ioctls.
		 * First argument (major) to register_chrdev implies a dynamic
		 * major number allocation.
		 */
		major = register_chrdev(0, "megadev", &megadev_fops);
 
		/*
		 * Register the Shutdown Notification hook in kernel
		 */
		if(register_reboot_notifier(&mega_notifier)) {
			printk(KERN_WARNING
				"MegaRAID Shutdown routine not registered!!\n");
		}
 
	}
 
	return hba_count;
}
 
 
 
/**
 * mega_find_card() - find and start this controller
 * @host_template - Our soft state maintained by mid-layer
 * @pci_vendor - pci vendor id for this controller
 * @pci_device - pci device id for this controller
 *
 * Scans the PCI bus for this vendor and device id combination, setup the
 * resources, and register ourselves as a SCSI HBA driver, and setup all
 * parameters for our soft state.
 *
 * This routine also checks for some buggy firmware and ajust the flags
 * accordingly.
 */
static void
mega_find_card(Scsi_Host_Template *host_template, u16 pci_vendor,
	u16 pci_device)
{
	struct Scsi_Host	*host = NULL;
	adapter_t	*adapter = NULL;
	u32	magic64;
	unsigned long	mega_baseport;
	u16	subsysid, subsysvid;
	u8	pci_bus;
	u8	pci_dev_func;
	u8	irq;
	struct pci_dev	*pdev = NULL;
	u8	did_ioremap_f = 0;
	u8	did_req_region_f = 0;
	u8	did_scsi_reg_f = 0;
	u8	alloc_int_buf_f = 0;
	u8	alloc_scb_f = 0;
	u8	got_irq_f = 0;
	u8	did_setup_mbox_f = 0;
	unsigned long	tbase;
	unsigned long	flag = 0;
	int	i, j;
 
	while((pdev = pci_find_device(pci_vendor, pci_device, pdev))) {
 
		// reset flags for all controllers in this class
		did_ioremap_f = 0;
		did_req_region_f = 0;
		did_scsi_reg_f = 0;
		alloc_int_buf_f = 0;
		alloc_scb_f = 0;
		got_irq_f = 0;
		did_setup_mbox_f = 0;
 
		if(pci_enable_device (pdev)) continue;
 
		pci_bus = pdev->bus->number;
		pci_dev_func = pdev->devfn;
 
		/*
		 * For these vendor and device ids, signature offsets are not
		 * valid and 64 bit is implicit
		 */
		if( (pci_vendor == PCI_VENDOR_ID_DELL &&
				pci_device == PCI_DEVICE_ID_PERC4_DI) ||
			(pci_vendor == PCI_VENDOR_ID_LSI_LOGIC &&
				pci_device == PCI_DEVICE_ID_PERC4_QC_VERDE) ||
			(pci_vendor == PCI_VENDOR_ID_LSI_LOGIC &&
				pci_device == PCI_DEVICE_ID_PERC4E_DC_SC) ||
			(pci_vendor == PCI_VENDOR_ID_DELL &&
				pci_device == PCI_DEVICE_ID_PERC4E_SI_DI) ||
			(pci_vendor == PCI_VENDOR_ID_LSI_LOGIC &&
				pci_device == PCI_DEVICE_ID_LSI_SATA_PCIX)) {
 
			flag |= BOARD_64BIT;
		}
		else {
			pci_read_config_dword(pdev, PCI_CONF_AMISIG64,
					&magic64);
 
			if (magic64 == HBA_SIGNATURE_64BIT)
				flag |= BOARD_64BIT;
		}
 
		subsysvid = pdev->subsystem_vendor;
		subsysid = pdev->subsystem_device;
 
		/*
		 * If we do not find the valid subsys vendor id, refuse to
		 * load the driver. This is part of PCI200X compliance
		 * We load the driver if subsysvid is 0.
		 */
		if( subsysvid && (subsysvid != AMI_SUBSYS_VID) &&
				(subsysvid != DELL_SUBSYS_VID) &&
				(subsysvid != HP_SUBSYS_VID) &&
				(subsysvid != INTEL_SUBSYS_VID) &&
				(subsysvid != LSI_SUBSYS_VID) ) continue;
 
 
		printk(KERN_NOTICE "megaraid: found 0x%4.04x:0x%4.04x:bus %d:",
			pci_vendor, pci_device, pci_bus);
 
		printk("slot %d:func %d\n",
			PCI_SLOT(pci_dev_func), PCI_FUNC(pci_dev_func));
 
		/* Read the base port and IRQ from PCI */
		mega_baseport = pci_resource_start(pdev, 0);
		irq = pdev->irq;
 
		tbase = mega_baseport;
 
		if( pci_resource_flags(pdev, 0) & IORESOURCE_MEM ) {
 
			if( check_mem_region(mega_baseport, 128) ) {
				printk(KERN_WARNING
					"megaraid: mem region busy!\n");
				continue;
			}
			request_mem_region(mega_baseport, 128,
					"MegaRAID: LSI Logic Corporation.");
 
			mega_baseport =
				(unsigned long)ioremap(mega_baseport, 128);
 
			if( !mega_baseport ) {
				printk(KERN_WARNING
					"megaraid: could not map hba memory\n");
 
				release_mem_region(tbase, 128);
 
				continue;
			}
 
			flag |= BOARD_MEMMAP;
 
			did_ioremap_f = 1;
		}
		else {
			mega_baseport += 0x10;
 
			if( !request_region(mega_baseport, 16, "megaraid") )
				goto fail_attach;
 
			flag |= BOARD_IOMAP;
 
			did_req_region_f = 1;
		}
 
		/* Initialize SCSI Host structure */
		host = scsi_register(host_template, sizeof(adapter_t));
 
		if(!host) goto fail_attach;
 
		did_scsi_reg_f = 1;
 
		scsi_set_pci_device(host, pdev);
 
		adapter = (adapter_t *)host->hostdata;
		memset(adapter, 0, sizeof(adapter_t));
 
		printk(KERN_NOTICE
			"scsi%d:Found MegaRAID controller at 0x%lx, IRQ:%d\n",
			host->host_no, mega_baseport, irq);
 
		adapter->base = mega_baseport;
 
		/* Copy resource info into structure */
		INIT_LIST_HEAD(&adapter->free_list);
		INIT_LIST_HEAD(&adapter->pending_list);
 
		adapter->flag = flag;
		spin_lock_init(&adapter->lock);
 
#ifdef SCSI_HAS_HOST_LOCK
#  if LINUX_VERSION_CODE <= KERNEL_VERSION(2,4,9)
		/* This is the Red Hat AS2.1 kernel */
		adapter->host_lock = &adapter->lock;
		host->lock = adapter->host_lock;
#  elif LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
		/* This is the later Red Hat 2.4 kernels */
		adapter->host_lock = &adapter->lock;
		host->host_lock = adapter->host_lock;
#  else
		/* This is the 2.6 and later kernel series */
		adapter->host_lock = &adapter->lock;
		scsi_set_host_lock(&adapter->lock);
#  endif
#else
		/* And this is the remainder of the 2.4 kernel series */
		adapter->host_lock = &io_request_lock;
#endif
 
		host->cmd_per_lun = max_cmd_per_lun;
		host->max_sectors = max_sectors_per_io;
 
		adapter->dev = pdev;
		adapter->host = host;
 
		adapter->host->irq = irq;
 
		if( flag & BOARD_MEMMAP ) {
			adapter->host->base = tbase;
		}
		else {
			adapter->host->io_port = tbase;
			adapter->host->n_io_port = 16;
		}
 
		adapter->host->unique_id = (pci_bus << 8) | pci_dev_func;
 
		/*
		 * Allocate buffer to issue internal commands.
		 */
		adapter->mega_buffer = pci_alloc_consistent(adapter->dev,
			MEGA_BUFFER_SIZE, &adapter->buf_dma_handle);
 
		if( !adapter->mega_buffer ) {
			printk(KERN_WARNING "megaraid: out of RAM.\n");
			goto fail_attach;
		}
		alloc_int_buf_f = 1;
 
		adapter->scb_list = kmalloc(sizeof(scb_t)*MAX_COMMANDS,
				GFP_KERNEL);
 
		if(!adapter->scb_list) {
			printk(KERN_WARNING "megaraid: out of RAM.\n");
			goto fail_attach;
		}
 
		alloc_scb_f = 1;
 
		/* Request our IRQ */
		if( adapter->flag & BOARD_MEMMAP ) {
			if(request_irq(irq, megaraid_isr_memmapped, SA_SHIRQ,
						"megaraid", adapter)) {
				printk(KERN_WARNING
					"megaraid: Couldn't register IRQ %d!\n",
					irq);
				goto fail_attach;
			}
		}
		else {
			if(request_irq(irq, megaraid_isr_iomapped, SA_SHIRQ,
						"megaraid", adapter)) {
				printk(KERN_WARNING
					"megaraid: Couldn't register IRQ %d!\n",
					irq);
				goto fail_attach;
			}
		}
		got_irq_f = 1;
 
		if( mega_setup_mailbox(adapter) != 0 )
			goto fail_attach;
 
		did_setup_mbox_f = 1;
 
		if( mega_query_adapter(adapter) != 0 )
			goto fail_attach;
 
		/*
		 * Have checks for some buggy f/w
		 */
		if((subsysid == 0x1111) && (subsysvid == 0x1111)) {
			/*
			 * Which firmware
			 */
			if (!strcmp(adapter->fw_version, "3.00") ||
					!strcmp(adapter->fw_version, "3.01")) {
 
				printk( KERN_WARNING
					"megaraid: Your  card is a Dell PERC "
					"2/SC RAID controller with  "
					"firmware\nmegaraid: 3.00 or 3.01.  "
					"This driver is known to have "
					"corruption issues\nmegaraid: with "
					"those firmware versions on this "
					"specific card.  In order\nmegaraid: "
					"to protect your data, please upgrade "
					"your firmware to version\nmegaraid: "
					"3.10 or later, available from the "
					"Dell Technical Support web\n"
					"megaraid: site at\nhttp://support."
					"dell.com/us/en/filelib/download/"
					"index.asp?fileid=2940\n"
				);
			}
		}
 
		/*
		 * If we have a HP 1M(0x60E7)/2M(0x60E8) controller with
		 * firmware H.01.07, H.01.08, and H.01.09 disable 64 bit
		 * support, since this firmware cannot handle 64 bit
		 * addressing
		 */
 
		if((subsysvid == HP_SUBSYS_VID) &&
				((subsysid == 0x60E7)||(subsysid == 0x60E8))) {
 
			/*
			 * which firmware
			 */
			if( !strcmp(adapter->fw_version, "H01.07") ||
				!strcmp(adapter->fw_version, "H01.08") ||
				!strcmp(adapter->fw_version, "H01.09") ) {
 
				printk(KERN_WARNING
					"megaraid: Firmware H.01.07, "
					"H.01.08, and H.01.09 on 1M/2M "
					"controllers\n"
					"megaraid: do not support 64 bit "
					"addressing.\nmegaraid: DISABLING "
					"64 bit support.\n");
				adapter->flag &= ~BOARD_64BIT;
			}
		}
 
 
		if(mega_is_bios_enabled(adapter)) {
			mega_hbas[hba_count].is_bios_enabled = 1;
		}
		mega_hbas[hba_count].hostdata_addr = adapter;
 
		/*
		 * Find out which channel is raid and which is scsi. This is
		 * for ROMB support.
		 */
		mega_enum_raid_scsi(adapter);
 
		/*
		 * Find out if a logical drive is set as the boot drive. If
		 * there is one, will make that as the first logical drive.
		 * ROMB: Do we have to boot from a physical drive. Then all
		 * the physical drives would appear before the logical disks.
		 * Else, all the physical drives would be exported to the mid
		 * layer after logical drives.
		 */
		mega_get_boot_drv(adapter);
 
		if( ! adapter->boot_pdrv_enabled ) {
			for( i = 0; i < NVIRT_CHAN; i++ )
				adapter->logdrv_chan[i] = 1;
 
			for( i = NVIRT_CHAN; i<MAX_CHANNELS+NVIRT_CHAN; i++ )
				adapter->logdrv_chan[i] = 0;
 
			adapter->mega_ch_class <<= NVIRT_CHAN;
		}
		else {
			j = adapter->product_info.nchannels;
			for( i = 0; i < j; i++ )
				adapter->logdrv_chan[i] = 0;
 
			for( i = j; i < NVIRT_CHAN + j; i++ )
				adapter->logdrv_chan[i] = 1;
		}
 
 
		/*
		 * Do we support random deletion and addition of logical
		 * drives
		 */
		adapter->read_ldidmap = 0;	/* set it after first logdrv
						   delete cmd */
		adapter->support_random_del = mega_support_random_del(adapter);
 
		/* Initialize SCBs */
		if(mega_init_scb(adapter)) {
			goto fail_attach;
		}
 
		/*
		 * Reset the pending commands counter
		 */
		atomic_set(&adapter->pend_cmds, 0);
 
		/*
		 * Reset the adapter quiescent flag
		 */
		atomic_set(&adapter->quiescent, 0);
 
		hba_soft_state[hba_count] = adapter;
 
		/*
		 * Fill in the structure which needs to be passed back to the
		 * application when it does an ioctl() for controller related
		 * information.
		 */
		i = hba_count;
 
		mcontroller[i].base = mega_baseport;
		mcontroller[i].irq = irq;
		mcontroller[i].numldrv = adapter->numldrv;
		mcontroller[i].pcibus = pci_bus;
		mcontroller[i].pcidev = pci_device;
		mcontroller[i].pcifun = PCI_FUNC (pci_dev_func);
		mcontroller[i].pciid = -1;
		mcontroller[i].pcivendor = pci_vendor;
		mcontroller[i].pcislot = PCI_SLOT (pci_dev_func);
		mcontroller[i].uid = (pci_bus << 8) | pci_dev_func;
 
 
		/* Set the Mode of addressing to 64 bit if we can */
		if((adapter->flag & BOARD_64BIT)&&(sizeof(dma_addr_t) == 8)) {
			pci_set_dma_mask(pdev, 0xffffffffffffffffULL);
			adapter->has_64bit_addr = 1;
		}
		else  {
			pci_set_dma_mask(pdev, 0xffffffff);
			adapter->has_64bit_addr = 0;
		}
 
		init_MUTEX(&adapter->int_mtx);
		init_waitqueue_head(&adapter->int_waitq);
 
		adapter->this_id = DEFAULT_INITIATOR_ID;
		adapter->host->this_id = DEFAULT_INITIATOR_ID;
 
#if MEGA_HAVE_CLUSTERING
		/*
		 * Is cluster support enabled on this controller
		 * Note: In a cluster the HBAs ( the initiators ) will have
		 * different target IDs and we cannot assume it to be 7. Call
		 * to mega_support_cluster() will get the target ids also if
		 * the cluster support is available
		 */
		adapter->has_cluster = mega_support_cluster(adapter);
 
		if( adapter->has_cluster ) {
			printk(KERN_NOTICE
				"megaraid: Cluster driver, initiator id:%d\n",
				adapter->this_id);
		}
#endif
 
		hba_count++;
		continue;
 
fail_attach:
		if( did_setup_mbox_f ) {
			pci_free_consistent(adapter->dev, sizeof(mbox64_t),
					(void *)adapter->una_mbox64,
					adapter->una_mbox64_dma);
		}
 
		if( got_irq_f ) {
			irq_disable(adapter);
			free_irq(adapter->host->irq, adapter);
		}
 
		if( alloc_scb_f ) {
			kfree(adapter->scb_list);
		}
 
		if( alloc_int_buf_f ) {
			pci_free_consistent(adapter->dev, MEGA_BUFFER_SIZE,
					(void *)adapter->mega_buffer,
					adapter->buf_dma_handle);
		}
 
		if( did_scsi_reg_f ) scsi_unregister(host);
 
		if( did_ioremap_f ) {
			iounmap((void *)mega_baseport);
			release_mem_region(tbase, 128);
		}
 
		if( did_req_region_f )
			release_region(mega_baseport, 16);
	}
 
	return;
}
 
 
/**
 * mega_setup_mailbox()
 * @adapter - pointer to our soft state
 *
 * Allocates a 8 byte aligned memory for the handshake mailbox.
 */
static int
mega_setup_mailbox(adapter_t *adapter)
{
	unsigned long	align;
 
	adapter->una_mbox64 = pci_alloc_consistent(adapter->dev,
			sizeof(mbox64_t), &adapter->una_mbox64_dma);
 
	if( !adapter->una_mbox64 ) return -1;
 
	adapter->mbox = &adapter->una_mbox64->mbox;
 
	adapter->mbox = (mbox_t *)((((unsigned long) adapter->mbox) + 15) &
			(~0UL ^ 0xFUL));
 
	adapter->mbox64 = (mbox64_t *)(((unsigned long)adapter->mbox) - 8);
 
	align = ((void *)adapter->mbox) - ((void *)&adapter->una_mbox64->mbox);
 
	adapter->mbox_dma = adapter->una_mbox64_dma + 8 + align;
 
	/*
	 * Register the mailbox if the controller is an io-mapped controller
	 */
	if( adapter->flag & BOARD_IOMAP ) {
 
		outb_p(adapter->mbox_dma & 0xFF,
				adapter->host->io_port + MBOX_PORT0);
 
		outb_p((adapter->mbox_dma >> 8) & 0xFF,
				adapter->host->io_port + MBOX_PORT1);
 
		outb_p((adapter->mbox_dma >> 16) & 0xFF,
				adapter->host->io_port + MBOX_PORT2);
 
		outb_p((adapter->mbox_dma >> 24) & 0xFF,
				adapter->host->io_port + MBOX_PORT3);
 
		outb_p(ENABLE_MBOX_BYTE,
				adapter->host->io_port + ENABLE_MBOX_REGION);
 
		irq_ack(adapter);
 
		irq_enable(adapter);
	}
 
	return 0;
}
 
 
/*
 * mega_query_adapter()
 * @adapter - pointer to our soft state
 *
 * Issue the adapter inquiry commands to the controller and find out
 * information and parameter about the devices attached
 */
static int
mega_query_adapter(adapter_t *adapter)
{
	dma_addr_t	prod_info_dma_handle;
	mega_inquiry3	*inquiry3;
	u8	raw_mbox[sizeof(mbox_t)];
	mbox_t	*mbox;
	int	retval;
 
	/* Initialize adapter inquiry mailbox */
 
	mbox = (mbox_t *)raw_mbox;
 
	memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE);
	memset(raw_mbox, 0, sizeof(raw_mbox));
 
	/*
	 * Try to issue Inquiry3 command
	 * if not succeeded, then issue MEGA_MBOXCMD_ADAPTERINQ command and
	 * update enquiry3 structure
	 */
	mbox->xferaddr = (u32)adapter->buf_dma_handle;
 
	inquiry3 = (mega_inquiry3 *)adapter->mega_buffer;
 
	raw_mbox[0] = FC_NEW_CONFIG;		/* i.e. mbox->cmd=0xA1 */
	raw_mbox[2] = NC_SUBOP_ENQUIRY3;	/* i.e. 0x0F */
	raw_mbox[3] = ENQ3_GET_SOLICITED_FULL;	/* i.e. 0x02 */
 
	/* Issue a blocking command to the card */
	if ((retval = issue_scb_block(adapter, raw_mbox))) {
		/* the adapter does not support 40ld */
 
		mraid_ext_inquiry	*ext_inq;
		mraid_inquiry		*inq;
		dma_addr_t		dma_handle;
 
		ext_inq = pci_alloc_consistent(adapter->dev,
				sizeof(mraid_ext_inquiry), &dma_handle);
 
		if( ext_inq == NULL ) return -1;
 
		inq = &ext_inq->raid_inq;
 
		mbox->xferaddr = (u32)dma_handle;
 
		/*issue old 0x04 command to adapter */
		mbox->cmd = MEGA_MBOXCMD_ADPEXTINQ;
 
		issue_scb_block(adapter, raw_mbox);
 
