OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [drivers/] [scsi/] [sym53c8xx_comm.h] - Rev 1275

Go to most recent revision | Compare with Previous | Blame | View Log

/******************************************************************************
**  High Performance device driver for the Symbios 53C896 controller.
**
**  Copyright (C) 1998-2001  Gerard Roudier <groudier@free.fr>
**
**  This driver also supports all the Symbios 53C8XX controller family, 
**  except 53C810 revisions < 16, 53C825 revisions < 16 and all 
**  revisions of 53C815 controllers.
**
**  This driver is based on the Linux port of the FreeBSD ncr driver.
** 
**  Copyright (C) 1994  Wolfgang Stanglmeier
**  
**-----------------------------------------------------------------------------
**  
**  This program is free software; you can redistribute it and/or modify
**  it under the terms of the GNU General Public License as published by
**  the Free Software Foundation; either version 2 of the License, or
**  (at your option) any later version.
**
**  This program is distributed in the hope that it will be useful,
**  but WITHOUT ANY WARRANTY; without even the implied warranty of
**  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
**  GNU General Public License for more details.
**
**  You should have received a copy of the GNU General Public License
**  along with this program; if not, write to the Free Software
**  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
**
**-----------------------------------------------------------------------------
**
**  The Linux port of the FreeBSD ncr driver has been achieved in 
**  november 1995 by:
**
**          Gerard Roudier              <groudier@free.fr>
**
**  Being given that this driver originates from the FreeBSD version, and
**  in order to keep synergy on both, any suggested enhancements and corrections
**  received on Linux are automatically a potential candidate for the FreeBSD 
**  version.
**
**  The original driver has been written for 386bsd and FreeBSD by
**          Wolfgang Stanglmeier        <wolf@cologne.de>
**          Stefan Esser                <se@mi.Uni-Koeln.de>
**
**-----------------------------------------------------------------------------
**
**  Major contributions:
**  --------------------
**
**  NVRAM detection and reading.
**    Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
**
*******************************************************************************
*/
 
/*
**	This file contains definitions and code that the 
**	sym53c8xx and ncr53c8xx drivers should share.
**	The sharing will be achieved in a further version  
**	of the driver bundle. For now, only the ncr53c8xx 
**	driver includes	this file.
*/
 
#define MIN(a,b)        (((a) < (b)) ? (a) : (b))
#define MAX(a,b)        (((a) > (b)) ? (a) : (b))
 
/*==========================================================
**
**	Hmmm... What complex some PCI-HOST bridges actually 
**	are, despite the fact that the PCI specifications 
**	are looking so smart and simple! ;-)
**
**==========================================================
*/
 
#if LINUX_VERSION_CODE >= LinuxVersionCode(2,3,47)
#define SCSI_NCR_DYNAMIC_DMA_MAPPING
#endif
 
/*==========================================================
**
**	Miscallaneous defines.
**
**==========================================================
*/
 
#define u_char		unsigned char
#define u_short		unsigned short
#define u_int		unsigned int
#define u_long		unsigned long
 
#ifndef bcopy
#define bcopy(s, d, n)	memcpy((d), (s), (n))
#endif
 
#ifndef bcmp
#define bcmp(s, d, n)	memcmp((d), (s), (n))
#endif
 
#ifndef bzero
#define bzero(d, n)	memset((d), 0, (n))
#endif
 
#ifndef offsetof
#define offsetof(t, m)	((size_t) (&((t *)0)->m))
#endif
 
/*==========================================================
**
**	assert ()
**
**==========================================================
**
**	modified copy from 386bsd:/usr/include/sys/assert.h
**
**----------------------------------------------------------
*/
 
#define	assert(expression) { \
	if (!(expression)) { \
		(void)panic( \
			"assertion \"%s\" failed: file \"%s\", line %d\n", \
			#expression, \
			__FILE__, __LINE__); \
	} \
}
 
/*==========================================================
**
**	Debugging tags
**
**==========================================================
*/
 
#define DEBUG_ALLOC    (0x0001)
#define DEBUG_PHASE    (0x0002)
#define DEBUG_QUEUE    (0x0008)
#define DEBUG_RESULT   (0x0010)
#define DEBUG_POINTER  (0x0020)
#define DEBUG_SCRIPT   (0x0040)
#define DEBUG_TINY     (0x0080)
#define DEBUG_TIMING   (0x0100)
#define DEBUG_NEGO     (0x0200)
#define DEBUG_TAGS     (0x0400)
#define DEBUG_SCATTER  (0x0800)
#define DEBUG_IC        (0x1000)
 