		/*
		 * update Enquiry3 and ProductInfo structures with
		 * mraid_inquiry structure
		 */
		mega_8_to_40ld(inq, inquiry3,
				(mega_product_info *)&adapter->product_info);
 
		pci_free_consistent(adapter->dev, sizeof(mraid_ext_inquiry),
				ext_inq, dma_handle);
 
	} else {		/*adapter supports 40ld */
		adapter->flag |= BOARD_40LD;
 
		/*
		 * get product_info, which is static information and will be
		 * unchanged
		 */
		prod_info_dma_handle = pci_map_single(adapter->dev, (void *)
				&adapter->product_info,
				sizeof(mega_product_info), PCI_DMA_FROMDEVICE);
 
		mbox->xferaddr = prod_info_dma_handle;
 
		raw_mbox[0] = FC_NEW_CONFIG;	/* i.e. mbox->cmd=0xA1 */
		raw_mbox[2] = NC_SUBOP_PRODUCT_INFO;	/* i.e. 0x0E */
 
		if ((retval = issue_scb_block(adapter, raw_mbox)))
			printk(KERN_WARNING
			"megaraid: Product_info cmd failed with error: %d\n",
				retval);
 
		pci_dma_sync_single(adapter->dev, prod_info_dma_handle,
				sizeof(mega_product_info),
				PCI_DMA_FROMDEVICE);
 
		pci_unmap_single(adapter->dev, prod_info_dma_handle,
				sizeof(mega_product_info), PCI_DMA_FROMDEVICE);
	}
 
 
	/*
	 * kernel scans the channels from 0 to <= max_channel
	 */
	adapter->host->max_channel =
		adapter->product_info.nchannels + NVIRT_CHAN -1;
 
	adapter->host->max_id = 16;	/* max targets per channel */
 
	adapter->host->max_lun = 7;	/* Upto 7 luns for non disk devices */
 
	adapter->host->cmd_per_lun = max_cmd_per_lun;
 
	adapter->numldrv = inquiry3->num_ldrv;
 
	adapter->max_cmds = adapter->product_info.max_commands;
 
	if(adapter->max_cmds > MAX_COMMANDS)
		adapter->max_cmds = MAX_COMMANDS;
 
	adapter->host->can_queue = adapter->max_cmds - 1;
 
	/*
	 * Get the maximum number of scatter-gather elements supported by this
	 * firmware
	 */
	mega_get_max_sgl(adapter);
 
	adapter->host->sg_tablesize = adapter->sglen;
 
 
	/* use HP firmware and bios version encoding */
	if (adapter->product_info.subsysvid == HP_SUBSYS_VID) {
		sprintf (adapter->fw_version, "%c%d%d.%d%d",
			 adapter->product_info.fw_version[2],
			 adapter->product_info.fw_version[1] >> 8,
			 adapter->product_info.fw_version[1] & 0x0f,
			 adapter->product_info.fw_version[0] >> 8,
			 adapter->product_info.fw_version[0] & 0x0f);
		sprintf (adapter->bios_version, "%c%d%d.%d%d",
			 adapter->product_info.bios_version[2],
			 adapter->product_info.bios_version[1] >> 8,
			 adapter->product_info.bios_version[1] & 0x0f,
			 adapter->product_info.bios_version[0] >> 8,
			 adapter->product_info.bios_version[0] & 0x0f);
	} else {
		memcpy(adapter->fw_version,
				(char *)adapter->product_info.fw_version, 4);
		adapter->fw_version[4] = 0;
 
		memcpy(adapter->bios_version,
				(char *)adapter->product_info.bios_version, 4);
 
		adapter->bios_version[4] = 0;
	}
 
	printk(KERN_NOTICE "megaraid: [%s:%s] detected %d logical drives.\n",
		adapter->fw_version, adapter->bios_version, adapter->numldrv);
 
	/*
	 * Do we support extended (>10 bytes) cdbs
	 */
	adapter->support_ext_cdb = mega_support_ext_cdb(adapter);
	if (adapter->support_ext_cdb)
		printk(KERN_NOTICE "megaraid: supports extended CDBs.\n");
 
 
	return 0;
}
 
 
/*
 * megaraid_queue()
 * @scmd - Issue this scsi command
 * @done - the callback hook into the scsi mid-layer
 *
 * The command queuing entry point for the mid-layer.
 */
static int
megaraid_queue(Scsi_Cmnd *scmd, void (*done)(Scsi_Cmnd *))
{
	adapter_t	*adapter;
	scb_t	*scb;
	int	busy=0;
 
	adapter = (adapter_t *)scmd->host->hostdata;
 
	scmd->scsi_done = done;
 
 
	/*
	 * Allocate and build a SCB request
	 * busy flag will be set if mega_build_cmd() command could not
	 * allocate scb. We will return non-zero status in that case.
	 * NOTE: scb can be null even though certain commands completed
	 * successfully, e.g., MODE_SENSE and TEST_UNIT_READY, we would
	 * return 0 in that case.
	 */
 
	scb = mega_build_cmd(adapter, scmd, &busy);
 
	if(scb) {
		scb->state |= SCB_PENDQ;
		list_add_tail(&scb->list, &adapter->pending_list);
 
		/*
		 * Check if the HBA is in quiescent state, e.g., during a
		 * delete logical drive opertion. If it is, don't run
		 * the pending_list.
		 */
		if(atomic_read(&adapter->quiescent) == 0) {
			mega_runpendq(adapter);
		}
		return 0;
	}
 
	return busy;
}
 
 
/**
 * mega_build_cmd()
 * @adapter - pointer to our soft state
 * @cmd - Prepare using this scsi command
 * @busy - busy flag if no resources
 *
 * Prepares a command and scatter gather list for the controller. This routine
 * also finds out if the commands is intended for a logical drive or a
 * physical device and prepares the controller command accordingly.
 *
 * We also re-order the logical drives and physical devices based on their
 * boot settings.
 */
static scb_t *
mega_build_cmd(adapter_t *adapter, Scsi_Cmnd *cmd, int *busy)
{
	mega_ext_passthru	*epthru;
	mega_passthru	*pthru;
	scb_t	*scb;
	mbox_t	*mbox;
	long	seg;
	char	islogical;
	int	max_ldrv_num;
	int	channel = 0;
	int	target = 0;
	int	ldrv_num = 0;   /* logical drive number */
 
 
	/*
	 * filter the internal and ioctl commands
	 */
	if((cmd->cmnd[0] == MEGA_INTERNAL_CMD)) {
		return cmd->buffer;
	}
 
 
	/*
	 * We know what channels our logical drives are on - mega_find_card()
	 */
	islogical = adapter->logdrv_chan[cmd->channel];
 
	/*
	 * The theory: If physical drive is chosen for boot, all the physical
	 * devices are exported before the logical drives, otherwise physical
	 * devices are pushed after logical drives, in which case - Kernel sees
	 * the physical devices on virtual channel which is obviously converted
	 * to actual channel on the HBA.
	 */
	if( adapter->boot_pdrv_enabled ) {
		if( islogical ) {
			/* logical channel */
			channel = cmd->channel -
				adapter->product_info.nchannels;
		}
		else {
			channel = cmd->channel; /* this is physical channel */
			target = cmd->target;
 
			/*
			 * boot from a physical disk, that disk needs to be
			 * exposed first IF both the channels are SCSI, then
			 * booting from the second channel is not allowed.
			 */
			if( target == 0 ) {
				target = adapter->boot_pdrv_tgt;
			}
			else if( target == adapter->boot_pdrv_tgt ) {
				target = 0;
			}
		}
	}
	else {
		if( islogical ) {
			channel = cmd->channel;	/* this is the logical channel
						 */
		}
		else {
			channel = cmd->channel - NVIRT_CHAN;	/* physical
								   channel */
			target = cmd->target;
		}
	}
 
 
	if(islogical) {
 
		/* have just LUN 0 for each target on virtual channels */
		if (cmd->lun) {
			cmd->result = (DID_BAD_TARGET << 16);
			cmd->scsi_done(cmd);
			return NULL;
		}
 
		ldrv_num = mega_get_ldrv_num(adapter, cmd, channel);
 
 
		max_ldrv_num = (adapter->flag & BOARD_40LD) ?
			MAX_LOGICAL_DRIVES_40LD : MAX_LOGICAL_DRIVES_8LD;
 
		/*
		 * max_ldrv_num increases by 0x80 if some logical drive was
		 * deleted.
		 */
		if(adapter->read_ldidmap)
			max_ldrv_num += 0x80;
 
		if(ldrv_num > max_ldrv_num ) {
			cmd->result = (DID_BAD_TARGET << 16);
			cmd->scsi_done(cmd);
			return NULL;
		}
 
	}
	else {
		if( cmd->lun > 7) {
			/*
			 * Do not support lun >7 for physically accessed
			 * devices
			 */
			cmd->result = (DID_BAD_TARGET << 16);
			cmd->scsi_done(cmd);
			return NULL;
		}
	}
 
	/*
	 *
	 * Logical drive commands
	 *
	 */
	if(islogical) {
		switch (cmd->cmnd[0]) {
		case TEST_UNIT_READY:
			memset(cmd->request_buffer, 0, cmd->request_bufflen);
 
#if MEGA_HAVE_CLUSTERING
			/*
			 * Do we support clustering and is the support enabled
			 * If no, return success always
			 */
			if( !adapter->has_cluster ) {
				cmd->result = (DID_OK << 16);
				cmd->scsi_done(cmd);
				return NULL;
			}
 
			if(!(scb = mega_allocate_scb(adapter, cmd))) {
 
				cmd->result = (DID_ERROR << 16);
				cmd->scsi_done(cmd);
				*busy = 1;
 
				return NULL;
			}
 
			scb->raw_mbox[0] = MEGA_CLUSTER_CMD;
			scb->raw_mbox[2] = MEGA_RESERVATION_STATUS;
			scb->raw_mbox[3] = ldrv_num;
 
			scb->dma_direction = PCI_DMA_NONE;
 
			return scb;
#else
			cmd->result = (DID_OK << 16);
			cmd->scsi_done(cmd);
			return NULL;
#endif
 
		case MODE_SENSE:
			memset(cmd->request_buffer, 0, cmd->cmnd[4]);
			cmd->result = (DID_OK << 16);
			cmd->scsi_done(cmd);
			return NULL;
 
		case READ_CAPACITY:
		case INQUIRY:
 
			if(!(adapter->flag & (1L << cmd->channel))) {
 
				printk(KERN_NOTICE
					"scsi%d: scanning scsi channel %d ",
						adapter->host->host_no,
						cmd->channel);
				printk("for logical drives.\n");
 
				adapter->flag |= (1L << cmd->channel);
			}
 
			/* Allocate a SCB and initialize passthru */
			if(!(scb = mega_allocate_scb(adapter, cmd))) {
 
				cmd->result = (DID_ERROR << 16);
				cmd->scsi_done(cmd);
				*busy = 1;
 
				return NULL;
			}
			pthru = scb->pthru;
 
			mbox = (mbox_t *)scb->raw_mbox;
			memset(mbox, 0, sizeof(scb->raw_mbox));
			memset(pthru, 0, sizeof(mega_passthru));
 
			pthru->timeout = 0;
			pthru->ars = 1;
			pthru->reqsenselen = 14;
			pthru->islogical = 1;
			pthru->logdrv = ldrv_num;
			pthru->cdblen = cmd->cmd_len;
			memcpy(pthru->cdb, cmd->cmnd, cmd->cmd_len);
 
			if( adapter->has_64bit_addr ) {
				mbox->cmd = MEGA_MBOXCMD_PASSTHRU64;
			}
			else {
				mbox->cmd = MEGA_MBOXCMD_PASSTHRU;
			}
 
			scb->dma_direction = PCI_DMA_FROMDEVICE;
 
			pthru->numsgelements = mega_build_sglist(adapter, scb,
				&pthru->dataxferaddr, &pthru->dataxferlen);
 
			mbox->xferaddr = scb->pthru_dma_addr;
 
			return scb;
 
		case READ_6:
		case WRITE_6:
		case READ_10:
		case WRITE_10:
		case READ_12:
		case WRITE_12:
 
			/* Allocate a SCB and initialize mailbox */
			if(!(scb = mega_allocate_scb(adapter, cmd))) {
 
				cmd->result = (DID_ERROR << 16);
				cmd->scsi_done(cmd);
				*busy = 1;
 
				return NULL;
			}
			mbox = (mbox_t *)scb->raw_mbox;
 
			memset(mbox, 0, sizeof(scb->raw_mbox));
			mbox->logdrv = ldrv_num;
 
			/*
			 * A little hack: 2nd bit is zero for all scsi read
			 * commands and is set for all scsi write commands
			 */
			if( adapter->has_64bit_addr ) {
				mbox->cmd = (*cmd->cmnd & 0x02) ?
					MEGA_MBOXCMD_LWRITE64:
					MEGA_MBOXCMD_LREAD64 ;
			}
			else {
				mbox->cmd = (*cmd->cmnd & 0x02) ?
					MEGA_MBOXCMD_LWRITE:
					MEGA_MBOXCMD_LREAD ;
			}
 
			/*
			 * 6-byte READ(0x08) or WRITE(0x0A) cdb
			 */
			if( cmd->cmd_len == 6 ) {
				mbox->numsectors = (u32) cmd->cmnd[4];
				mbox->lba =
					((u32)cmd->cmnd[1] << 16) |
					((u32)cmd->cmnd[2] << 8) |
					(u32)cmd->cmnd[3];
 
				mbox->lba &= 0x1FFFFF;
 
#if MEGA_HAVE_STATS
				/*
				 * Take modulo 0x80, since the logical drive
				 * number increases by 0x80 when a logical
				 * drive was deleted
				 */
				if (*cmd->cmnd == READ_6) {
					adapter->nreads[ldrv_num%0x80]++;
					adapter->nreadblocks[ldrv_num%0x80] +=
						mbox->numsectors;
				} else {
					adapter->nwrites[ldrv_num%0x80]++;
					adapter->nwriteblocks[ldrv_num%0x80] +=
						mbox->numsectors;
				}
#endif
			}
 
			/*
			 * 10-byte READ(0x28) or WRITE(0x2A) cdb
			 */
			if( cmd->cmd_len == 10 ) {
				mbox->numsectors =
					(u32)cmd->cmnd[8] |
					((u32)cmd->cmnd[7] << 8);
				mbox->lba =
					((u32)cmd->cmnd[2] << 24) |
					((u32)cmd->cmnd[3] << 16) |
					((u32)cmd->cmnd[4] << 8) |
					(u32)cmd->cmnd[5];
 
#if MEGA_HAVE_STATS
				if (*cmd->cmnd == READ_10) {
					adapter->nreads[ldrv_num%0x80]++;
					adapter->nreadblocks[ldrv_num%0x80] +=
						mbox->numsectors;
				} else {
					adapter->nwrites[ldrv_num%0x80]++;
					adapter->nwriteblocks[ldrv_num%0x80] +=
						mbox->numsectors;
				}
#endif
			}
 
			/*
			 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
			 */
			if( cmd->cmd_len == 12 ) {
				mbox->lba =
					((u32)cmd->cmnd[2] << 24) |
					((u32)cmd->cmnd[3] << 16) |
					((u32)cmd->cmnd[4] << 8) |
					(u32)cmd->cmnd[5];
 
				mbox->numsectors =
					((u32)cmd->cmnd[6] << 24) |
					((u32)cmd->cmnd[7] << 16) |
					((u32)cmd->cmnd[8] << 8) |
					(u32)cmd->cmnd[9];
 
#if MEGA_HAVE_STATS
				if (*cmd->cmnd == READ_12) {
					adapter->nreads[ldrv_num%0x80]++;
					adapter->nreadblocks[ldrv_num%0x80] +=
						mbox->numsectors;
				} else {
					adapter->nwrites[ldrv_num%0x80]++;
					adapter->nwriteblocks[ldrv_num%0x80] +=
						mbox->numsectors;
				}
#endif
			}
 
			/*
			 * If it is a read command
			 */
			if( (*cmd->cmnd & 0x0F) == 0x08 ) {
				scb->dma_direction = PCI_DMA_FROMDEVICE;
			}
			else {
				scb->dma_direction = PCI_DMA_TODEVICE;
			}
 
			/* Calculate Scatter-Gather info */
			mbox->numsgelements = mega_build_sglist(adapter, scb,
					(u32 *)&mbox->xferaddr, (u32 *)&seg);
 
			return scb;
 
#if MEGA_HAVE_CLUSTERING
		case RESERVE:	/* Fall through */
		case RELEASE:
 
			/*
			 * Do we support clustering and is the support enabled
			 */
			if( ! adapter->has_cluster ) {
 
				cmd->result = (DID_BAD_TARGET << 16);
				cmd->scsi_done(cmd);
				return NULL;
			}
 
			/* Allocate a SCB and initialize mailbox */
			if(!(scb = mega_allocate_scb(adapter, cmd))) {
 
				cmd->result = (DID_ERROR << 16);
				cmd->scsi_done(cmd);
				*busy = 1;
 
				return NULL;
			}
 
			scb->raw_mbox[0] = MEGA_CLUSTER_CMD;
			scb->raw_mbox[2] = ( *cmd->cmnd == RESERVE ) ?
				MEGA_RESERVE_LD : MEGA_RELEASE_LD;
 
			scb->raw_mbox[3] = ldrv_num;
 
			scb->dma_direction = PCI_DMA_NONE;
 
			return scb;
#endif
 
		default:
			cmd->result = (DID_BAD_TARGET << 16);
			cmd->scsi_done(cmd);
			return NULL;
		}
	}
 
	/*
	 * Passthru drive commands
	 */
	else {
		/* Allocate a SCB and initialize passthru */
		if(!(scb = mega_allocate_scb(adapter, cmd))) {
 
			cmd->result = (DID_ERROR << 16);
			cmd->scsi_done(cmd);
			*busy = 1;
 
			return NULL;
		}
 
		mbox = (mbox_t *)scb->raw_mbox;
		memset(mbox, 0, sizeof(scb->raw_mbox));
 
		if( adapter->support_ext_cdb ) {
 
			epthru = mega_prepare_extpassthru(adapter, scb, cmd,
					channel, target);
 
			mbox->cmd = MEGA_MBOXCMD_EXTPTHRU;
 
			mbox->xferaddr = scb->epthru_dma_addr;
 
		}
		else {
 
			pthru = mega_prepare_passthru(adapter, scb, cmd,
					channel, target);
 
			/* Initialize mailbox */
			if( adapter->has_64bit_addr ) {
				mbox->cmd = MEGA_MBOXCMD_PASSTHRU64;
			}
			else {
				mbox->cmd = MEGA_MBOXCMD_PASSTHRU;
			}
 
			mbox->xferaddr = scb->pthru_dma_addr;
 
		}
		return scb;
	}
	return NULL;
}
 
 
/**
 * mega_prepare_passthru()
 * @adapter - pointer to our soft state
 * @scb - our scsi control block
 * @cmd - scsi command from the mid-layer
 * @channel - actual channel on the controller
 * @target - actual id on the controller.
 *
 * prepare a command for the scsi physical devices.
 */
static mega_passthru *
mega_prepare_passthru(adapter_t *adapter, scb_t *scb, Scsi_Cmnd *cmd,
		int channel, int target)
{
	mega_passthru *pthru;
 
	pthru = scb->pthru;
	memset(pthru, 0, sizeof (mega_passthru));
 
	/* 0=6sec/1=60sec/2=10min/3=3hrs */
	pthru->timeout = 2;
 
	pthru->ars = 1;
	pthru->reqsenselen = 14;
	pthru->islogical = 0;
 
	pthru->channel = (adapter->flag & BOARD_40LD) ? 0 : channel;
 
	pthru->target = (adapter->flag & BOARD_40LD) ?
		(channel << 4) | target : target;
 
	pthru->cdblen = cmd->cmd_len;
	pthru->logdrv = cmd->lun;
 
	memcpy(pthru->cdb, cmd->cmnd, cmd->cmd_len);
 
	/* Not sure about the direction */
	scb->dma_direction = PCI_DMA_BIDIRECTIONAL;
 
	/* Special Code for Handling READ_CAPA/ INQ using bounce buffers */
	switch (cmd->cmnd[0]) {
	case INQUIRY:
	case READ_CAPACITY:
		if(!(adapter->flag & (1L << cmd->channel))) {
 
			printk(KERN_NOTICE
				"scsi%d: scanning scsi channel %d [P%d] ",
					adapter->host->host_no,
					cmd->channel, channel);
			printk("for physical devices.\n");
 
			adapter->flag |= (1L << cmd->channel);
		}
		/* Fall through */
	default:
		pthru->numsgelements = mega_build_sglist(adapter, scb,
				&pthru->dataxferaddr, &pthru->dataxferlen);
		break;
	}
	return pthru;
}
 
 
/**
 * mega_prepare_extpassthru()
 * @adapter - pointer to our soft state
 * @scb - our scsi control block
 * @cmd - scsi command from the mid-layer
 * @channel - actual channel on the controller
 * @target - actual id on the controller.
 *
 * prepare a command for the scsi physical devices. This rountine prepares
 * commands for devices which can take extended CDBs (>10 bytes)
 */
static mega_ext_passthru *
mega_prepare_extpassthru(adapter_t *adapter, scb_t *scb, Scsi_Cmnd *cmd,
		int channel, int target)
{
	mega_ext_passthru	*epthru;
 
	epthru = scb->epthru;
	memset(epthru, 0, sizeof(mega_ext_passthru));
 
	/* 0=6sec/1=60sec/2=10min/3=3hrs */
	epthru->timeout = 2;
 
	epthru->ars = 1;
	epthru->reqsenselen = 14;
	epthru->islogical = 0;
 
	epthru->channel = (adapter->flag & BOARD_40LD) ? 0 : channel;
	epthru->target = (adapter->flag & BOARD_40LD) ?
		(channel << 4) | target : target;
 
	epthru->cdblen = cmd->cmd_len;
	epthru->logdrv = cmd->lun;
 
	memcpy(epthru->cdb, cmd->cmnd, cmd->cmd_len);
 
	/* Not sure about the direction */
	scb->dma_direction = PCI_DMA_BIDIRECTIONAL;
 
	switch(cmd->cmnd[0]) {
	case INQUIRY:
	case READ_CAPACITY:
		if(!(adapter->flag & (1L << cmd->channel))) {
 
			printk(KERN_NOTICE
				"scsi%d: scanning scsi channel %d [P%d] ",
					adapter->host->host_no,
					cmd->channel, channel);
			printk("for physical devices.\n");
 
			adapter->flag |= (1L << cmd->channel);
		}
		/* Fall through */
	default:
		epthru->numsgelements = mega_build_sglist(adapter, scb,
				&epthru->dataxferaddr, &epthru->dataxferlen);
		break;
	}
 
	return epthru;
}
 
 
/**
 * mega_allocate_scb()
 * @adapter - pointer to our soft state
 * @cmd - scsi command from the mid-layer
 *
 * Allocate a SCB structure. This is the central structure for controller
 * commands.
 */
static inline scb_t *
mega_allocate_scb(adapter_t *adapter, Scsi_Cmnd *cmd)
{
	struct list_head *head = &adapter->free_list;
	scb_t	*scb;
 
	/* Unlink command from Free List */
	if( !list_empty(head) ) {
 
		scb = list_entry(head->next, scb_t, list);
 
		list_del_init(head->next);
 
		scb->state = SCB_ACTIVE;
		scb->cmd = cmd;
		scb->dma_type = MEGA_DMA_TYPE_NONE;
 
		return scb;
	}
 
	return NULL;
}
 
 
/**
 * mega_runpendq()
 * @adapter - pointer to our soft state
 *
 * Runs through the list of pending requests.
 */
static inline void
mega_runpendq(adapter_t *adapter)
{
	if(!list_empty(&adapter->pending_list))
		__mega_runpendq(adapter);
}
 
static void
__mega_runpendq(adapter_t *adapter)
{
	scb_t *scb;
	struct list_head *pos, *next;
 
	/* Issue any pending commands to the card */
	list_for_each_safe(pos, next, &adapter->pending_list) {
 
		scb = list_entry(pos, scb_t, list);
 
		if( !(scb->state & SCB_ISSUED) ) {
 
			if( issue_scb(adapter, scb) != 0 )
				return;
		}
	}
 
	return;
}
 
 
/**
 * issue_scb()
 * @adapter - pointer to our soft state
 * @scb - scsi control block
 *
 * Post a command to the card if the mailbox is available, otherwise return
 * busy. We also take the scb from the pending list if the mailbox is
 * available.
 */
static inline int
issue_scb(adapter_t *adapter, scb_t *scb)
{
	volatile mbox64_t	*mbox64 = adapter->mbox64;
	volatile mbox_t		*mbox = adapter->mbox;
	unsigned int	i = 0;
 
	if(unlikely(mbox->busy)) {
		do {
			udelay(1);
			i++;
		} while( mbox->busy && (i < max_mbox_busy_wait) );
 
		if(mbox->busy) return -1;
	}
 
	/* Copy mailbox data into host structure */
	memcpy((char *)mbox, (char *)scb->raw_mbox, 16);
 
	mbox->cmdid = scb->idx;	/* Set cmdid */
	mbox->busy = 1;		/* Set busy */
 
 
	/*
	 * Increment the pending queue counter
	 */
	atomic_inc(&adapter->pend_cmds);
 
	switch (mbox->cmd) {
	case MEGA_MBOXCMD_EXTPTHRU:
		if( !adapter->has_64bit_addr ) break;
		// else fall through
	case MEGA_MBOXCMD_LREAD64:
	case MEGA_MBOXCMD_LWRITE64:
	case MEGA_MBOXCMD_PASSTHRU64:
		mbox64->xfer_segment_lo = mbox->xferaddr;
		mbox64->xfer_segment_hi = 0;
		mbox->xferaddr = 0xFFFFFFFF;
		break;
	default:
		mbox64->xfer_segment_lo = 0;
		mbox64->xfer_segment_hi = 0;
	}
 
	/*
	 * post the command
	 */
	scb->state |= SCB_ISSUED;
 
	if( likely(adapter->flag & BOARD_MEMMAP) ) {
		mbox->poll = 0;
		mbox->ack = 0;
		WRINDOOR(adapter, adapter->mbox_dma | 0x1);
	}
	else {
		irq_enable(adapter);
		issue_command(adapter);
	}
 
	return 0;
}
 
 
/**
 * issue_scb_block()
 * @adapter - pointer to our soft state
 * @raw_mbox - the mailbox
 *
 * Issue a scb in synchronous and non-interrupt mode
 */
static int
issue_scb_block(adapter_t *adapter, u_char *raw_mbox)
{
	volatile mbox64_t *mbox64 = adapter->mbox64;
	volatile mbox_t *mbox = adapter->mbox;
	u8	byte;
	u8	status;
	int	i;
 
	/* Wait until mailbox is free */
	if(mega_busywait_mbox (adapter))
		goto bug_blocked_mailbox;
 
	/* Copy mailbox data into host structure */
	memcpy((char *)mbox, raw_mbox, 16);
	mbox->cmdid = 0xFE;
	mbox->busy = 1;
 
	switch (raw_mbox[0]) {
	case MEGA_MBOXCMD_EXTPTHRU:
		if( !adapter->has_64bit_addr ) break;
		// else fall through
	case MEGA_MBOXCMD_LREAD64:
	case MEGA_MBOXCMD_LWRITE64:
	case MEGA_MBOXCMD_PASSTHRU64:
		mbox64->xfer_segment_lo = mbox->xferaddr;
		mbox64->xfer_segment_hi = 0;
		mbox->xferaddr = 0xFFFFFFFF;
		break;
	default:
		mbox64->xfer_segment_lo = 0;
		mbox64->xfer_segment_hi = 0;
	}
 
	if( likely(adapter->flag & BOARD_MEMMAP) ) {
		mbox->poll = 0;
		mbox->ack = 0;
		mbox->numstatus = 0xFF;
		mbox->status = 0xFF;
		WRINDOOR(adapter, adapter->mbox_dma | 0x1);
 
		while((volatile u8)mbox->numstatus == 0xFF)
			cpu_relax();
 
		mbox->numstatus = 0xFF;
 
		while((volatile u8)mbox->status == 0xFF)
			cpu_relax();
 
		status = mbox->status;
		mbox->status = 0xFF;
 
		while( (volatile u8)mbox->poll != 0x77 )
			cpu_relax();
 
		mbox->poll = 0;
		mbox->ack = 0x77;
 
		WRINDOOR(adapter, adapter->mbox_dma | 0x2);
 
		while(RDINDOOR(adapter) & 0x2)
			cpu_relax();
	}
	else {
		irq_disable(adapter);
		issue_command(adapter);
 
		while (!((byte = irq_state(adapter)) & INTR_VALID))
			cpu_relax();
 
		status = mbox->status;
		mbox->numstatus = 0xFF;
		mbox->status = 0xFF;
 
		set_irq_state(adapter, byte);
		irq_enable(adapter);
		irq_ack(adapter);
	}
 
	// invalidate the completed command id array. After command
	// completion, firmware would write the valid id.
	for (i = 0; i < MAX_FIRMWARE_STATUS; i++) {
		mbox->completed[i] = 0xFF;
	}
 
	return status;
 
bug_blocked_mailbox:
	printk(KERN_WARNING "megaraid: Blocked mailbox......!!\n");
	udelay (1000);
	return -1;
}
 
 
/**
 * megaraid_isr_iomapped()
 * @irq - irq
 * @devp - pointer to our soft state
 * @regs - unused
 *
 * Interrupt service routine for io-mapped controllers.
 * Find out if our device is interrupting. If yes, acknowledge the interrupt
 * and service the completed commands.
 */
static void
megaraid_isr_iomapped(int irq, void *devp, struct pt_regs *regs)
{
	adapter_t	*adapter = devp;
	unsigned long	flags;
 
 
	spin_lock_irqsave(adapter->host_lock, flags);
 
	megaraid_iombox_ack_sequence(adapter);
 
	/* Loop through any pending requests */
	if( atomic_read(&adapter->quiescent ) == 0) {
		mega_runpendq(adapter);
	}
 
	spin_unlock_irqrestore(adapter->host_lock, flags);
 
	return;
}
 
 
/**
 * megaraid_iombox_ack_sequence - interrupt ack sequence for IO mapped HBAs
 * @adapter	- controller's soft state
 *
 * Interrupt ackrowledgement sequence for IO mapped HBAs
 */
static inline void
megaraid_iombox_ack_sequence(adapter_t *adapter)
{
	u8	status;
	u8	nstatus;
	u8	completed[MAX_FIRMWARE_STATUS];
	u8	byte;
	int	i;
 
 
	/*
	 * loop till F/W has more commands for us to complete.
	 */
	do {
		/* Check if a valid interrupt is pending */
		byte = irq_state(adapter);
		if( (byte & VALID_INTR_BYTE) == 0 ) {
			return;
		}
		set_irq_state(adapter, byte);
 
		while ((nstatus = adapter->mbox->numstatus) == 0xFF) {
			cpu_relax();
		}
		adapter->mbox->numstatus = 0xFF;
 
		for (i = 0; i < nstatus; i++) {
			while ((completed[i] = adapter->mbox->completed[i])
					== 0xFF) {
				cpu_relax();
			}
 
			adapter->mbox->completed[i] = 0xFF;
		}
 
		// we must read the valid status now
		if ((status = adapter->mbox->status) == 0xFF) {
			printk(KERN_WARNING
			"megaraid critical: status 0xFF from firmware.\n");
		}
		adapter->mbox->status = 0xFF;
 
		/*
		 * decrement the pending queue counter
		 */
		atomic_sub(nstatus, &adapter->pend_cmds);
 
		/* Acknowledge interrupt */
		irq_ack(adapter);
 
		mega_cmd_done(adapter, completed, nstatus, status);
 
	} while(1);
}
 
 
/**
 * megaraid_isr_memmapped()
 * @irq - irq
 * @devp - pointer to our soft state
 * @regs - unused
 *
 * Interrupt service routine for memory-mapped controllers.
 * Find out if our device is interrupting. If yes, acknowledge the interrupt
 * and service the completed commands.
 */
static void
megaraid_isr_memmapped(int irq, void *devp, struct pt_regs *regs)
{
	adapter_t	*adapter = devp;
	unsigned long	flags;
 
 
	spin_lock_irqsave(adapter->host_lock, flags);
 
	megaraid_memmbox_ack_sequence(adapter);
 
	/* Loop through any pending requests */
	if(atomic_read(&adapter->quiescent) == 0) {
		mega_runpendq(adapter);
	}
 
	spin_unlock_irqrestore(adapter->host_lock, flags);
 
	return;
}
 
 
/**
 * megaraid_memmbox_ack_sequence - interrupt ack sequence for memory mapped HBAs
 * @adapter	- controller's soft state
 *
 * Interrupt ackrowledgement sequence for memory mapped HBAs
 */
static inline void
megaraid_memmbox_ack_sequence(adapter_t *adapter)
{
	u8	status;
	u32	dword = 0;
	u8	nstatus;
	u8	completed[MAX_FIRMWARE_STATUS];
	int	i;
 
 
	/*
	 * loop till F/W has more commands for us to complete.
	 */
	do {
		/* Check if a valid interrupt is pending */
		dword = RDOUTDOOR(adapter);
		if( dword != 0x10001234 ) {
			/*
			 * No more pending commands
			 */
			return;
		}
		WROUTDOOR(adapter, 0x10001234);
 
		while ((nstatus = adapter->mbox->numstatus) == 0xFF) {
			cpu_relax();
		}
		adapter->mbox->numstatus = 0xFF;
 
		for (i = 0; i < nstatus; i++ ) {
			while ((completed[i] = adapter->mbox->completed[i])
					== 0xFF) {
				cpu_relax();
			}
 
			adapter->mbox->completed[i] = 0xFF;
		}
 
		// we must read the valid status now
		if ((status = adapter->mbox->status) == 0xFF) {
			printk(KERN_WARNING
			"megaraid critical: status 0xFF from firmware.\n");
		}
		adapter->mbox->status = 0xFF;
 
		/*
		 * decrement the pending queue counter
		 */
		atomic_sub(nstatus, &adapter->pend_cmds);
 
		/* Acknowledge interrupt */
		WRINDOOR(adapter, 0x2);
 
		while( RDINDOOR(adapter) & 0x02 ) cpu_relax();
 
		mega_cmd_done(adapter, completed, nstatus, status);
 
	} while(1);
}
 
 
/**
 * mega_cmd_done()
 * @adapter - pointer to our soft state
 * @completed - array of ids of completed commands
 * @nstatus - number of completed commands
 * @status - status of the last command completed
 *
 * Complete the comamnds and call the scsi mid-layer callback hooks.
 */
static inline void
mega_cmd_done(adapter_t *adapter, u8 completed[], int nstatus, int status)
{
	mega_ext_passthru	*epthru = NULL;
	struct scatterlist	*sgl;
	Scsi_Cmnd	*cmd = NULL;
	mega_passthru	*pthru = NULL;
	mbox_t	*mbox = NULL;
	int	islogical;
	u8	c;
	scb_t	*scb;
	int	cmdid;
	int	i;
 
	/*
	 * for all the commands completed, call the mid-layer callback routine
	 * and free the scb.
	 */
	for( i = 0; i < nstatus; i++ ) {
 
		cmdid = completed[i];
 
		if( cmdid == CMDID_INT_CMDS ) { /* internal command */
			scb = &adapter->int_scb;
			cmd = scb->cmd;
			mbox = (mbox_t *)scb->raw_mbox;
 
			/*
			 * Internal command interface do not fire the extended
			 * passthru or 64-bit passthru
			 */
			pthru = scb->pthru;
 
		}
		else {
			scb = &adapter->scb_list[cmdid];
			cmd = scb->cmd;
			pthru = scb->pthru;
			epthru = scb->epthru;
			mbox = (mbox_t *)scb->raw_mbox;
 
			/*
			 * Make sure f/w has completed a valid command
			 */
			if( !(scb->state & SCB_ISSUED) || scb->cmd == NULL ) {
				printk(KERN_CRIT
					"megaraid: invalid command ");
				printk("Id %d, scb->state:%x, scsi cmd:%p\n",
					cmdid, scb->state, scb->cmd);
 
				continue;
			}
 
			/*
			 * Was an abort issued for this command
			 */
			if( scb->state & SCB_ABORT ) {
 
				printk(KERN_NOTICE
				"megaraid: aborted cmd %lx[%x] complete.\n",
					scb->cmd->serial_number, scb->idx);
 
				cmd->result = (DID_ABORT << 16);
 
				mega_free_scb(adapter, scb);
 
				cmd->scsi_done(cmd);
 
				continue;
			}
 
			/*
			 * Was a reset issued for this command
			 */
			if( scb->state & SCB_RESET ) {
 
				printk(KERN_WARNING
				"megaraid: reset cmd %lx[%x] complete.\n",
					scb->cmd->serial_number, scb->idx);
 
				scb->cmd->result = (DID_RESET << 16);
 
				mega_free_scb (adapter, scb);
 
				cmd->scsi_done(cmd);
 
				continue;
			}
 
#if MEGA_HAVE_STATS
			{
 
			int	logdrv = mbox->logdrv;
 
			islogical = adapter->logdrv_chan[cmd->channel];
 
			/*
			 * Maintain an error counter for the logical drive.
			 * Some application like SNMP agent need such
			 * statistics
			 */
			if( status && islogical && (cmd->cmnd[0] == READ_6 ||
						cmd->cmnd[0] == READ_10 ||
						cmd->cmnd[0] == READ_12)) {
				/*
				 * Logical drive number increases by 0x80 when
				 * a logical drive is deleted
				 */
				adapter->rd_errors[logdrv%0x80]++;
			}
 
			if( status && islogical && (cmd->cmnd[0] == WRITE_6 ||
						cmd->cmnd[0] == WRITE_10 ||
						cmd->cmnd[0] == WRITE_12)) {
				/*
				 * Logical drive number increases by 0x80 when
				 * a logical drive is deleted
				 */
				adapter->wr_errors[logdrv%0x80]++;
			}
 
			}
#endif
		}
 
		/*
		 * Do not return the presence of hard disk on the channel so,
		 * inquiry sent, and returned data==hard disk or removable
		 * hard disk and not logical, request should return failure! -
		 * PJ
		 */
		islogical = adapter->logdrv_chan[cmd->channel];
		if (cmd->cmnd[0] == INQUIRY && !islogical) {
 
			if( cmd->use_sg ) {
				sgl = (struct scatterlist *)
					cmd->request_buffer;
				c = *(u8 *)sgl[0].address;
			}
			else {
				c = *(u8 *)cmd->request_buffer;
			}
 
			if(IS_RAID_CH(adapter, cmd->channel) &&
					((c & 0x1F ) == TYPE_DISK)) {
				status = 0xF0;
			}
		}
 
		/* clear result; otherwise, success returns corrupt value */
		cmd->result = 0;
 