/*
**    Enable/Disable debug messages.
**    Can be changed at runtime too.
*/
 
#ifdef SCSI_NCR_DEBUG_INFO_SUPPORT
static int ncr_debug = SCSI_NCR_DEBUG_FLAGS;
	#define DEBUG_FLAGS ncr_debug
#else
	#define DEBUG_FLAGS	SCSI_NCR_DEBUG_FLAGS
#endif
 
/*==========================================================
**
**	A la VMS/CAM-3 queue management.
**	Implemented from linux list management.
**
**==========================================================
*/
 
typedef struct xpt_quehead {
	struct xpt_quehead *flink;	/* Forward  pointer */
	struct xpt_quehead *blink;	/* Backward pointer */
} XPT_QUEHEAD;
 
#define xpt_que_init(ptr) do { \
	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
} while (0)
 
static inline void __xpt_que_add(struct xpt_quehead * new,
	struct xpt_quehead * blink,
	struct xpt_quehead * flink)
{
	flink->blink	= new;
	new->flink	= flink;
	new->blink	= blink;
	blink->flink	= new;
}
 
static inline void __xpt_que_del(struct xpt_quehead * blink,
	struct xpt_quehead * flink)
{
	flink->blink = blink;
	blink->flink = flink;
}
 
static inline int xpt_que_empty(struct xpt_quehead *head)
{
	return head->flink == head;
}
 
static inline void xpt_que_splice(struct xpt_quehead *list,
	struct xpt_quehead *head)
{
	struct xpt_quehead *first = list->flink;
 
	if (first != list) {
		struct xpt_quehead *last = list->blink;
		struct xpt_quehead *at   = head->flink;
 
		first->blink = head;
		head->flink  = first;
 
		last->flink = at;
		at->blink   = last;
	}
}
 
#define xpt_que_entry(ptr, type, member) \
	((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member)))
 
 
#define xpt_insque(new, pos)		__xpt_que_add(new, pos, (pos)->flink)
 
#define xpt_remque(el)			__xpt_que_del((el)->blink, (el)->flink)
 
#define xpt_insque_head(new, head)	__xpt_que_add(new, head, (head)->flink)
 
static inline struct xpt_quehead *xpt_remque_head(struct xpt_quehead *head)
{
	struct xpt_quehead *elem = head->flink;
 
	if (elem != head)
		__xpt_que_del(head, elem->flink);
	else
		elem = 0;
	return elem;
}
 
#define xpt_insque_tail(new, head)	__xpt_que_add(new, (head)->blink, head)
 
static inline struct xpt_quehead *xpt_remque_tail(struct xpt_quehead *head)
{
	struct xpt_quehead *elem = head->blink;
 
	if (elem != head)
		__xpt_que_del(elem->blink, head);
	else
		elem = 0;
	return elem;
}
 
/*==========================================================
**
**	Simple Wrapper to kernel PCI bus interface.
**
**	This wrapper allows to get rid of old kernel PCI 
**	interface and still allows to preserve linux-2.0 
**	compatibilty. In fact, it is mostly an incomplete 
**	emulation of the new PCI code for pre-2.2 kernels.
**	When kernel-2.0 support will be dropped, we will 
**	just have to remove most of this code.
**
**==========================================================
*/
 
#if LINUX_VERSION_CODE >= LinuxVersionCode(2,2,0)
 
typedef struct pci_dev *pcidev_t;
#define PCIDEV_NULL		(0)
#define PciBusNumber(d)		(d)->bus->number
#define PciDeviceFn(d)		(d)->devfn
#define PciVendorId(d)		(d)->vendor
#define PciDeviceId(d)		(d)->device
#define PciIrqLine(d)		(d)->irq
 
static u_long __init
pci_get_base_cookie(struct pci_dev *pdev, int index)
{
	u_long base;
 
#if LINUX_VERSION_CODE > LinuxVersionCode(2,3,12)
	base = pdev->resource[index].start;
#else
	base = pdev->base_address[index];
#if BITS_PER_LONG > 32
	if ((base & 0x7) == 0x4)
		*base |= (((u_long)pdev->base_address[++index]) << 32);
#endif
#endif
	return (base & ~0x7ul);
}
 
static int __init
pci_get_base_address(struct pci_dev *pdev, int index, u_long *base)
{
	u32 tmp;
#define PCI_BAR_OFFSET(index) (PCI_BASE_ADDRESS_0 + (index<<2))
 
	pci_read_config_dword(pdev, PCI_BAR_OFFSET(index), &tmp);
	*base = tmp;
	++index;
	if ((tmp & 0x7) == 0x4) {
#if BITS_PER_LONG > 32
		pci_read_config_dword(pdev, PCI_BAR_OFFSET(index), &tmp);
		*base |= (((u_long)tmp) << 32);
#endif
		++index;
	}
	return index;
#undef PCI_BAR_OFFSET
}
 