		/* Convert MegaRAID status to Linux error code */
		switch (status) {
		case 0x00:	/* SUCCESS , i.e. SCSI_STATUS_GOOD */
			cmd->result |= (DID_OK << 16);
			break;
 
		case 0x02:	/* ERROR_ABORTED, i.e.
				   SCSI_STATUS_CHECK_CONDITION */
 
			/* set sense_buffer and result fields */
			if( mbox->cmd == MEGA_MBOXCMD_PASSTHRU ||
				mbox->cmd == MEGA_MBOXCMD_PASSTHRU64 ) {
 
				memcpy(cmd->sense_buffer, pthru->reqsensearea,
						14);
 
				cmd->result = (DRIVER_SENSE << 24) |
					(DID_OK << 16) |
					(CHECK_CONDITION << 1);
			}
			else {
				if (mbox->cmd == MEGA_MBOXCMD_EXTPTHRU) {
 
					memcpy(cmd->sense_buffer,
						epthru->reqsensearea, 14);
 
					cmd->result = (DRIVER_SENSE << 24) |
						(DID_OK << 16) |
						(CHECK_CONDITION << 1);
				} else {
					cmd->sense_buffer[0] = 0x70;
					cmd->sense_buffer[2] = ABORTED_COMMAND;
					cmd->result |= (CHECK_CONDITION << 1);
				}
			}
			break;
 
		case 0x08:	/* ERR_DEST_DRIVE_FAILED, i.e.
				   SCSI_STATUS_BUSY */
			cmd->result |= (DID_BUS_BUSY << 16) | status;
			break;
 
		default:
#if MEGA_HAVE_CLUSTERING
			/*
			 * If TEST_UNIT_READY fails, we know
			 * MEGA_RESERVATION_STATUS failed
			 */
			if( cmd->cmnd[0] == TEST_UNIT_READY ) {
				cmd->result |= (DID_ERROR << 16) |
					(RESERVATION_CONFLICT << 1);
			}
			else
			/*
			 * Error code returned is 1 if Reserve or Release
			 * failed or the input parameter is invalid
			 */
			if( status == 1 &&
				(cmd->cmnd[0] == RESERVE ||
					 cmd->cmnd[0] == RELEASE) ) {
 
				cmd->result |= (DID_ERROR << 16) |
					(RESERVATION_CONFLICT << 1);
			}
			else
#endif
				cmd->result |= (DID_BAD_TARGET << 16)|status;
		}
 
		/*
		 * Only free SCBs for the commands coming down from the
		 * mid-layer, not for which were issued internally
		 *
		 * For internal command, restore the status returned by the
		 * firmware so that user can interpret it.
		 */
		if( cmdid == CMDID_INT_CMDS ) { /* internal command */
			cmd->result = status;
 
			/*
			 * Remove the internal command from the pending list
			 */
			list_del_init(&scb->list);
			scb->state = SCB_FREE;
		}
		else {
			mega_free_scb(adapter, scb);
		}
 
		/*
		 * Call the mid-layer callback for this command
		 */
		cmd->scsi_done(cmd);
	}
}
 
 
/*
 * Free a SCB structure
 * Note: We assume the scsi commands associated with this scb is not free yet.
 */
static void
mega_free_scb(adapter_t *adapter, scb_t *scb)
{
	switch( scb->dma_type ) {
 
	case MEGA_DMA_TYPE_NONE:
		break;
 
	case MEGA_BULK_DATA:
		pci_unmap_page(adapter->dev, scb->dma_h_bulkdata,
			scb->cmd->request_bufflen, scb->dma_direction);
 
		if( scb->dma_direction == PCI_DMA_FROMDEVICE ) {
			pci_dma_sync_single(adapter->dev, scb->dma_h_bulkdata,
					scb->cmd->request_bufflen,
					PCI_DMA_FROMDEVICE);
		}
 
		break;
 
	case MEGA_SGLIST:
		pci_unmap_sg(adapter->dev, scb->cmd->request_buffer,
			scb->cmd->use_sg, scb->dma_direction);
 
		if( scb->dma_direction == PCI_DMA_FROMDEVICE ) {
			pci_dma_sync_sg(adapter->dev, scb->cmd->request_buffer,
					scb->cmd->use_sg, PCI_DMA_FROMDEVICE);
		}
 
		break;
 
	default:
		break;
	}
 
	/*
	 * Remove from the pending list
	 */
	list_del_init(&scb->list);
 
	/* Link the scb back into free list */
	scb->state = SCB_FREE;
	scb->cmd = NULL;
 
	list_add(&scb->list, &adapter->free_list);
}
 
 
/*
 * Wait until the controller's mailbox is available
 */
static inline int
mega_busywait_mbox (adapter_t *adapter)
{
	if (adapter->mbox->busy)
		return __mega_busywait_mbox(adapter);
	return 0;
}
 
static int
__mega_busywait_mbox (adapter_t *adapter)
{
	volatile mbox_t *mbox = adapter->mbox;
	long counter;
 
	for (counter = 0; counter < 10000; counter++) {
		if (!mbox->busy)
			return 0;
		udelay(100); yield();
	}
	return -1;		/* give up after 1 second */
}
 
/*
 * Copies data to SGLIST
 * Note: For 64 bit cards, we need a minimum of one SG element for read/write
 */
static int
mega_build_sglist(adapter_t *adapter, scb_t *scb, u32 *buf, u32 *len)
{
	struct scatterlist	*sgl;
	struct page	*page;
	unsigned long	offset;
	Scsi_Cmnd	*cmd;
	int	sgcnt;
	int	idx;
 
	cmd = scb->cmd;
 
	/* Scatter-gather not used */
	if( !cmd->use_sg ) {
 
		page = virt_to_page(cmd->request_buffer);
 
		offset = ((unsigned long)cmd->request_buffer & ~PAGE_MASK);
 
		scb->dma_h_bulkdata = pci_map_page(adapter->dev, page, offset,
						  cmd->request_bufflen,
						  scb->dma_direction);
		scb->dma_type = MEGA_BULK_DATA;
 
		/*
		 * We need to handle special 64-bit commands that need a
		 * minimum of 1 SG
		 */
		if( adapter->has_64bit_addr ) {
			scb->sgl64[0].address = scb->dma_h_bulkdata;
			scb->sgl64[0].length = cmd->request_bufflen;
			*buf = (u32)scb->sgl_dma_addr;
			*len = (u32)cmd->request_bufflen;
			return 1;
		}
		else {
			*buf = (u32)scb->dma_h_bulkdata;
			*len = (u32)cmd->request_bufflen;
		}
 
		if( scb->dma_direction == PCI_DMA_TODEVICE ) {
			pci_dma_sync_single(adapter->dev,
					scb->dma_h_bulkdata,
					cmd->request_bufflen,
					PCI_DMA_TODEVICE);
		}
 
		return 0;
	}
 
	sgl = (struct scatterlist *)cmd->request_buffer;
 
	/*
	 * Copy Scatter-Gather list info into controller structure.
	 *
	 * The number of sg elements returned must not exceed our limit
	 */
	sgcnt = pci_map_sg(adapter->dev, sgl, cmd->use_sg, scb->dma_direction);
 
	scb->dma_type = MEGA_SGLIST;
 
	if( sgcnt > adapter->sglen ) BUG();
 
	for( idx = 0; idx < sgcnt; idx++, sgl++ ) {
 
		if( adapter->has_64bit_addr ) {
			scb->sgl64[idx].address = sg_dma_address(sgl);
			scb->sgl64[idx].length = sg_dma_len(sgl);
		}
		else {
			scb->sgl[idx].address = sg_dma_address(sgl);
			scb->sgl[idx].length = sg_dma_len(sgl);
		}
	}
 
	/* Reset pointer and length fields */
	*buf = scb->sgl_dma_addr;
 
	/*
	 * For passthru command, dataxferlen must be set, even for commands
	 * with a sg list
	 */
	*len = (u32)cmd->request_bufflen;
 
	if( scb->dma_direction == PCI_DMA_TODEVICE ) {
		pci_dma_sync_sg(adapter->dev, cmd->request_buffer,
				cmd->use_sg, PCI_DMA_TODEVICE);
	}
 
	/* Return count of SG requests */
	return sgcnt;
}
 
 
/*
 * mega_8_to_40ld()
 *
 * takes all info in AdapterInquiry structure and puts it into ProductInfo and
 * Enquiry3 structures for later use
 */
static void
mega_8_to_40ld(mraid_inquiry *inquiry, mega_inquiry3 *enquiry3,
		mega_product_info *product_info)
{
	int i;
 
	product_info->max_commands = inquiry->adapter_info.max_commands;
	enquiry3->rebuild_rate = inquiry->adapter_info.rebuild_rate;
	product_info->nchannels = inquiry->adapter_info.nchannels;
 
	for (i = 0; i < 4; i++) {
		product_info->fw_version[i] =
			inquiry->adapter_info.fw_version[i];
 
		product_info->bios_version[i] =
			inquiry->adapter_info.bios_version[i];
	}
	enquiry3->cache_flush_interval =
		inquiry->adapter_info.cache_flush_interval;
 
	product_info->dram_size = inquiry->adapter_info.dram_size;
 
	enquiry3->num_ldrv = inquiry->logdrv_info.num_ldrv;
 
	for (i = 0; i < MAX_LOGICAL_DRIVES_8LD; i++) {
		enquiry3->ldrv_size[i] = inquiry->logdrv_info.ldrv_size[i];
		enquiry3->ldrv_prop[i] = inquiry->logdrv_info.ldrv_prop[i];
		enquiry3->ldrv_state[i] = inquiry->logdrv_info.ldrv_state[i];
	}
 
	for (i = 0; i < (MAX_PHYSICAL_DRIVES); i++)
		enquiry3->pdrv_state[i] = inquiry->pdrv_info.pdrv_state[i];
}
 
 
/*
 * Release the controller's resources
 */
static int
megaraid_release(struct Scsi_Host *host)
{
	adapter_t	*adapter;
	mbox_t	*mbox;
	u_char	raw_mbox[sizeof(mbox_t)];
#ifdef CONFIG_PROC_FS
	char	buf[12] = { 0 };
#endif
 
	adapter = (adapter_t *)host->hostdata;
	mbox = (mbox_t *)raw_mbox;
 
	printk(KERN_NOTICE "megaraid: being unloaded...");
 
	/* Flush adapter cache */
	memset(raw_mbox, 0, sizeof(raw_mbox));
	raw_mbox[0] = FLUSH_ADAPTER;
 
	irq_disable(adapter);
	free_irq(adapter->host->irq, adapter);
 
	/* Issue a blocking (interrupts disabled) command to the card */
	issue_scb_block(adapter, raw_mbox);
 
	/* Flush disks cache */
	memset(raw_mbox, 0, sizeof(raw_mbox));
	raw_mbox[0] = FLUSH_SYSTEM;
 
	/* Issue a blocking (interrupts disabled) command to the card */
	issue_scb_block(adapter, raw_mbox);
 
 
	/* Free our resources */
	if( adapter->flag & BOARD_MEMMAP ) {
		iounmap((void *)adapter->base);
		release_mem_region(adapter->host->base, 128);
	}
	else {
		release_region(adapter->base, 16);
	}
 
	mega_free_sgl(adapter);
 
#ifdef CONFIG_PROC_FS
	if( adapter->controller_proc_dir_entry ) {
		remove_proc_entry("stat", adapter->controller_proc_dir_entry);
		remove_proc_entry("config",
				adapter->controller_proc_dir_entry);
		remove_proc_entry("mailbox",
				adapter->controller_proc_dir_entry);
#if MEGA_HAVE_ENH_PROC
		remove_proc_entry("rebuild-rate",
				adapter->controller_proc_dir_entry);
		remove_proc_entry("battery-status",
				adapter->controller_proc_dir_entry);
 
		remove_proc_entry("diskdrives-ch0",
				adapter->controller_proc_dir_entry);
		remove_proc_entry("diskdrives-ch1",
				adapter->controller_proc_dir_entry);
		remove_proc_entry("diskdrives-ch2",
				adapter->controller_proc_dir_entry);
		remove_proc_entry("diskdrives-ch3",
				adapter->controller_proc_dir_entry);
 
		remove_proc_entry("raiddrives-0-9",
				adapter->controller_proc_dir_entry);
		remove_proc_entry("raiddrives-10-19",
				adapter->controller_proc_dir_entry);
		remove_proc_entry("raiddrives-20-29",
				adapter->controller_proc_dir_entry);
		remove_proc_entry("raiddrives-30-39",
				adapter->controller_proc_dir_entry);
#endif
 
		sprintf(buf, "hba%d", adapter->host->host_no);
		remove_proc_entry(buf, mega_proc_dir_entry);
	}
#endif
 
	pci_free_consistent(adapter->dev, MEGA_BUFFER_SIZE,
			adapter->mega_buffer, adapter->buf_dma_handle);
	kfree(adapter->scb_list);
	pci_free_consistent(adapter->dev, sizeof(mbox64_t),
			(void *)adapter->una_mbox64, adapter->una_mbox64_dma);
 
	hba_count--;
 
	if( hba_count == 0 ) {
 
		/*
		 * Unregister the character device interface to the driver.
		 */
		unregister_chrdev(major, "megadev");
 
		unregister_reboot_notifier(&mega_notifier);
 
#ifdef CONFIG_PROC_FS
		if( adapter->controller_proc_dir_entry ) {
			remove_proc_entry ("megaraid", &proc_root);
		}
#endif
 
	}
 
	/*
	 * Release the controller memory. A word of warning this frees
	 * hostdata and that includes adapter-> so be careful what you
	 * dereference beyond this point
	 */
	scsi_unregister(host);
 
 
	printk("ok.\n");
 
	return 0;
}
 
static inline void
mega_free_sgl(adapter_t *adapter)
{
	scb_t	*scb;
	int	i;
 
	for(i = 0; i < adapter->max_cmds; i++) {
 
		scb = &adapter->scb_list[i];
 
		if( scb->sgl64 ) {
			pci_free_consistent(adapter->dev,
				sizeof(mega_sgl64) * adapter->sglen,
				scb->sgl64,
				scb->sgl_dma_addr);
 
			scb->sgl64 = NULL;
		}
 
		if( scb->pthru ) {
			pci_free_consistent(adapter->dev, sizeof(mega_passthru),
				scb->pthru, scb->pthru_dma_addr);
 
			scb->pthru = NULL;
		}
 
		if( scb->epthru ) {
			pci_free_consistent(adapter->dev,
				sizeof(mega_ext_passthru),
				scb->epthru, scb->epthru_dma_addr);
 
			scb->epthru = NULL;
		}
 
	}
}
 
 
/*
 * Get information about the card/driver
 */
const char *
megaraid_info(struct Scsi_Host *host)
{
	static char buffer[512];
	adapter_t *adapter;
 
	adapter = (adapter_t *)host->hostdata;
 
	sprintf (buffer,
		 "LSI Logic MegaRAID %s %d commands %d targs %d chans %d luns",
		 adapter->fw_version, adapter->product_info.max_commands,
		 adapter->host->max_id, adapter->host->max_channel,
		 adapter->host->max_lun);
	return buffer;
}
 
/* shouldn't be used, but included for completeness */
static int
megaraid_command (Scsi_Cmnd *cmd)
{
	printk(KERN_WARNING
	"megaraid critcal error: synchronous interface is not implemented.\n");
 
	cmd->result = (DID_ERROR << 16);
	cmd->scsi_done(cmd);
 
	return 1;
}
 
 
/**
 * megaraid_abort - abort the scsi command
 * @scp	- command to be aborted
 *
 * Abort a previous SCSI request. Only commands on the pending list can be
 * aborted. All the commands issued to the F/W must complete.
 */
static int
megaraid_abort(Scsi_Cmnd *scp)
{
	adapter_t		*adapter;
	struct list_head	*pos, *next;
	scb_t			*scb;
	long			iter;
	int			rval = SUCCESS;
 
	adapter = (adapter_t *)scp->host->hostdata;
 
	ASSERT( spin_is_locked(adapter->host_lock) );
 
	printk("megaraid: aborting-%ld cmd=%x <c=%d t=%d l=%d>\n",
		scp->serial_number, scp->cmnd[0], scp->channel, scp->target,
		scp->lun);
 
 
	list_for_each_safe( pos, next, &adapter->pending_list ) {
 
		scb = list_entry(pos, scb_t, list);
 
		if( scb->cmd == scp ) { /* Found command */
 
			scb->state |= SCB_ABORT;
 
			/*
			 * Check if this command was never issued. If this is
			 * the case, take it off from the pending list and
			 * complete.
			 */
			if( !(scb->state & SCB_ISSUED) ) {
 
				printk(KERN_WARNING
				"megaraid: %ld:%d, driver owner.\n",
					scp->serial_number, scb->idx);
 
				scp->result = (DID_ABORT << 16);
 
				mega_free_scb(adapter, scb);
 
				scp->scsi_done(scp);
 
				break;
			}
		}
	}
 
	/*
	 * By this time, either all commands are completed or aborted by
	 * mid-layer. Do not return until all the commands are actually
	 * completed by the firmware
	 */
	iter = 0;
	while( atomic_read(&adapter->pend_cmds) > 0 ) {
		/*
		 * Perform the ack sequence, since interrupts are not
		 * available right now!
		 */
		if( adapter->flag & BOARD_MEMMAP ) {
			megaraid_memmbox_ack_sequence(adapter);
		}
		else {
			megaraid_iombox_ack_sequence(adapter);
		}
 
		/*
		 * print a message once every second only
		 */
		if( !(iter % 1000) ) {
			printk(
			"megaraid: Waiting for %d commands to flush: iter:%ld\n",
				atomic_read(&adapter->pend_cmds), iter);
		}
 
		if( iter++ < MBOX_ABORT_SLEEP*1000 ) {
			mdelay(1);
		}
		else {
			printk(KERN_WARNING
				"megaraid: critical hardware error!\n");
 
			rval = FAILED;
 
			break;
		}
	}
 
	if( rval == SUCCESS ) {
		printk(KERN_INFO
			"megaraid: abort sequence successfully completed.\n");
	}
 
	return rval;
}
 
 
static int
megaraid_reset(Scsi_Cmnd *cmd)
{
	adapter_t	*adapter;
	megacmd_t	mc;
	long		iter;
	int		rval = SUCCESS;
 
	adapter = (adapter_t *)cmd->host->hostdata;
 
	ASSERT( spin_is_locked(adapter->host_lock) );
 
	printk("megaraid: reset-%ld cmd=%x <c=%d t=%d l=%d>\n",
		cmd->serial_number, cmd->cmnd[0], cmd->channel, cmd->target,
		cmd->lun);
 
 
#if MEGA_HAVE_CLUSTERING
	mc.cmd = MEGA_CLUSTER_CMD;
	mc.opcode = MEGA_RESET_RESERVATIONS;
 
	spin_unlock_irq(adapter->host_lock);
	if( mega_internal_command(adapter, LOCK_INT, &mc, NULL) != 0 ) {
		printk(KERN_WARNING
				"megaraid: reservation reset failed.\n");
	}
	else {
		printk(KERN_INFO "megaraid: reservation reset.\n");
	}
	spin_lock_irq(adapter->host_lock);
#endif
 
	/*
	 * Do not return until all the commands are actually completed by the
	 * firmware
	 */
	iter = 0;
	while( atomic_read(&adapter->pend_cmds) > 0 ) {
		/*
		 * Perform the ack sequence, since interrupts are not
		 * available right now!
		 */
		if( adapter->flag & BOARD_MEMMAP ) {
			megaraid_memmbox_ack_sequence(adapter);
		}
		else {
			megaraid_iombox_ack_sequence(adapter);
		}
 
		/*
		 * print a message once every second only
		 */
		if( !(iter % 1000) ) {
			printk(
			"megaraid: Waiting for %d commands to flush: iter:%ld\n",
				atomic_read(&adapter->pend_cmds), iter);
		}
 
		if( iter++ < MBOX_RESET_SLEEP*1000 ) {
			mdelay(1);
		}
		else {
			printk(KERN_WARNING
				"megaraid: critical hardware error!\n");
 
			rval = FAILED;
 
			break;
		}
	}
 
	if( rval == SUCCESS ) {
		printk(KERN_INFO
			"megaraid: reset sequence successfully completed.\n");
	}
 
	return rval;
}
 
 
#ifdef CONFIG_PROC_FS
/* Following code handles /proc fs  */
 
#define CREATE_READ_PROC(string, func)	create_proc_read_entry(string,	\
					S_IRUSR | S_IFREG,		\
					controller_proc_dir_entry,	\
					func, adapter)
 
/**
 * mega_create_proc_entry()
 * @index - index in soft state array
 * @parent - parent node for this /proc entry
 *
 * Creates /proc entries for our controllers.
 */
static void
mega_create_proc_entry(int index, struct proc_dir_entry *parent)
{
	struct proc_dir_entry	*controller_proc_dir_entry = NULL;
	u8		string[64] = { 0 };
	adapter_t	*adapter = hba_soft_state[index];
 
	sprintf(string, "hba%d", adapter->host->host_no);
 
	controller_proc_dir_entry =
		adapter->controller_proc_dir_entry = proc_mkdir(string, parent);
 
	if(!controller_proc_dir_entry) {
		printk(KERN_WARNING "\nmegaraid: proc_mkdir failed\n");
		return;
	}
	adapter->proc_read = CREATE_READ_PROC("config", proc_read_config);
	adapter->proc_stat = CREATE_READ_PROC("stat", proc_read_stat);
	adapter->proc_mbox = CREATE_READ_PROC("mailbox", proc_read_mbox);
#if MEGA_HAVE_ENH_PROC
	adapter->proc_rr = CREATE_READ_PROC("rebuild-rate", proc_rebuild_rate);
	adapter->proc_battery = CREATE_READ_PROC("battery-status",
			proc_battery);
 
	/*
	 * Display each physical drive on its channel
	 */
	adapter->proc_pdrvstat[0] = CREATE_READ_PROC("diskdrives-ch0",
					proc_pdrv_ch0);
	adapter->proc_pdrvstat[1] = CREATE_READ_PROC("diskdrives-ch1",
					proc_pdrv_ch1);
	adapter->proc_pdrvstat[2] = CREATE_READ_PROC("diskdrives-ch2",
					proc_pdrv_ch2);
	adapter->proc_pdrvstat[3] = CREATE_READ_PROC("diskdrives-ch3",
					proc_pdrv_ch3);
 
	/*
	 * Display a set of up to 10 logical drive through each of following
	 * /proc entries
	 */
	adapter->proc_rdrvstat[0] = CREATE_READ_PROC("raiddrives-0-9",
					proc_rdrv_10);
	adapter->proc_rdrvstat[1] = CREATE_READ_PROC("raiddrives-10-19",
					proc_rdrv_20);
	adapter->proc_rdrvstat[2] = CREATE_READ_PROC("raiddrives-20-29",
					proc_rdrv_30);
	adapter->proc_rdrvstat[3] = CREATE_READ_PROC("raiddrives-30-39",
					proc_rdrv_40);
#endif
}
 
 
/**
 * proc_read_config()
 * @page - buffer to write the data in
 * @start - where the actual data has been written in page
 * @offset - same meaning as the read system call
 * @count - same meaning as the read system call
 * @eof - set if no more data needs to be returned
 * @data - pointer to our soft state
 *
 * Display configuration information about the controller.
 */
static int
proc_read_config(char *page, char **start, off_t offset, int count, int *eof,
		void *data)
{
 
	adapter_t *adapter = (adapter_t *)data;
	int len = 0;
 
	len += sprintf(page+len, "%s", MEGARAID_VERSION);
 
	if(adapter->product_info.product_name[0])
		len += sprintf(page+len, "%s\n",
				adapter->product_info.product_name);
 
	len += sprintf(page+len, "Controller Type: ");
 
	if( adapter->flag & BOARD_MEMMAP ) {
		len += sprintf(page+len,
			"438/466/467/471/493/518/520/531/532\n");
	}
	else {
		len += sprintf(page+len,
			"418/428/434\n");
	}
 
	if(adapter->flag & BOARD_40LD) {
		len += sprintf(page+len,
				"Controller Supports 40 Logical Drives\n");
	}
 
	if(adapter->flag & BOARD_64BIT) {
		len += sprintf(page+len,
		"Controller capable of 64-bit memory addressing\n");
	}
	if( adapter->has_64bit_addr ) {
		len += sprintf(page+len,
			"Controller using 64-bit memory addressing\n");
	}
	else {
		len += sprintf(page+len,
			"Controller is not using 64-bit memory addressing\n");
	}
 
	len += sprintf(page+len, "Base = %08lx, Irq = %d, ", adapter->base,
			adapter->host->irq);
 
	len += sprintf(page+len, "Initial Logical Drives = %d, Channels = %d\n",
			adapter->numldrv, adapter->product_info.nchannels);
 
	len += sprintf(page+len, "Version =%s:%s, DRAM = %dMb\n",
			adapter->fw_version, adapter->bios_version,
			adapter->product_info.dram_size);
 
	len += sprintf(page+len,
		"Controller Queue Depth = %d, Driver Queue Depth = %d\n",
		adapter->product_info.max_commands, adapter->max_cmds);
 
	len += sprintf(page+len, "support_ext_cdb    = %d\n",
			adapter->support_ext_cdb);
	len += sprintf(page+len, "support_random_del = %d\n",
			adapter->support_random_del);
	len += sprintf(page+len, "boot_ldrv_enabled  = %d\n",
			adapter->boot_ldrv_enabled);
	len += sprintf(page+len, "boot_ldrv          = %d\n",
			adapter->boot_ldrv);
	len += sprintf(page+len, "boot_pdrv_enabled  = %d\n",
			adapter->boot_pdrv_enabled);
	len += sprintf(page+len, "boot_pdrv_ch       = %d\n",
			adapter->boot_pdrv_ch);
	len += sprintf(page+len, "boot_pdrv_tgt      = %d\n",
			adapter->boot_pdrv_tgt);
	len += sprintf(page+len, "quiescent          = %d\n",
			atomic_read(&adapter->quiescent));
	len += sprintf(page+len, "has_cluster        = %d\n",
			adapter->has_cluster);
 
	len += sprintf(page+len, "\nModule Parameters:\n");
	len += sprintf(page+len, "max_cmd_per_lun    = %d\n",
			max_cmd_per_lun);
	len += sprintf(page+len, "max_sectors_per_io = %d\n",
			max_sectors_per_io);
 
	*eof = 1;
 
	return len;
}
 
 
 
/**
 * proc_read_stat()
 * @page - buffer to write the data in
 * @start - where the actual data has been written in page
 * @offset - same meaning as the read system call
 * @count - same meaning as the read system call
 * @eof - set if no more data needs to be returned
 * @data - pointer to our soft state
 *
 * Diaplay statistical information about the I/O activity.
 */
static int
proc_read_stat(char *page, char **start, off_t offset, int count, int *eof,
		void *data)
{
	adapter_t	*adapter;
	int	len;
	int	i;
 
	i = 0;	/* avoid compilation warnings */
	len = 0;
	adapter = (adapter_t *)data;
 
	len = sprintf(page, "Statistical Information for this controller\n");
	len += sprintf(page+len, "pend_cmds = %d\n",
			atomic_read(&adapter->pend_cmds));
#if MEGA_HAVE_STATS
	for(i = 0; i < adapter->numldrv; i++) {
		len += sprintf(page+len, "Logical Drive %d:\n", i);
 
		len += sprintf(page+len,
			"\tReads Issued = %lu, Writes Issued = %lu\n",
			adapter->nreads[i], adapter->nwrites[i]);
 
		len += sprintf(page+len,
			"\tSectors Read = %lu, Sectors Written = %lu\n",
			adapter->nreadblocks[i], adapter->nwriteblocks[i]);
 
		len += sprintf(page+len,
			"\tRead errors = %lu, Write errors = %lu\n\n",
			adapter->rd_errors[i], adapter->wr_errors[i]);
	}
#else
	len += sprintf(page+len,
			"IO and error counters not compiled in driver.\n");
#endif
 
	*eof = 1;
 
	return len;
}
 
 
/**
 * proc_read_mbox()
 * @page - buffer to write the data in
 * @start - where the actual data has been written in page
 * @offset - same meaning as the read system call
 * @count - same meaning as the read system call
 * @eof - set if no more data needs to be returned
 * @data - pointer to our soft state
 *
 * Display mailbox information for the last command issued. This information
 * is good for debugging.
 */
static int
proc_read_mbox(char *page, char **start, off_t offset, int count, int *eof,
		void *data)
{
 
	adapter_t	*adapter = (adapter_t *)data;
	volatile mbox_t	*mbox = adapter->mbox;
	int	len = 0;
 
	len = sprintf(page, "Contents of Mail Box Structure\n");
	len += sprintf(page+len, "  Fw Command   = 0x%02x\n", mbox->cmd);
	len += sprintf(page+len, "  Cmd Sequence = 0x%02x\n", mbox->cmdid);
	len += sprintf(page+len, "  No of Sectors= %04d\n", mbox->numsectors);
	len += sprintf(page+len, "  LBA          = 0x%02x\n", mbox->lba);
	len += sprintf(page+len, "  DTA          = 0x%08x\n", mbox->xferaddr);
	len += sprintf(page+len, "  Logical Drive= 0x%02x\n", mbox->logdrv);
	len += sprintf(page+len, "  No of SG Elmt= 0x%02x\n",
			mbox->numsgelements);
	len += sprintf(page+len, "  Busy         = %01x\n", mbox->busy);
	len += sprintf(page+len, "  Status       = 0x%02x\n", mbox->status);
 
	*eof = 1;
 
	return len;
}
 
 
/**
 * proc_rebuild_rate()
 * @page - buffer to write the data in
 * @start - where the actual data has been written in page
 * @offset - same meaning as the read system call
 * @count - same meaning as the read system call
 * @eof - set if no more data needs to be returned
 * @data - pointer to our soft state
 *
 * Display current rebuild rate
 */
static int
proc_rebuild_rate(char *page, char **start, off_t offset, int count, int *eof,
		void *data)
{
	adapter_t	*adapter = (adapter_t *)data;
	dma_addr_t	dma_handle;
	caddr_t		inquiry;
	struct pci_dev	*pdev;
	int	len = 0;
 
	pdev = adapter->dev;
 
	if( (inquiry = mega_allocate_inquiry(&dma_handle, pdev)) == NULL ) {
		*eof = 1;
		return len;
	}
 
	if( mega_adapinq(adapter, dma_handle) != 0 ) {
 
		len = sprintf(page, "Adapter inquiry failed.\n");
 
		printk(KERN_WARNING "megaraid: inquiry failed.\n");
 
		mega_free_inquiry(inquiry, dma_handle, pdev);
 
		*eof = 1;
 
		return len;
	}
 
	if( adapter->flag & BOARD_40LD ) {
		len = sprintf(page, "Rebuild Rate: [%d%%]\n",
			((mega_inquiry3 *)inquiry)->rebuild_rate);
	}
	else {
		len = sprintf(page, "Rebuild Rate: [%d%%]\n",
			((mraid_ext_inquiry *)
			inquiry)->raid_inq.adapter_info.rebuild_rate);
	}
 
 
	mega_free_inquiry(inquiry, dma_handle, pdev);
 
	*eof = 1;
 
	return len;
}
 
 
/**
 * proc_battery()
 * @page - buffer to write the data in
 * @start - where the actual data has been written in page
 * @offset - same meaning as the read system call
 * @count - same meaning as the read system call
 * @eof - set if no more data needs to be returned
 * @data - pointer to our soft state
 *
 * Display information about the battery module on the controller.
 */
static int
proc_battery(char *page, char **start, off_t offset, int count, int *eof,
		void *data)
{
	adapter_t	*adapter = (adapter_t *)data;
	dma_addr_t	dma_handle;
	caddr_t		inquiry;
	struct pci_dev	*pdev;
	u8	battery_status = 0;
	char	str[256];
	int	len = 0;
 
	pdev = adapter->dev;
 
	if( (inquiry = mega_allocate_inquiry(&dma_handle, pdev)) == NULL ) {
		*eof = 1;
		return len;
	}
 
	if( mega_adapinq(adapter, dma_handle) != 0 ) {
 
		len = sprintf(page, "Adapter inquiry failed.\n");
 
		printk(KERN_WARNING "megaraid: inquiry failed.\n");
 
		mega_free_inquiry(inquiry, dma_handle, pdev);
 
		*eof = 1;
 
		return len;
	}
 
	if( adapter->flag & BOARD_40LD ) {
		battery_status = ((mega_inquiry3 *)inquiry)->battery_status;
	}
	else {
		battery_status = ((mraid_ext_inquiry *)inquiry)->
			raid_inq.adapter_info.battery_status;
	}
 
	/*
	 * Decode the battery status
	 */
	sprintf(str, "Battery Status:[%d]", battery_status);
 
	if(battery_status == MEGA_BATT_CHARGE_DONE)
		strcat(str, " Charge Done");
 
	if(battery_status & MEGA_BATT_MODULE_MISSING)
		strcat(str, " Module Missing");
 
	if(battery_status & MEGA_BATT_LOW_VOLTAGE)
		strcat(str, " Low Voltage");
 
	if(battery_status & MEGA_BATT_TEMP_HIGH)
		strcat(str, " Temperature High");
 
	if(battery_status & MEGA_BATT_PACK_MISSING)
		strcat(str, " Pack Missing");
 
	if(battery_status & MEGA_BATT_CHARGE_INPROG)
		strcat(str, " Charge In-progress");
 
	if(battery_status & MEGA_BATT_CHARGE_FAIL)
		strcat(str, " Charge Fail");
 
	if(battery_status & MEGA_BATT_CYCLES_EXCEEDED)
		strcat(str, " Cycles Exceeded");
 
	len = sprintf(page, "%s\n", str);
 
 
	mega_free_inquiry(inquiry, dma_handle, pdev);
 
	*eof = 1;
 
	return len;
}
 
 
/**
 * proc_pdrv_ch0()
 * @page - buffer to write the data in
 * @start - where the actual data has been written in page
 * @offset - same meaning as the read system call
 * @count - same meaning as the read system call
 * @eof - set if no more data needs to be returned
 * @data - pointer to our soft state
 *
 * Display information about the physical drives on physical channel 0.
 */
static int
proc_pdrv_ch0(char *page, char **start, off_t offset, int count, int *eof,
		void *data)
{
	adapter_t *adapter = (adapter_t *)data;
 
	*eof = 1;
 
	return (proc_pdrv(adapter, page, 0));
}
 
 
/**
 * proc_pdrv_ch1()
 * @page - buffer to write the data in
 * @start - where the actual data has been written in page
 * @offset - same meaning as the read system call
 * @count - same meaning as the read system call
 * @eof - set if no more data needs to be returned
 * @data - pointer to our soft state
 *
 * Display information about the physical drives on physical channel 1.
 */
static int
proc_pdrv_ch1(char *page, char **start, off_t offset, int count, int *eof,
		void *data)
{
	adapter_t *adapter = (adapter_t *)data;
 
	*eof = 1;
 
	return (proc_pdrv(adapter, page, 1));
}
 
 
/**
 * proc_pdrv_ch2()
 * @page - buffer to write the data in
 * @start - where the actual data has been written in page
 * @offset - same meaning as the read system call
 * @count - same meaning as the read system call
 * @eof - set if no more data needs to be returned
 * @data - pointer to our soft state
 *
 * Display information about the physical drives on physical channel 2.
 */
static int
proc_pdrv_ch2(char *page, char **start, off_t offset, int count, int *eof,
		void *data)
{
	adapter_t *adapter = (adapter_t *)data;
 
	*eof = 1;
 
	return (proc_pdrv(adapter, page, 2));
}
 
 
/**
 * proc_pdrv_ch3()
 * @page - buffer to write the data in
 * @start - where the actual data has been written in page
 * @offset - same meaning as the read system call
 * @count - same meaning as the read system call
 * @eof - set if no more data needs to be returned
 * @data - pointer to our soft state
 *
 * Display information about the physical drives on physical channel 3.
 */
static int
proc_pdrv_ch3(char *page, char **start, off_t offset, int count, int *eof,
		void *data)
{
	adapter_t *adapter = (adapter_t *)data;
 
	*eof = 1;
 
	return (proc_pdrv(adapter, page, 3));
}
 
 
/**
 * proc_pdrv()
 * @page - buffer to write the data in
 * @adapter - pointer to our soft state
 *
 * Display information about the physical drives.
 */
static int
proc_pdrv(adapter_t *adapter, char *page, int channel)
{
	dma_addr_t	dma_handle;
	char		*scsi_inq;
	dma_addr_t	scsi_inq_dma_handle;
	caddr_t		inquiry;
	struct pci_dev	*pdev;
	u8	*pdrv_state;
	u8	state;
	int	tgt;
	int	max_channels;
	int	len = 0;
	char	str[80];
	int	i;
 
	pdev = adapter->dev;
 
	if( (inquiry = mega_allocate_inquiry(&dma_handle, pdev)) == NULL ) {
		return len;
	}
 
	if( mega_adapinq(adapter, dma_handle) != 0 ) {
 
		len = sprintf(page, "Adapter inquiry failed.\n");
 
		printk(KERN_WARNING "megaraid: inquiry failed.\n");
 
		mega_free_inquiry(inquiry, dma_handle, pdev);
 
		return len;
	}
 
 
	scsi_inq = pci_alloc_consistent(pdev, 256, &scsi_inq_dma_handle);
 
	if( scsi_inq == NULL ) {
		len = sprintf(page, "memory not available for scsi inq.\n");
 
		mega_free_inquiry(inquiry, dma_handle, pdev);
 
		return len;
	}
 
	if( adapter->flag & BOARD_40LD ) {
		pdrv_state = ((mega_inquiry3 *)inquiry)->pdrv_state;
	}
	else {
		pdrv_state = ((mraid_ext_inquiry *)inquiry)->
			raid_inq.pdrv_info.pdrv_state;
	}
 
	max_channels = adapter->product_info.nchannels;
 
	if( channel >= max_channels ) return 0;
 
	for( tgt = 0; tgt <= MAX_TARGET; tgt++ ) {
 
		i = channel*16 + tgt;
 
		state = *(pdrv_state + i);
 
		switch( state & 0x0F ) {
 
		case PDRV_ONLINE:
			sprintf(str, "Channel:%2d Id:%2d State: Online",
				channel, tgt);
			break;
 
		case PDRV_FAILED:
			sprintf(str, "Channel:%2d Id:%2d State: Failed",
				channel, tgt);
			break;
 
		case PDRV_RBLD:
			sprintf(str, "Channel:%2d Id:%2d State: Rebuild",
				channel, tgt);
			break;
 
		case PDRV_HOTSPARE:
			sprintf(str, "Channel:%2d Id:%2d State: Hot spare",
				channel, tgt);
			break;
 
		default:
			sprintf(str, "Channel:%2d Id:%2d State: Un-configured",
				channel, tgt);
			break;
 
		}
 
		/*
		 * This interface displays inquiries for disk drives
		 * only. Inquries for logical drives and non-disk
		 * devices are available through /proc/scsi/scsi
		 */
		memset(scsi_inq, 0, 256);
		if( mega_internal_dev_inquiry(adapter, channel, tgt,
				scsi_inq_dma_handle) ||
				(scsi_inq[0] & 0x1F) != TYPE_DISK ) {
			continue;
		}
 
		/*
		 * Check for overflow. We print less than 240
		 * characters for inquiry
		 */
		if( (len + 240) >= PAGE_SIZE ) break;
 
		len += sprintf(page+len, "%s.\n", str);
 
		len += mega_print_inquiry(page+len, scsi_inq);
	}
 
	pci_free_consistent(pdev, 256, scsi_inq, scsi_inq_dma_handle);
 
	mega_free_inquiry(inquiry, dma_handle, pdev);
 
	return len;
}
 
 
/*
 * Display scsi inquiry
 */
static int
mega_print_inquiry(char *page, char *scsi_inq)
{
	int	len = 0;
	int	i;
 
	len = sprintf(page, "  Vendor: ");
	for( i = 8; i < 16; i++ ) {
		len += sprintf(page+len, "%c", scsi_inq[i]);
	}
 
	len += sprintf(page+len, "  Model: ");
 
	for( i = 16; i < 32; i++ ) {
		len += sprintf(page+len, "%c", scsi_inq[i]);
	}
 
	len += sprintf(page+len, "  Rev: ");
 
	for( i = 32; i < 36; i++ ) {
		len += sprintf(page+len, "%c", scsi_inq[i]);
	}
 
	len += sprintf(page+len, "\n");
 
	i = scsi_inq[0] & 0x1f;
 
	len += sprintf(page+len, "  Type:   %s ",
		i < MAX_SCSI_DEVICE_CODE ? scsi_device_types[i] :
		   "Unknown          ");
 
	len += sprintf(page+len,
	"                 ANSI SCSI revision: %02x", scsi_inq[2] & 0x07);
 
	if( (scsi_inq[2] & 0x07) == 1 && (scsi_inq[3] & 0x0f) == 1 )
		len += sprintf(page+len, " CCS\n");
	else
		len += sprintf(page+len, "\n");
 
	return len;
}
 
 
/**
 * proc_rdrv_10()
 * @page - buffer to write the data in
 * @start - where the actual data has been written in page
 * @offset - same meaning as the read system call
 * @count - same meaning as the read system call
 * @eof - set if no more data needs to be returned
 * @data - pointer to our soft state
 *
 * Display real time information about the logical drives 0 through 9.
 */
static int
proc_rdrv_10(char *page, char **start, off_t offset, int count, int *eof,
		void *data)
{
	adapter_t *adapter = (adapter_t *)data;
 