#else	/* Incomplete emulation of current PCI code for pre-2.2 kernels */
 
typedef unsigned int pcidev_t;
#define PCIDEV_NULL		(~0u)
#define PciBusNumber(d)		((d)>>8)
#define PciDeviceFn(d)		((d)&0xff)
#define __PciDev(busn, devfn)	(((busn)<<8)+(devfn))
 
#define pci_present pcibios_present
 
#define pci_read_config_byte(d, w, v) \
	pcibios_read_config_byte(PciBusNumber(d), PciDeviceFn(d), w, v)
#define pci_read_config_word(d, w, v) \
	pcibios_read_config_word(PciBusNumber(d), PciDeviceFn(d), w, v)
#define pci_read_config_dword(d, w, v) \
	pcibios_read_config_dword(PciBusNumber(d), PciDeviceFn(d), w, v)
 
#define pci_write_config_byte(d, w, v) \
	pcibios_write_config_byte(PciBusNumber(d), PciDeviceFn(d), w, v)
#define pci_write_config_word(d, w, v) \
	pcibios_write_config_word(PciBusNumber(d), PciDeviceFn(d), w, v)
#define pci_write_config_dword(d, w, v) \
	pcibios_write_config_dword(PciBusNumber(d), PciDeviceFn(d), w, v)
 
static pcidev_t __init
pci_find_device(unsigned int vendor, unsigned int device, pcidev_t prev)
{
	static unsigned short pci_index;
	int retv;
	unsigned char bus_number, device_fn;
 
	if (prev == PCIDEV_NULL)
		pci_index = 0;
	else
		++pci_index;
	retv = pcibios_find_device (vendor, device, pci_index,
				    &bus_number, &device_fn);
	return retv ? PCIDEV_NULL : __PciDev(bus_number, device_fn);
}
 
static u_short __init PciVendorId(pcidev_t dev)
{
	u_short vendor_id;
	pci_read_config_word(dev, PCI_VENDOR_ID, &vendor_id);
	return vendor_id;
}
 
static u_short __init PciDeviceId(pcidev_t dev)
{
	u_short device_id;
	pci_read_config_word(dev, PCI_DEVICE_ID, &device_id);
	return device_id;
}
 
static u_int __init PciIrqLine(pcidev_t dev)
{
	u_char irq;
	pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &irq);
	return irq;
}
 
static int __init 
pci_get_base_address(pcidev_t dev, int offset, u_long *base)
{
	u_int32 tmp;
 
	pci_read_config_dword(dev, PCI_BASE_ADDRESS_0 + offset, &tmp);
	*base = tmp;
	offset += sizeof(u_int32);
	if ((tmp & 0x7) == 0x4) {
#if BITS_PER_LONG > 32
		pci_read_config_dword(dev, PCI_BASE_ADDRESS_0 + offset, &tmp);
		*base |= (((u_long)tmp) << 32);
#endif
		offset += sizeof(u_int32);
	}
	return offset;
}
static u_long __init
pci_get_base_cookie(struct pci_dev *pdev, int offset)
{
	u_long base;
 
	(void) pci_get_base_address(dev, offset, &base);
 
	return base;
}
 
#endif	/* LINUX_VERSION_CODE >= LinuxVersionCode(2,2,0) */
 
/* Does not make sense in earlier kernels */
#if LINUX_VERSION_CODE < LinuxVersionCode(2,4,0)
#define pci_enable_device(pdev)		(0)
#endif
#if LINUX_VERSION_CODE < LinuxVersionCode(2,4,4)
#define	scsi_set_pci_device(inst, pdev)	(0)
#endif
 
/*==========================================================
**
**	SMP threading.
**
**	Assuming that SMP systems are generally high end 
**	systems and may use several SCSI adapters, we are 
**	using one lock per controller instead of some global 
**	one. For the moment (linux-2.1.95), driver's entry 
**	points are called with the 'io_request_lock' lock 
**	held, so:
**	- We are uselessly loosing a couple of micro-seconds 
**	  to lock the controller data structure.
**	- But the driver is not broken by design for SMP and 
**	  so can be more resistant to bugs or bad changes in 
**	  the IO sub-system code.
**	- A small advantage could be that the interrupt code 
**	  is grained as wished (e.g.: by controller).
**
**==========================================================
*/
 
#if LINUX_VERSION_CODE >= LinuxVersionCode(2,1,93)
spinlock_t DRIVER_SMP_LOCK = SPIN_LOCK_UNLOCKED;
#define	NCR_LOCK_DRIVER(flags)     spin_lock_irqsave(&DRIVER_SMP_LOCK, flags)
#define	NCR_UNLOCK_DRIVER(flags)   \
		spin_unlock_irqrestore(&DRIVER_SMP_LOCK, flags)
 