	*eof = 1;
 
	return (proc_rdrv(adapter, page, 0, 9));
}
 
 
/**
 * proc_rdrv_20()
 * @page - buffer to write the data in
 * @start - where the actual data has been written in page
 * @offset - same meaning as the read system call
 * @count - same meaning as the read system call
 * @eof - set if no more data needs to be returned
 * @data - pointer to our soft state
 *
 * Display real time information about the logical drives 10 through 19.
 */
static int
proc_rdrv_20(char *page, char **start, off_t offset, int count, int *eof,
		void *data)
{
	adapter_t *adapter = (adapter_t *)data;
 
	*eof = 1;
 
	return (proc_rdrv(adapter, page, 10, 19));
}
 
 
/**
 * proc_rdrv_30()
 * @page - buffer to write the data in
 * @start - where the actual data has been written in page
 * @offset - same meaning as the read system call
 * @count - same meaning as the read system call
 * @eof - set if no more data needs to be returned
 * @data - pointer to our soft state
 *
 * Display real time information about the logical drives 20 through 29.
 */
static int
proc_rdrv_30(char *page, char **start, off_t offset, int count, int *eof,
		void *data)
{
	adapter_t *adapter = (adapter_t *)data;
 
	*eof = 1;
 
	return (proc_rdrv(adapter, page, 20, 29));
}
 
 
/**
 * proc_rdrv_40()
 * @page - buffer to write the data in
 * @start - where the actual data has been written in page
 * @offset - same meaning as the read system call
 * @count - same meaning as the read system call
 * @eof - set if no more data needs to be returned
 * @data - pointer to our soft state
 *
 * Display real time information about the logical drives 30 through 39.
 */
static int
proc_rdrv_40(char *page, char **start, off_t offset, int count, int *eof,
		void *data)
{
	adapter_t *adapter = (adapter_t *)data;
 
	*eof = 1;
 
	return (proc_rdrv(adapter, page, 30, 39));
}
 
 
/**
 * proc_rdrv()
 * @page - buffer to write the data in
 * @adapter - pointer to our soft state
 * @start - starting logical drive to display
 * @end - ending logical drive to display
 *
 * We do not print the inquiry information since its already available through
 * /proc/scsi/scsi interface
 */
static int
proc_rdrv(adapter_t *adapter, char *page, int start, int end)
{
	dma_addr_t	dma_handle;
	logdrv_param	*lparam;
	megacmd_t	mc;
	char		*disk_array;
	dma_addr_t	disk_array_dma_handle;
	caddr_t		inquiry;
	struct pci_dev	*pdev;
	u8	*rdrv_state;
	int	num_ldrv;
	u32	array_sz;
	int	len = 0;
	int	i;
	u8	span8_flag = 1;
 
	pdev = adapter->dev;
 
	if( (inquiry = mega_allocate_inquiry(&dma_handle, pdev)) == NULL ) {
		return len;
	}
 
	if( mega_adapinq(adapter, dma_handle) != 0 ) {
 
		len = sprintf(page, "Adapter inquiry failed.\n");
 
		printk(KERN_WARNING "megaraid: inquiry failed.\n");
 
		mega_free_inquiry(inquiry, dma_handle, pdev);
 
		return len;
	}
 
	memset(&mc, 0, sizeof(megacmd_t));
 
	if( adapter->flag & BOARD_40LD ) {
 
		array_sz = sizeof(disk_array_40ld);
 
		rdrv_state = ((mega_inquiry3 *)inquiry)->ldrv_state;
 
		num_ldrv = ((mega_inquiry3 *)inquiry)->num_ldrv;
	}
	else {
		/*
		 * 'array_sz' is either the size of diskarray_span4_t or the
		 * size of disk_array_span8_t. We use span8_t's size because
		 * it is bigger of the two.
		 */
		array_sz = sizeof( diskarray_span8_t );
 
		rdrv_state = ((mraid_ext_inquiry *)inquiry)->
			raid_inq.logdrv_info.ldrv_state;
 
		num_ldrv = ((mraid_ext_inquiry *)inquiry)->
			raid_inq.logdrv_info.num_ldrv;
	}
 
	disk_array = pci_alloc_consistent(pdev, array_sz,
			&disk_array_dma_handle);
 
	if( disk_array == NULL ) {
		len = sprintf(page, "memory not available.\n");
 
		mega_free_inquiry(inquiry, dma_handle, pdev);
 
		return len;
	}
 
	mc.xferaddr = (u32)disk_array_dma_handle;
 
	if( adapter->flag & BOARD_40LD ) {
		mc.cmd = FC_NEW_CONFIG;
		mc.opcode = OP_DCMD_READ_CONFIG;
 
		if( mega_internal_command(adapter, LOCK_INT, &mc, NULL) ) {
 
			len = sprintf(page, "40LD read config failed.\n");
 
			mega_free_inquiry(inquiry, dma_handle, pdev);
 
			pci_free_consistent(pdev, array_sz, disk_array,
					disk_array_dma_handle);
 
			return len;
		}
 
	}
	else {
		/*
		 * Try 8-Span "read config" command
		 */
		mc.cmd = NEW_READ_CONFIG_8LD;
 
		if( mega_internal_command(adapter, LOCK_INT, &mc, NULL) ) {
 
			/*
			 * 8-Span command failed; try 4-Span command
			 */
			span8_flag = 0;
			mc.cmd = READ_CONFIG_8LD;
 
			if( mega_internal_command(adapter, LOCK_INT, &mc,
						NULL) ){
 
				len = sprintf(page,
					"8LD read config failed.\n");
 
				mega_free_inquiry(inquiry, dma_handle, pdev);
 
				pci_free_consistent(pdev, array_sz,
						disk_array,
						disk_array_dma_handle);
 
				return len;
			}
		}
	}
 
	for( i = start; i < ( (end+1 < num_ldrv) ? end+1 : num_ldrv ); i++ ) {
 
		if( adapter->flag & BOARD_40LD ) {
			lparam =
			&((disk_array_40ld *)disk_array)->ldrv[i].lparam;
		}
		else {
			if( span8_flag ) {
				lparam = (logdrv_param*) &((diskarray_span8_t*)
						(disk_array))->log_drv[i];
			}
			else {
				lparam = (logdrv_param*) &((diskarray_span4_t*)
						(disk_array))->log_drv[i];
			}
		}
 
		/*
		 * Check for overflow. We print less than 240 characters for
		 * information about each logical drive.
		 */
		if( (len + 240) >= PAGE_SIZE ) break;
 
		len += sprintf(page+len, "Logical drive:%2d:, ", i);
 
		switch( rdrv_state[i] & 0x0F ) {
		case RDRV_OFFLINE:
			len += sprintf(page+len, "state: offline");
			break;
 
		case RDRV_DEGRADED:
			len += sprintf(page+len, "state: degraded");
			break;
 
		case RDRV_OPTIMAL:
			len += sprintf(page+len, "state: optimal");
			break;
 
		case RDRV_DELETED:
			len += sprintf(page+len, "state: deleted");
			break;
 
		default:
			len += sprintf(page+len, "state: unknown");
			break;
		}
 
		/*
		 * Check if check consistency or initialization is going on
		 * for this logical drive.
		 */
		if( (rdrv_state[i] & 0xF0) == 0x20 ) {
			len += sprintf(page+len,
					", check-consistency in progress");
		}
		else if( (rdrv_state[i] & 0xF0) == 0x10 ) {
			len += sprintf(page+len,
					", initialization in progress");
		}
 
		len += sprintf(page+len, "\n");
 
		len += sprintf(page+len, "Span depth:%3d, ",
				lparam->span_depth);
 
		len += sprintf(page+len, "RAID level:%3d, ",
				lparam->level);
 
		len += sprintf(page+len, "Stripe size:%3d, ",
				lparam->stripe_sz ? lparam->stripe_sz/2: 128);
 
		len += sprintf(page+len, "Row size:%3d\n",
				lparam->row_size);
 
 
		len += sprintf(page+len, "Read Policy: ");
 
		switch(lparam->read_ahead) {
 
		case NO_READ_AHEAD:
			len += sprintf(page+len, "No read ahead, ");
			break;
 
		case READ_AHEAD:
			len += sprintf(page+len, "Read ahead, ");
			break;
 
		case ADAP_READ_AHEAD:
			len += sprintf(page+len, "Adaptive, ");
			break;
 
		}
 
		len += sprintf(page+len, "Write Policy: ");
 
		switch(lparam->write_mode) {
 
		case WRMODE_WRITE_THRU:
			len += sprintf(page+len, "Write thru, ");
			break;
 
		case WRMODE_WRITE_BACK:
			len += sprintf(page+len, "Write back, ");
			break;
		}
 
		len += sprintf(page+len, "Cache Policy: ");
 
		switch(lparam->direct_io) {
 
		case CACHED_IO:
			len += sprintf(page+len, "Cached IO\n\n");
			break;
 
		case DIRECT_IO:
			len += sprintf(page+len, "Direct IO\n\n");
			break;
		}
	}
 
	mega_free_inquiry(inquiry, dma_handle, pdev);
 
	pci_free_consistent(pdev, array_sz, disk_array,
			disk_array_dma_handle);
 
	return len;
}
 
#endif
 
 
/**
 * megaraid_biosparam()
 * @disk
 * @dev
 * @geom
 *
 * Return the disk geometry for a particular disk
 * Input:
 *	Disk *disk - Disk geometry
 *	kdev_t dev - Device node
 *	int *geom  - Returns geometry fields
 *		geom[0] = heads
 *		geom[1] = sectors
 *		geom[2] = cylinders
 */
static int
megaraid_biosparam(Disk *disk, kdev_t dev, int *geom)
{
	int heads, sectors, cylinders;
	adapter_t *adapter;
 
	/* Get pointer to host config structure */
	adapter = (adapter_t *)disk->device->host->hostdata;
 
	if (IS_RAID_CH(adapter, disk->device->channel)) {
			/* Default heads (64) & sectors (32) */
			heads = 64;
			sectors = 32;
			cylinders = disk->capacity / (heads * sectors);
 
			/*
			 * Handle extended translation size for logical drives
			 * > 1Gb
			 */
			if (disk->capacity >= 0x200000) {
				heads = 255;
				sectors = 63;
				cylinders = disk->capacity / (heads * sectors);
			}
 
			/* return result */
			geom[0] = heads;
			geom[1] = sectors;
			geom[2] = cylinders;
	}
	else {
		if( !mega_partsize(disk, dev, geom) )
			return 0;
 
		printk(KERN_WARNING
		"megaraid: invalid partition on this disk on channel %d\n",
				disk->device->channel);
 
		/* Default heads (64) & sectors (32) */
		heads = 64;
		sectors = 32;
		cylinders = disk->capacity / (heads * sectors);
 
		/* Handle extended translation size for logical drives > 1Gb */
		if (disk->capacity >= 0x200000) {
			heads = 255;
			sectors = 63;
			cylinders = disk->capacity / (heads * sectors);
		}
 
		/* return result */
		geom[0] = heads;
		geom[1] = sectors;
		geom[2] = cylinders;
	}
 
	return 0;
}
 
/*
 * mega_partsize()
 * @disk
 * @geom
 *
 * Purpose : to determine the BIOS mapping used to create the partition
 *	table, storing the results (cyls, hds, and secs) in geom
 *
 * Note:	Code is picked from scsicam.h
 *
 * Returns : -1 on failure, 0 on success.
 */
static int
mega_partsize(Disk *disk, kdev_t dev, int *geom)
{
	struct buffer_head *bh;
	struct partition *p, *largest = NULL;
	int i, largest_cyl;
	int heads, cyls, sectors;
	int capacity = disk->capacity;
 
	int ma = MAJOR(dev);
	int mi = (MINOR(dev) & ~0xf);
 
	int block = 1024; 
 
	if (blksize_size[ma])
		block = blksize_size[ma][mi];
 
	if (!(bh = bread(MKDEV(ma,mi), 0, block)))
		return -1;
 
	if (*(unsigned short *)(bh->b_data + 510) == 0xAA55 ) {
 
		for (largest_cyl = -1,
			p = (struct partition *)(0x1BE + bh->b_data), i = 0;
			i < 4; ++i, ++p) {
 
			if (!p->sys_ind) continue;
 
			cyls = p->end_cyl + ((p->end_sector & 0xc0) << 2);
 
			if (cyls >= largest_cyl) {
				largest_cyl = cyls;
				largest = p;
			}
		}
	}
 
	if (largest) {
		heads = largest->end_head + 1;
		sectors = largest->end_sector & 0x3f;
 
		if (!heads || !sectors) {
			brelse(bh);
			return -1;
		}
 
		cyls = capacity/(heads * sectors);
 
		geom[0] = heads;
		geom[1] = sectors;
		geom[2] = cyls;
 
		brelse(bh);
		return 0;
	}
 
	brelse(bh);
	return -1;
}
 
 
/**
 * megaraid_reboot_notify()
 * @this - unused
 * @code - shutdown code
 * @unused - unused
 *
 * This routine will be called when the use has done a forced shutdown on the
 * system. Flush the Adapter and disks cache.
 */
static int
megaraid_reboot_notify (struct notifier_block *this, unsigned long code,
		void *unused)
{
	adapter_t *adapter;
	struct Scsi_Host *host;
	u8 raw_mbox[sizeof(mbox_t)];
	mbox_t *mbox;
	int i;
 
	/*
	 * Flush the controller's cache irrespective of the codes coming down.
	 * SYS_DOWN, SYS_HALT, SYS_RESTART, SYS_POWER_OFF
	 */
	for( i = 0; i < hba_count; i++ ) {
		printk(KERN_INFO "megaraid: flushing adapter %d..", i);
		host = hba_soft_state[i]->host;
 
		adapter = (adapter_t *)host->hostdata;
		mbox = (mbox_t *)raw_mbox;
 
		/* Flush adapter cache */
		memset(raw_mbox, 0, sizeof(raw_mbox));
		raw_mbox[0] = FLUSH_ADAPTER;
 
		irq_disable(adapter);
		free_irq(adapter->host->irq, adapter);
 
		/*
		 * Issue a blocking (interrupts disabled) command to
		 * the card
		 */
		issue_scb_block(adapter, raw_mbox);
 
		/* Flush disks cache */
		memset(raw_mbox, 0, sizeof(raw_mbox));
		raw_mbox[0] = FLUSH_SYSTEM;
 
		issue_scb_block(adapter, raw_mbox);
 
		printk("Done.\n");
 
		if( atomic_read(&adapter->pend_cmds) > 0 ) {
			printk(KERN_WARNING "megaraid: pending commands!!\n");
		}
	}
 
	/*
	 * Have a delibrate delay to make sure all the caches are
	 * actually flushed.
	 */
	printk(KERN_INFO "megaraid: cache flush delay:   ");
	for( i = 9; i >= 0; i-- ) {
		printk("\b\b\b[%d]", i);
		mdelay(1000);
	}
	printk("\b\b\b[done]\n");
	mdelay(1000);
 
	return NOTIFY_DONE;
}
 
/**
 * mega_init_scb()
 * @adapter - pointer to our soft state
 *
 * Allocate memory for the various pointers in the scb structures:
 * scatter-gather list pointer, passthru and extended passthru structure
 * pointers.
 */
static int
mega_init_scb(adapter_t *adapter)
{
	scb_t	*scb;
	int	i;
 
	for( i = 0; i < adapter->max_cmds; i++ ) {
 
		scb = &adapter->scb_list[i];
 
		scb->sgl64 = NULL;
		scb->sgl = NULL;
		scb->pthru = NULL;
		scb->epthru = NULL;
	}
 
	for( i = 0; i < adapter->max_cmds; i++ ) {
 
		scb = &adapter->scb_list[i];
 
		scb->idx = i;
 
		scb->sgl64 = pci_alloc_consistent(adapter->dev,
				sizeof(mega_sgl64) * adapter->sglen,
				&scb->sgl_dma_addr);
 
		scb->sgl = (mega_sglist *)scb->sgl64;
 
		if( !scb->sgl ) {
			printk(KERN_WARNING "RAID: Can't allocate sglist.\n");
			mega_free_sgl(adapter);
			return -1;
		}
 
		scb->pthru = pci_alloc_consistent(adapter->dev,
				sizeof(mega_passthru),
				&scb->pthru_dma_addr);
 
		if( !scb->pthru ) {
			printk(KERN_WARNING "RAID: Can't allocate passthru.\n");
			mega_free_sgl(adapter);
			return -1;
		}
 
		scb->epthru = pci_alloc_consistent(adapter->dev,
				sizeof(mega_ext_passthru),
				&scb->epthru_dma_addr);
 
		if( !scb->epthru ) {
			printk(KERN_WARNING
				"Can't allocate extended passthru.\n");
			mega_free_sgl(adapter);
			return -1;
		}
 
 
		scb->dma_type = MEGA_DMA_TYPE_NONE;
 
		/*
		 * Link to free list
		 * lock not required since we are loading the driver, so no
		 * commands possible right now.
		 */
		scb->state = SCB_FREE;
		scb->cmd = NULL;
		list_add(&scb->list, &adapter->free_list);
	}
 
	return 0;
}
 
 
/**
 * megadev_open()
 * @inode - unused
 * @filep - unused
 *
 * Routines for the character/ioctl interface to the driver. Find out if this
 * is a valid open. If yes, increment the module use count so that it cannot
 * be unloaded.
 */
static int
megadev_open (struct inode *inode, struct file *filep)
{
	/*
	 * Only allow superuser to access private ioctl interface
	 */
	if( !capable(CAP_SYS_ADMIN) ) return -EACCES;
 
	MOD_INC_USE_COUNT;
	return 0;
}
 
 
/**
 * megadev_ioctl()
 * @inode - Our device inode
 * @filep - unused
 * @cmd - ioctl command
 * @arg - user buffer
 *
 * ioctl entry point for our private ioctl interface. We move the data in from
 * the user space, prepare the command (if necessary, convert the old MIMD
 * ioctl to new ioctl command), and issue a synchronous command to the
 * controller.
 */
static int
megadev_ioctl(struct inode *inode, struct file *filep, unsigned int cmd,
		unsigned long arg)
{
	adapter_t	*adapter;
	nitioctl_t	uioc;
	int		adapno;
	int		rval;
	mega_passthru	*upthru;	/* user address for passthru */
	mega_passthru	*pthru;		/* copy user passthru here */
	dma_addr_t	pthru_dma_hndl;
	void		*data = NULL;	/* data to be transferred */
	dma_addr_t	data_dma_hndl;	/* dma handle for data xfer area */
	megacmd_t	mc;
	megastat_t	*ustats;
	int		num_ldrv;
	u32		uxferaddr = 0;
	struct pci_dev	*pdev;
 
	ustats = NULL; /* avoid compilation warnings */
	num_ldrv = 0;
 
	/*
	 * Make sure only USCSICMD are issued through this interface.
	 * MIMD application would still fire different command.
	 */
	if( (_IOC_TYPE(cmd) != MEGAIOC_MAGIC) && (cmd != USCSICMD) ) {
		return -EINVAL;
	}
 
	/*
	 * Check and convert a possible MIMD command to NIT command.
	 * mega_m_to_n() copies the data from the user space, so we do not
	 * have to do it here.
	 * NOTE: We will need some user address to copyout the data, therefore
	 * the inteface layer will also provide us with the required user
	 * addresses.
	 */
	memset(&uioc, 0, sizeof(nitioctl_t));
	if( (rval = mega_m_to_n( (void *)arg, &uioc)) != 0 )
		return rval;
 
 
	switch( uioc.opcode ) {
 
	case GET_DRIVER_VER:
		if( put_user(driver_ver, (u32 *)uioc.uioc_uaddr) )
			return (-EFAULT);
 
		break;
 
	case GET_N_ADAP:
		if( put_user(hba_count, (u32 *)uioc.uioc_uaddr) )
			return (-EFAULT);
 
		/*
		 * Shucks. MIMD interface returns a positive value for number
		 * of adapters. TODO: Change it to return 0 when there is no
		 * applicatio using mimd interface.
		 */
		return hba_count;
 
	case GET_ADAP_INFO:
 
		/*
		 * Which adapter
		 */
		if( (adapno = GETADAP(uioc.adapno)) >= hba_count )
			return (-ENODEV);
 
		if( copy_to_user(uioc.uioc_uaddr, mcontroller+adapno,
				sizeof(struct mcontroller)) )
			return (-EFAULT);
		break;
 
#if MEGA_HAVE_STATS
 
	case GET_STATS:
		/*
		 * Which adapter
		 */
		if( (adapno = GETADAP(uioc.adapno)) >= hba_count )
			return (-ENODEV);
 
		adapter = hba_soft_state[adapno];
 
		ustats = (megastat_t *)uioc.uioc_uaddr;
 
		if( copy_from_user(&num_ldrv, &ustats->num_ldrv, sizeof(int)) )
			return (-EFAULT);
 
		/*
		 * Check for the validity of the logical drive number
		 */
		if( num_ldrv >= MAX_LOGICAL_DRIVES_40LD ) return -EINVAL;
 
		if( copy_to_user(ustats->nreads, adapter->nreads,
					num_ldrv*sizeof(u32)) )
			return -EFAULT;
 
		if( copy_to_user(ustats->nreadblocks, adapter->nreadblocks,
					num_ldrv*sizeof(u32)) )
			return -EFAULT;
 
		if( copy_to_user(ustats->nwrites, adapter->nwrites,
					num_ldrv*sizeof(u32)) )
			return -EFAULT;
 
		if( copy_to_user(ustats->nwriteblocks, adapter->nwriteblocks,
					num_ldrv*sizeof(u32)) )
			return -EFAULT;
 
		if( copy_to_user(ustats->rd_errors, adapter->rd_errors,
					num_ldrv*sizeof(u32)) )
			return -EFAULT;
 
		if( copy_to_user(ustats->wr_errors, adapter->wr_errors,
					num_ldrv*sizeof(u32)) )
			return -EFAULT;
 
		return 0;
 
#endif
	case MBOX_CMD:
 
		/*
		 * Which adapter
		 */
		if( (adapno = GETADAP(uioc.adapno)) >= hba_count )
			return (-ENODEV);
 
		adapter = hba_soft_state[adapno];
 
		/*
		 * Deletion of logical drive is a special case. The adapter
		 * should be quiescent before this command is issued.
		 */
		if( uioc.uioc_rmbox[0] == FC_DEL_LOGDRV &&
				uioc.uioc_rmbox[2] == OP_DEL_LOGDRV ) {
 
			/*
			 * Do we support this feature
			 */
			if( !adapter->support_random_del ) {
				printk(KERN_WARNING "megaraid: logdrv ");
				printk("delete on non-supporting F/W.\n");
 
				return (-EINVAL);
			}
 
			rval = mega_del_logdrv( adapter, uioc.uioc_rmbox[3] );
 
			if( rval == 0 ) {
				memset(&mc, 0, sizeof(megacmd_t));
 
				mc.status = rval;
 
				rval = mega_n_to_m((void *)arg, &mc);
			}
 
			return rval;
		}
		/*
		 * This interface only support the regular passthru commands.
		 * Reject extended passthru and 64-bit passthru
		 */
		if( uioc.uioc_rmbox[0] == MEGA_MBOXCMD_PASSTHRU64 ||
			uioc.uioc_rmbox[0] == MEGA_MBOXCMD_EXTPTHRU ) {
 
			printk(KERN_WARNING "megaraid: rejected passthru.\n");
 
			return (-EINVAL);
		}
 
		/*
		 * For all internal commands, the buffer must be allocated in
		 * <4GB address range
		 */
		pdev = adapter->dev;
 
		/* Is it a passthru command or a DCMD */
		if( uioc.uioc_rmbox[0] == MEGA_MBOXCMD_PASSTHRU ) {
			/* Passthru commands */
 
			pthru = pci_alloc_consistent(pdev,
					sizeof(mega_passthru),
					&pthru_dma_hndl);
 
			if( pthru == NULL ) {
				return (-ENOMEM);
			}
 
			/*
			 * The user passthru structure
			 */
			upthru = (mega_passthru *)MBOX(uioc)->xferaddr;
 
			/*
			 * Copy in the user passthru here.
			 */
			if( copy_from_user(pthru, (char *)upthru,
						sizeof(mega_passthru)) ) {
 
				pci_free_consistent(pdev,
						sizeof(mega_passthru), pthru,
						pthru_dma_hndl);
 
				return (-EFAULT);
			}
 
			/*
			 * Is there a data transfer
			 */
			if( pthru->dataxferlen ) {
				data = pci_alloc_consistent(pdev,
						pthru->dataxferlen,
						&data_dma_hndl);
 
				if( data == NULL ) {
					pci_free_consistent(pdev,
							sizeof(mega_passthru),
							pthru,
							pthru_dma_hndl);
 
					return (-ENOMEM);
				}
 
				/*
				 * Save the user address and point the kernel
				 * address at just allocated memory
				 */
				uxferaddr = pthru->dataxferaddr;
				pthru->dataxferaddr = data_dma_hndl;
			}
 
 
			/*
			 * Is data coming down-stream
			 */
			if( pthru->dataxferlen && (uioc.flags & UIOC_WR) ) {
				/*
				 * Get the user data
				 */
				if( copy_from_user(data, (char *)uxferaddr,
							pthru->dataxferlen) ) {
					rval = (-EFAULT);
					goto freemem_and_return;
				}
			}
 
			memset(&mc, 0, sizeof(megacmd_t));
 
			mc.cmd = MEGA_MBOXCMD_PASSTHRU;
			mc.xferaddr = (u32)pthru_dma_hndl;
 
			/*
			 * Issue the command
			 */
			mega_internal_command(adapter, LOCK_INT, &mc, pthru);
 
			rval = mega_n_to_m((void *)arg, &mc);
 
			if( rval ) goto freemem_and_return;
 
 
			/*
			 * Is data going up-stream
			 */
			if( pthru->dataxferlen && (uioc.flags & UIOC_RD) ) {
				if( copy_to_user((char *)uxferaddr, data,
							pthru->dataxferlen) ) {
					rval = (-EFAULT);
				}
			}
 
			/*
			 * Send the request sense data also, irrespective of
			 * whether the user has asked for it or not.
			 */
			copy_to_user(upthru->reqsensearea,
					pthru->reqsensearea, 14);
 
freemem_and_return:
			if( pthru->dataxferlen ) {
				pci_free_consistent(pdev,
						pthru->dataxferlen, data,
						data_dma_hndl);
			}
 
			pci_free_consistent(pdev, sizeof(mega_passthru),
					pthru, pthru_dma_hndl);
 
			return rval;
		}
		else {
			/* DCMD commands */
 
			/*
			 * Is there a data transfer
			 */
			if( uioc.xferlen ) {
				data = pci_alloc_consistent(pdev,
						uioc.xferlen, &data_dma_hndl);
 
				if( data == NULL ) {
					return (-ENOMEM);
				}
 
				uxferaddr = MBOX(uioc)->xferaddr;
			}
 
			/*
			 * Is data coming down-stream
			 */
			if( uioc.xferlen && (uioc.flags & UIOC_WR) ) {
				/*
				 * Get the user data
				 */
				if( copy_from_user(data, (char *)uxferaddr,
							uioc.xferlen) ) {
 
					pci_free_consistent(pdev,
							uioc.xferlen,
							data, data_dma_hndl);
 
					return (-EFAULT);
				}
			}
 
			memcpy(&mc, MBOX(uioc), sizeof(megacmd_t));
 
			mc.xferaddr = (u32)data_dma_hndl;
 
			/*
			 * Issue the command
			 */
			mega_internal_command(adapter, LOCK_INT, &mc, NULL);
 
			rval = mega_n_to_m((void *)arg, &mc);
 
			if( rval ) {
				if( uioc.xferlen ) {
					pci_free_consistent(pdev,
							uioc.xferlen, data,
							data_dma_hndl);
				}
 
				return rval;
			}
 
			/*
			 * Is data going up-stream
			 */
			if( uioc.xferlen && (uioc.flags & UIOC_RD) ) {
				if( copy_to_user((char *)uxferaddr, data,
							uioc.xferlen) ) {
 
					rval = (-EFAULT);
				}
			}
 
			if( uioc.xferlen ) {
				pci_free_consistent(pdev,
						uioc.xferlen, data,
						data_dma_hndl);
			}
 
			return rval;
		}
 
	default:
		return (-EINVAL);
	}
 
	return 0;
}
 
/**
 * mega_m_to_n()
 * @arg - user address
 * @uioc - new ioctl structure
 *
 * A thin layer to convert older mimd interface ioctl structure to NIT ioctl
 * structure
 *
 * Converts the older mimd ioctl structure to newer NIT structure
 */
static int
mega_m_to_n(void *arg, nitioctl_t *uioc)
{
	struct uioctl_t	uioc_mimd;
	char	signature[8] = {0};
	u8	opcode;
	u8	subopcode;
 
 
	/*
	 * check is the application conforms to NIT. We do not have to do much
	 * in that case.
	 * We exploit the fact that the signature is stored in the very
	 * begining of the structure.
	 */
 
	if( copy_from_user(signature, (char *)arg, 7) )
		return (-EFAULT);
 
	if( memcmp(signature, "MEGANIT", 7) == 0 ) {
 
		/*
		 * NOTE NOTE: The nit ioctl is still under flux because of
		 * change of mailbox definition, in HPE. No applications yet
		 * use this interface and let's not have applications use this
		 * interface till the new specifitions are in place.
		 */
		return -EINVAL;
#if 0
		if( copy_from_user(uioc, (char *)arg, sizeof(nitioctl_t)) )
			return (-EFAULT);
		return 0;
#endif
	}
 
	/*
	 * Else assume we have mimd uioctl_t as arg. Convert to nitioctl_t
	 *
	 * Get the user ioctl structure
	 */
	if( copy_from_user(&uioc_mimd, (char *)arg, sizeof(struct uioctl_t)) )
		return (-EFAULT);
 
 
	/*
	 * Get the opcode and subopcode for the commands
	 */
	opcode = uioc_mimd.ui.fcs.opcode;
	subopcode = uioc_mimd.ui.fcs.subopcode;
 
	switch (opcode) {
	case 0x82:
 
		switch (subopcode) {
 
		case MEGAIOC_QDRVRVER:	/* Query driver version */
			uioc->opcode = GET_DRIVER_VER;
			uioc->uioc_uaddr = uioc_mimd.data;
			break;
 
		case MEGAIOC_QNADAP:	/* Get # of adapters */
			uioc->opcode = GET_N_ADAP;
			uioc->uioc_uaddr = uioc_mimd.data;
			break;
 
		case MEGAIOC_QADAPINFO:	/* Get adapter information */
			uioc->opcode = GET_ADAP_INFO;
			uioc->adapno = uioc_mimd.ui.fcs.adapno;
			uioc->uioc_uaddr = uioc_mimd.data;
			break;
 
		default:
			return(-EINVAL);
		}
 
		break;
 
 
	case 0x81:
 
		uioc->opcode = MBOX_CMD;
		uioc->adapno = uioc_mimd.ui.fcs.adapno;
 
		memcpy(uioc->uioc_rmbox, uioc_mimd.mbox, 18);
 
		uioc->xferlen = uioc_mimd.ui.fcs.length;
 
		if( uioc_mimd.outlen ) uioc->flags = UIOC_RD;
		if( uioc_mimd.inlen ) uioc->flags |= UIOC_WR;
 
		break;
 
	case 0x80:
 
		uioc->opcode = MBOX_CMD;
		uioc->adapno = uioc_mimd.ui.fcs.adapno;
 
		memcpy(uioc->uioc_rmbox, uioc_mimd.mbox, 18);
 
		/*
		 * Choose the xferlen bigger of input and output data
		 */
		uioc->xferlen = uioc_mimd.outlen > uioc_mimd.inlen ?
			uioc_mimd.outlen : uioc_mimd.inlen;
 
		if( uioc_mimd.outlen ) uioc->flags = UIOC_RD;
		if( uioc_mimd.inlen ) uioc->flags |= UIOC_WR;
 
		break;
 
	default:
		return (-EINVAL);
 
	}
 
	return 0;
}
 
/*
 * mega_n_to_m()
 * @arg - user address
 * @mc - mailbox command
 *
 * Updates the status information to the application, depending on application
 * conforms to older mimd ioctl interface or newer NIT ioctl interface
 */
static int
mega_n_to_m(void *arg, megacmd_t *mc)
{
	nitioctl_t	*uiocp;
	megacmd_t	*umc;
	megacmd_t	kmc;
	mega_passthru	*upthru;
	struct uioctl_t	*uioc_mimd;
	char	signature[8] = {0};
 
	/*
	 * check is the application conforms to NIT.
	 */
	if( copy_from_user(signature, (char *)arg, 7) )
		return -EFAULT;
 
	if( memcmp(signature, "MEGANIT", 7) == 0 ) {
 
		uiocp = (nitioctl_t *)arg;
 
		if( put_user(mc->status, (u8 *)&MBOX_P(uiocp)->status) )
			return (-EFAULT);
 
		if( mc->cmd == MEGA_MBOXCMD_PASSTHRU ) {
 
			umc = MBOX_P(uiocp);
 
			upthru = (mega_passthru *)umc->xferaddr;
 
			if( put_user(mc->status, (u8 *)&upthru->scsistatus) )
				return (-EFAULT);
		}
	}
	else {
		uioc_mimd = (struct uioctl_t *)arg;
 
		if( put_user(mc->status, (u8 *)&uioc_mimd->mbox[17]) )
			return (-EFAULT);
 
		if( mc->cmd == MEGA_MBOXCMD_PASSTHRU ) {
 
			umc = (megacmd_t *)uioc_mimd->mbox;
			if (copy_from_user(&kmc, umc, sizeof(megacmd_t)))
				return -EFAULT;
 
			upthru = (mega_passthru *)kmc.xferaddr;
 
			if( put_user(mc->status, (u8 *)&upthru->scsistatus) )
				return (-EFAULT);
		}
	}
 
	return 0;
}
 
 
static int
megadev_close (struct inode *inode, struct file *filep)
{
	MOD_DEC_USE_COUNT;
	return 0;
}
 
 
/*
 * MEGARAID 'FW' commands.
 */
 
/**
 * mega_is_bios_enabled()
 * @adapter - pointer to our soft state
 *
 * issue command to find out if the BIOS is enabled for this controller
 */
static int
mega_is_bios_enabled(adapter_t *adapter)
{
	unsigned char	raw_mbox[sizeof(mbox_t)];
	mbox_t	*mbox;
	int	ret;
 
	mbox = (mbox_t *)raw_mbox;
 
	memset(raw_mbox, 0, sizeof(raw_mbox));
 
	memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE);
 
	mbox->xferaddr = (u32)adapter->buf_dma_handle;
 
	raw_mbox[0] = IS_BIOS_ENABLED;
	raw_mbox[2] = GET_BIOS;
 
 
	ret = issue_scb_block(adapter, raw_mbox);
 
	return *(char *)adapter->mega_buffer;
}
 
 
/**
 * mega_enum_raid_scsi()
 * @adapter - pointer to our soft state
 *
 * Find out what channels are RAID/SCSI. This information is used to
 * differentiate the virtual channels and physical channels and to support
 * ROMB feature and non-disk devices.
 */
static void
mega_enum_raid_scsi(adapter_t *adapter)
{
	unsigned char raw_mbox[sizeof(mbox_t)];
	mbox_t *mbox;
	int i;
 
	mbox = (mbox_t *)raw_mbox;
 
	memset(raw_mbox, 0, sizeof(raw_mbox));
 
	/*
	 * issue command to find out what channels are raid/scsi
	 */
	raw_mbox[0] = CHNL_CLASS;
	raw_mbox[2] = GET_CHNL_CLASS;
 
	memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE);
 
	mbox->xferaddr = (u32)adapter->buf_dma_handle;
 
	/*
	 * Non-ROMB firware fail this command, so all channels
	 * must be shown RAID
	 */
	adapter->mega_ch_class = 0xFF;
 
	if(!issue_scb_block(adapter, raw_mbox)) {
		adapter->mega_ch_class = *((char *)adapter->mega_buffer);
 
	}
 
	for( i = 0; i < adapter->product_info.nchannels; i++ ) {
		if( (adapter->mega_ch_class >> i) & 0x01 ) {
			printk(KERN_INFO "megaraid: channel[%d] is raid.\n",
					i);
		}
		else {
			printk(KERN_INFO "megaraid: channel[%d] is scsi.\n",
					i);
		}
	}
 
	return;
}
 
 
/**
 * mega_get_boot_drv()
 * @adapter - pointer to our soft state
 *
 * Find out which device is the boot device. Note, any logical drive or any
 * phyical device (e.g., a CDROM) can be designated as a boot device.
 */
static void
mega_get_boot_drv(adapter_t *adapter)
{
	struct private_bios_data	*prv_bios_data;
	unsigned char	raw_mbox[sizeof(mbox_t)];
	mbox_t	*mbox;
	u16	cksum = 0;
	u8	*cksum_p;
	u8	boot_pdrv;
	int	i;
 
	mbox = (mbox_t *)raw_mbox;
 
	memset(raw_mbox, 0, sizeof(raw_mbox));
 
	raw_mbox[0] = BIOS_PVT_DATA;
	raw_mbox[2] = GET_BIOS_PVT_DATA;
 
	memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE);
 
	mbox->xferaddr = (u32)adapter->buf_dma_handle;
 
	adapter->boot_ldrv_enabled = 0;
	adapter->boot_ldrv = 0;
 
	adapter->boot_pdrv_enabled = 0;
	adapter->boot_pdrv_ch = 0;
	adapter->boot_pdrv_tgt = 0;
 
	if(issue_scb_block(adapter, raw_mbox) == 0) {
		prv_bios_data =
			(struct private_bios_data *)adapter->mega_buffer;
 
		cksum = 0;
		cksum_p = (char *)prv_bios_data;
		for (i = 0; i < 14; i++ ) {
			cksum += (u16)(*cksum_p++);
		}
 
		if (prv_bios_data->cksum == (u16)(0-cksum) ) {
 
			/*
			 * If MSB is set, a physical drive is set as boot
			 * device
			 */
			if( prv_bios_data->boot_drv & 0x80 ) {
				adapter->boot_pdrv_enabled = 1;
				boot_pdrv = prv_bios_data->boot_drv & 0x7F;
				adapter->boot_pdrv_ch = boot_pdrv / 16;
				adapter->boot_pdrv_tgt = boot_pdrv % 16;
			}
			else {
				adapter->boot_ldrv_enabled = 1;
				adapter->boot_ldrv = prv_bios_data->boot_drv;
			}
		}
	}
 
}
 
/**
 * mega_support_random_del()
 * @adapter - pointer to our soft state
 *
 * Find out if this controller supports random deletion and addition of
 * logical drives
 */
static int
mega_support_random_del(adapter_t *adapter)
{
	unsigned char raw_mbox[sizeof(mbox_t)];
	mbox_t *mbox;
	int rval;
 
	mbox = (mbox_t *)raw_mbox;
 
	memset(raw_mbox, 0, sizeof(raw_mbox));
 
	/*
	 * issue command
	 */
	raw_mbox[0] = FC_DEL_LOGDRV;
	raw_mbox[2] = OP_SUP_DEL_LOGDRV;
 
	rval = issue_scb_block(adapter, raw_mbox);
 
	return !rval;
}
 
 
/**
 * mega_support_ext_cdb()
 * @adapter - pointer to our soft state
 *
 * Find out if this firmware support cdblen > 10
 */
static int
mega_support_ext_cdb(adapter_t *adapter)
{
	unsigned char raw_mbox[sizeof(mbox_t)];
	mbox_t *mbox;
	int rval;
 
	mbox = (mbox_t *)raw_mbox;
 
	memset(raw_mbox, 0, sizeof(raw_mbox));
	/*
	 * issue command to find out if controller supports extended CDBs.
	 */
	raw_mbox[0] = 0xA4;
	raw_mbox[2] = 0x16;
 
	rval = issue_scb_block(adapter, raw_mbox);
 
	return !rval;
}
 
 
/**
 * mega_del_logdrv()
 * @adapter - pointer to our soft state
 * @logdrv - logical drive to be deleted
 *
 * Delete the specified logical drive. It is the responsibility of the user
 * app to let the OS know about this operation.
 */
static int
mega_del_logdrv(adapter_t *adapter, int logdrv)
{
	DECLARE_WAIT_QUEUE_HEAD(wq);
	unsigned long flags;
	scb_t *scb;
	int rval;
 
	ASSERT( !spin_is_locked(adapter->host_lock) );
 
	/*
	 * Stop sending commands to the controller, queue them internally.
	 * When deletion is complete, ISR will flush the queue.
	 */
	atomic_set(&adapter->quiescent, 1);
 
	/*
	 * Wait till all the issued commands are complete and there are no
	 * commands in the pending queue
	 */
	while( atomic_read(&adapter->pend_cmds) > 0 ) {
 
		sleep_on_timeout( &wq, 1*HZ );	/* sleep for 1s */
	}
 
	rval = mega_do_del_logdrv(adapter, logdrv);
 
 
	spin_lock_irqsave(adapter->host_lock, flags);
 
	/*
	 * If delete operation was successful, add 0x80 to the logical drive
	 * ids for commands in the pending queue.
	 */
	if (adapter->read_ldidmap) {
		struct list_head *pos;
		list_for_each(pos, &adapter->pending_list) {
			scb = list_entry(pos, scb_t, list);
			if (((mbox_t *)scb->raw_mbox)->logdrv < 0x80 )
				((mbox_t *)scb->raw_mbox)->logdrv += 0x80 ;
		}
	}
 
	atomic_set(&adapter->quiescent, 0);
 
	mega_runpendq(adapter);
 
	spin_unlock_irqrestore(adapter->host_lock, flags);
 
	return rval;
}
 
 
static int
mega_do_del_logdrv(adapter_t *adapter, int logdrv)
{
	int	rval;
	u8	raw_mbox[sizeof(mbox_t)];
 
	memset(raw_mbox, 0, sizeof(raw_mbox));
 
	raw_mbox[0] = FC_DEL_LOGDRV;
	raw_mbox[2] = OP_DEL_LOGDRV;
	raw_mbox[3] = logdrv;
 
	/* Issue a blocking command to the card */
	rval = issue_scb_block(adapter, raw_mbox);
 
	/* log this event */
	if(rval) {
		printk(KERN_WARNING "megaraid: Delete LD-%d failed.", logdrv);
		return rval;
	}
 
	/*
	 * After deleting first logical drive, the logical drives must be
	 * addressed by adding 0x80 to the logical drive id.
	 */
	adapter->read_ldidmap = 1;
 
	return rval;
}
 
 
/**
 * mega_get_max_sgl()
 * @adapter - pointer to our soft state
 *
 * Find out the maximum number of scatter-gather elements supported by this
 * version of the firmware
 */
static void
mega_get_max_sgl(adapter_t *adapter)
{
	unsigned char	raw_mbox[sizeof(mbox_t)];
	mbox_t	*mbox;
 
	mbox = (mbox_t *)raw_mbox;
 
	memset(raw_mbox, 0, sizeof(raw_mbox));
 
	memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE);
 
	mbox->xferaddr = (u32)adapter->buf_dma_handle;
 
	raw_mbox[0] = MAIN_MISC_OPCODE;
	raw_mbox[2] = GET_MAX_SG_SUPPORT;
 
 
	if( issue_scb_block(adapter, raw_mbox) ) {
		/*
		 * f/w does not support this command. Choose the default value
		 */
		adapter->sglen = MIN_SGLIST;
	}
	else {
		adapter->sglen = *((char *)adapter->mega_buffer);
 
		/*
		 * Make sure this is not more than the resources we are
		 * planning to allocate
		 */
		if ( adapter->sglen > MAX_SGLIST )
			adapter->sglen = MAX_SGLIST;
	}
 
	return;
}
 
 
/**
 * mega_support_cluster()
 * @adapter - pointer to our soft state
 *
 * Find out if this firmware support cluster calls.
 */
static int
mega_support_cluster(adapter_t *adapter)
{
	unsigned char	raw_mbox[sizeof(mbox_t)];
	mbox_t	*mbox;
 
	mbox = (mbox_t *)raw_mbox;
 
	memset(raw_mbox, 0, sizeof(raw_mbox));
 
	memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE);
 
	mbox->xferaddr = (u32)adapter->buf_dma_handle;
 
	/*
	 * Try to get the initiator id. This command will succeed iff the
	 * clustering is available on this HBA.
	 */
	raw_mbox[0] = MEGA_GET_TARGET_ID;
 
	if( issue_scb_block(adapter, raw_mbox) == 0 ) {
 
		/*
		 * Cluster support available. Get the initiator target id.
		 * Tell our id to mid-layer too.
		 */
		adapter->this_id = *(u32 *)adapter->mega_buffer;
		adapter->host->this_id = adapter->this_id;
 
		return 1;
	}
 
	return 0;
}
 
 
 
/**
 * mega_get_ldrv_num()
 * @adapter - pointer to our soft state
 * @cmd - scsi mid layer command
 * @channel - channel on the controller
 *
 * Calculate the logical drive number based on the information in scsi command
 * and the channel number.
 */
static inline int
mega_get_ldrv_num(adapter_t *adapter, Scsi_Cmnd *cmd, int channel)
{
	int		tgt;
	int		ldrv_num;
 
	tgt = cmd->target;
 
	if ( tgt > adapter->this_id )
		tgt--;	/* we do not get inquires for initiator id */
 
	ldrv_num = (channel * 15) + tgt;
 
 
	/*
	 * If we have a logical drive with boot enabled, project it first
	 */
	if( adapter->boot_ldrv_enabled ) {
		if( ldrv_num == 0 ) {
			ldrv_num = adapter->boot_ldrv;
		}
		else {
			if( ldrv_num <= adapter->boot_ldrv ) {
				ldrv_num--;
			}
		}
	}
 
	/*
	 * If "delete logical drive" feature is enabled on this controller.
	 * Do only if at least one delete logical drive operation was done.
	 *
	 * Also, after logical drive deletion, instead of logical drive number,
	 * the value returned should be 0x80+logical drive id.
	 *
	 * These is valid only for IO commands.
	 */
 
	if (adapter->support_random_del && adapter->read_ldidmap )
		switch (cmd->cmnd[0]) {
		case READ_6:	/* fall through */
		case WRITE_6:	/* fall through */
		case READ_10:	/* fall through */
		case WRITE_10:
			ldrv_num += 0x80;
		}
 
	return ldrv_num;
}
 
 
/**
 * mega_reorder_hosts()
 *
 * Hack: reorder the scsi hosts in mid-layer so that the controller with the
 * boot device on it appears first in the list.
 */
static void
mega_reorder_hosts(void)
{
	struct Scsi_Host *shpnt;
	struct Scsi_Host *shone;
	struct Scsi_Host *shtwo;
	adapter_t *boot_host;
	int i;
 
	/*
	 * Find the (first) host which has it's BIOS enabled
	 */
	boot_host = NULL;
	for (i = 0; i < MAX_CONTROLLERS; i++) {
		if (mega_hbas[i].is_bios_enabled) {
			boot_host = mega_hbas[i].hostdata_addr;
			break;
		}
	}
 
	if (!boot_host) {
		printk(KERN_NOTICE "megaraid: no BIOS enabled.\n");
		return;
	}
 
	/*
	 * Traverse through the list of SCSI hosts for our HBA locations
	 */
	shone = shtwo = NULL;
	for (shpnt = scsi_hostlist; shpnt; shpnt = shpnt->next) {
		/* Is it one of ours? */
		for (i = 0; i < MAX_CONTROLLERS; i++) {
			if ((adapter_t *) shpnt->hostdata ==
				mega_hbas[i].hostdata_addr) {
				/* Does this one has BIOS enabled */
				if (mega_hbas[i].hostdata_addr == boot_host) {
 
					/* Are we first */
					if (!shtwo)	/* Yes! */
						return;
					else	/* :-( */
						shone = shpnt;
				} else {
					if (!shtwo) {
						/* were we here before? xchng
						 * first */
						shtwo = shpnt;
					}
				}
				break;
			}
		}
		/*
		 * Have we got the boot host and one which does not have the
		 * bios enabled.
		 */
		if (shone && shtwo)
			break;
	}
	if (shone && shtwo) {
		mega_swap_hosts (shone, shtwo);
	}
 
	return;
}
 
 
static void
mega_swap_hosts (struct Scsi_Host *shone, struct Scsi_Host *shtwo)
{
	struct Scsi_Host *prevtoshtwo;
	struct Scsi_Host *prevtoshone;
	struct Scsi_Host *save = NULL;
 
	/* Are these two nodes adjacent */
	if (shtwo->next == shone) {
 
		if (shtwo == scsi_hostlist && !shone->next) {
 
			/* just two nodes */
			scsi_hostlist = shone;
			shone->next = shtwo;
			shtwo->next = NULL;
		} else if (shtwo == scsi_hostlist) {
			/* first two nodes of the list */
 
			scsi_hostlist = shone;
			shtwo->next = shone->next;
			scsi_hostlist->next = shtwo;
		} else if (!shone->next) {
			/* last two nodes of the list */
 
			prevtoshtwo = scsi_hostlist;
 
			while (prevtoshtwo->next != shtwo)
				prevtoshtwo = prevtoshtwo->next;
 
			prevtoshtwo->next = shone;
			shone->next = shtwo;
			shtwo->next = NULL;
		} else {
			prevtoshtwo = scsi_hostlist;
 
			while (prevtoshtwo->next != shtwo)
				prevtoshtwo = prevtoshtwo->next;
 
			prevtoshtwo->next = shone;
			shtwo->next = shone->next;
			shone->next = shtwo;
		}
 
	} else if (shtwo == scsi_hostlist && !shone->next) {
		/* shtwo at head, shone at tail, not adjacent */
 
		prevtoshone = scsi_hostlist;
 
		while (prevtoshone->next != shone)
			prevtoshone = prevtoshone->next;
 
		scsi_hostlist = shone;
		shone->next = shtwo->next;
		prevtoshone->next = shtwo;
		shtwo->next = NULL;
	} else if (shtwo == scsi_hostlist && shone->next) {
		/* shtwo at head, shone is not at tail */
 
		prevtoshone = scsi_hostlist;
		while (prevtoshone->next != shone)
			prevtoshone = prevtoshone->next;
 
		scsi_hostlist = shone;
		prevtoshone->next = shtwo;
		save = shtwo->next;
		shtwo->next = shone->next;
		shone->next = save;
	} else if (!shone->next) {
		/* shtwo not at head, shone at tail */
 
		prevtoshtwo = scsi_hostlist;
		prevtoshone = scsi_hostlist;
 
		while (prevtoshtwo->next != shtwo)
			prevtoshtwo = prevtoshtwo->next;
		while (prevtoshone->next != shone)
			prevtoshone = prevtoshone->next;
 
		prevtoshtwo->next = shone;
		shone->next = shtwo->next;
		prevtoshone->next = shtwo;
		shtwo->next = NULL;
 
	} else {
		prevtoshtwo = scsi_hostlist;
		prevtoshone = scsi_hostlist;
		save = NULL;
 
		while (prevtoshtwo->next != shtwo)
			prevtoshtwo = prevtoshtwo->next;
		while (prevtoshone->next != shone)
			prevtoshone = prevtoshone->next;
 
		prevtoshtwo->next = shone;
		save = shone->next;
		shone->next = shtwo->next;
		prevtoshone->next = shtwo;
		shtwo->next = save;
	}
	return;
}
 
 
 
#ifdef CONFIG_PROC_FS
/**
 * mega_adapinq()
 * @adapter - pointer to our soft state
 * @dma_handle - DMA address of the buffer
 *
 * Issue internal comamnds while interrupts are available.
 * We only issue direct mailbox commands from within the driver. ioctl()
 * interface using these routines can issue passthru commands.
 */
static int
mega_adapinq(adapter_t *adapter, dma_addr_t dma_handle)
{
	megacmd_t	mc;
 
	memset(&mc, 0, sizeof(megacmd_t));
 
	if( adapter->flag & BOARD_40LD ) {
		mc.cmd = FC_NEW_CONFIG;
		mc.opcode = NC_SUBOP_ENQUIRY3;
		mc.subopcode = ENQ3_GET_SOLICITED_FULL;
	}
	else {
		mc.cmd = MEGA_MBOXCMD_ADPEXTINQ;
	}
 
	mc.xferaddr = (u32)dma_handle;
 
	if ( mega_internal_command(adapter, LOCK_INT, &mc, NULL) != 0 ) {
		return -1;
	}
 
	return 0;
}
 
 
/**
 * mega_allocate_inquiry()
 * @dma_handle - handle returned for dma address
 * @pdev - handle to pci device
 *
 * allocates memory for inquiry structure
 */
static inline caddr_t
mega_allocate_inquiry(dma_addr_t *dma_handle, struct pci_dev *pdev)
{
	return pci_alloc_consistent(pdev, sizeof(mega_inquiry3), dma_handle);
}
 
 
static inline void
mega_free_inquiry(caddr_t inquiry, dma_addr_t dma_handle, struct pci_dev *pdev)
{
	pci_free_consistent(pdev, sizeof(mega_inquiry3), inquiry, dma_handle);
}
 
 
/** mega_internal_dev_inquiry()
 * @adapter - pointer to our soft state
 * @ch - channel for this device
 * @tgt - ID of this device
 * @buf_dma_handle - DMA address of the buffer
 *
 * Issue the scsi inquiry for the specified device.
 */
static int
mega_internal_dev_inquiry(adapter_t *adapter, u8 ch, u8 tgt,
		dma_addr_t buf_dma_handle)
{
	mega_passthru	*pthru;
	dma_addr_t	pthru_dma_handle;
	megacmd_t	mc;
	int		rval;
	struct pci_dev	*pdev;
 
 
	/*
	 * For all internal commands, the buffer must be allocated in <4GB
	 * address range
	 */
	pdev = adapter->dev;
 
	pthru = pci_alloc_consistent(pdev, sizeof(mega_passthru),
			&pthru_dma_handle);
 
	if( pthru == NULL ) {
		return -1;
	}
 
	pthru->timeout = 2;
	pthru->ars = 1;
	pthru->reqsenselen = 14;
	pthru->islogical = 0;
 
	pthru->channel = (adapter->flag & BOARD_40LD) ? 0 : ch;
 
	pthru->target = (adapter->flag & BOARD_40LD) ? (ch << 4)|tgt : tgt;
 
	pthru->cdblen = 6;
 
	pthru->cdb[0] = INQUIRY;
	pthru->cdb[1] = 0;
	pthru->cdb[2] = 0;
	pthru->cdb[3] = 0;
	pthru->cdb[4] = 255;
	pthru->cdb[5] = 0;
 
 
	pthru->dataxferaddr = (u32)buf_dma_handle;
	pthru->dataxferlen = 256;
 
	memset(&mc, 0, sizeof(megacmd_t));
 
	mc.cmd = MEGA_MBOXCMD_PASSTHRU;
	mc.xferaddr = (u32)pthru_dma_handle;
 
	rval = mega_internal_command(adapter, LOCK_INT, &mc, pthru);
 
	pci_free_consistent(pdev, sizeof(mega_passthru), pthru,
			pthru_dma_handle);
 
	return rval;
}
#endif	// #ifdef CONFIG_PROC_FS
 
 
/**
 * mega_internal_command()
 * @adapter - pointer to our soft state
 * @ls - the scope of the exclusion lock.
 * @mc - the mailbox command
 * @pthru - Passthru structure for DCDB commands
 *
 * Issue the internal commands in interrupt mode.
 * The last argument is the address of the passthru structure if the command
 * to be fired is a passthru command
 *
 * lockscope specifies whether the caller has already acquired the lock. Of
 * course, the caller must know which lock we are talking about.
 *
 * Note: parameter 'pthru' is null for non-passthru commands.
 */
static int
mega_internal_command(adapter_t *adapter, lockscope_t ls, megacmd_t *mc,
		mega_passthru *pthru )
{
	Scsi_Cmnd	*scmd;
	unsigned long	flags = 0;
	scb_t	*scb;
	int	rval;
 
	/*
	 * The internal commands share one command id and hence are
	 * serialized. This is so because we want to reserve maximum number of
	 * available command ids for the I/O commands.
	 */
	down(&adapter->int_mtx);
 
	scb = &adapter->int_scb;
	memset(scb, 0, sizeof(scb_t));
 
	scmd = &adapter->int_scmd;
	memset(scmd, 0, sizeof(Scsi_Cmnd));
 
	scmd->host = adapter->host;
	scmd->buffer = (void *)scb;
	scmd->cmnd[0] = MEGA_INTERNAL_CMD;
 
	scb->state |= SCB_ACTIVE;
	scb->cmd = scmd;
 
	memcpy(scb->raw_mbox, mc, sizeof(megacmd_t));
 
	/*
	 * Is it a passthru command
	 */
	if( mc->cmd == MEGA_MBOXCMD_PASSTHRU ) {
 
		scb->pthru = pthru;
	}
 
	scb->idx = CMDID_INT_CMDS;
 
	scmd->state = 0;
 
	/*
	 * Get the lock only if the caller has not acquired it already
	 */
	if( ls == LOCK_INT ) spin_lock_irqsave(adapter->host_lock, flags);
 
	megaraid_queue(scmd, mega_internal_done);
 
	if( ls == LOCK_INT ) spin_unlock_irqrestore(adapter->host_lock, flags);
 
	/*
	 * Wait till this command finishes. Do not use
	 * wait_event_interruptible(). It causes panic if CTRL-C is hit when
	 * dumping e.g., physical disk information through /proc interface.
	 * Catching the return value should solve the issue but for now keep
	 * the call non-interruptible.
	 */
#if 0
	wait_event_interruptible(adapter->int_waitq, scmd->state);
#endif
	wait_event(adapter->int_waitq, scmd->state);
 
	rval = scmd->result;
	mc->status = scmd->result;
 
	/*
	 * Print a debug message for all failed commands. Applications can use
	 * this information.
	 */
	if( scmd->result && trace_level ) {
		printk("megaraid: cmd [%x, %x, %x] status:[%x]\n",
			mc->cmd, mc->opcode, mc->subopcode, scmd->result);
	}
 
	up(&adapter->int_mtx);
 
	return rval;
}
 
 
/**
 * mega_internal_done()
 * @scmd - internal scsi command
 *
 * Callback routine for internal commands.
 */
static void
mega_internal_done(Scsi_Cmnd *scmd)
{
	adapter_t	*adapter;
 
	adapter = (adapter_t *)scmd->host->hostdata;
 
	scmd->state = 1; /* thread waiting for its command to complete */
 
	/*
	 * See comment in mega_internal_command() routine for
	 * wait_event_interruptible()
	 */
#if 0
	wake_up_interruptible(&adapter->int_waitq);
#endif
	wake_up(&adapter->int_waitq);
 
}
 
static Scsi_Host_Template driver_template = MEGARAID;
 
#include "scsi_module.c"
 
/* vi: set ts=8 sw=8 tw=78: */
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.