#define NCR_INIT_LOCK_NCB(np)      spin_lock_init(&np->smp_lock)
#define	NCR_LOCK_NCB(np, flags)    spin_lock_irqsave(&np->smp_lock, flags)
#define	NCR_UNLOCK_NCB(np, flags)  spin_unlock_irqrestore(&np->smp_lock, flags)
 
#define	NCR_LOCK_SCSI_DONE(np, flags) \
		spin_lock_irqsave(&io_request_lock, flags)
#define	NCR_UNLOCK_SCSI_DONE(np, flags) \
		spin_unlock_irqrestore(&io_request_lock, flags)
 
#else
 
#define	NCR_LOCK_DRIVER(flags)     do { save_flags(flags); cli(); } while (0)
#define	NCR_UNLOCK_DRIVER(flags)   do { restore_flags(flags); } while (0)
 
#define	NCR_INIT_LOCK_NCB(np)      do { } while (0)
#define	NCR_LOCK_NCB(np, flags)    do { save_flags(flags); cli(); } while (0)
#define	NCR_UNLOCK_NCB(np, flags)  do { restore_flags(flags); } while (0)
 
#define	NCR_LOCK_SCSI_DONE(np, flags)    do {;} while (0)
#define	NCR_UNLOCK_SCSI_DONE(np, flags)  do {;} while (0)
 
#endif
 
/*==========================================================
**
**	Memory mapped IO
**
**	Since linux-2.1, we must use ioremap() to map the io 
**	memory space and iounmap() to unmap it. This allows 
**	portability. Linux 1.3.X and 2.0.X allow to remap 
**	physical pages addresses greater than the highest 
**	physical memory address to kernel virtual pages with 
**	vremap() / vfree(). That was not portable but worked 
**	with i386 architecture.
**
**==========================================================
*/
 
#if LINUX_VERSION_CODE < LinuxVersionCode(2,1,0)
#define ioremap vremap
#define iounmap vfree
#endif
 
#ifdef __sparc__
#  include <asm/irq.h>
#  define memcpy_to_pci(a, b, c)	memcpy_toio((a), (b), (c))
#elif defined(__alpha__)
#  define memcpy_to_pci(a, b, c)	memcpy_toio((a), (b), (c))
#else	/* others */
#  define memcpy_to_pci(a, b, c)	memcpy_toio((a), (b), (c))
#endif
 
#ifndef SCSI_NCR_PCI_MEM_NOT_SUPPORTED
static u_long __init remap_pci_mem(u_long base, u_long size)
{
	u_long page_base	= ((u_long) base) & PAGE_MASK;
	u_long page_offs	= ((u_long) base) - page_base;
	u_long page_remapped	= (u_long) ioremap(page_base, page_offs+size);
 
	return page_remapped? (page_remapped + page_offs) : 0UL;
}
 
static void __init unmap_pci_mem(u_long vaddr, u_long size)
{
	if (vaddr)
		iounmap((void *) (vaddr & PAGE_MASK));
}
 
#endif /* not def SCSI_NCR_PCI_MEM_NOT_SUPPORTED */
 
/*==========================================================
**
**	Insert a delay in micro-seconds and milli-seconds.
**
**	Under Linux, udelay() is restricted to delay < 
**	1 milli-second. In fact, it generally works for up 
**	to 1 second delay. Since 2.1.105, the mdelay() function 
**	is provided for delays in milli-seconds.
**	Under 2.0 kernels, udelay() is an inline function 
**	that is very inaccurate on Pentium processors.
**
**==========================================================
*/
 
#if LINUX_VERSION_CODE >= LinuxVersionCode(2,1,105)
#define UDELAY udelay
#define MDELAY mdelay
#else
static void UDELAY(long us) { udelay(us); }
static void MDELAY(long ms) { while (ms--) UDELAY(1000); }
#endif
 
/*==========================================================
**
**	Simple power of two buddy-like allocator.
**
**	This simple code is not intended to be fast, but to 
**	provide power of 2 aligned memory allocations.
**	Since the SCRIPTS processor only supplies 8 bit 
**	arithmetic, this allocator allows simple and fast 
**	address calculations  from the SCRIPTS code.
**	In addition, cache line alignment is guaranteed for 
**	power of 2 cache line size.
**	Enhanced in linux-2.3.44 to provide a memory pool 
**	per pcidev to support dynamic dma mapping. (I would 
**	have preferred a real bus astraction, btw).
**
**==========================================================
*/
 
#if LINUX_VERSION_CODE >= LinuxVersionCode(2,1,0)
#define __GetFreePages(flags, order) __get_free_pages(flags, order)
#else
#define __GetFreePages(flags, order) __get_free_pages(flags, order, 0)
#endif
 
#define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
#if PAGE_SIZE >= 8192
#define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
#else
#define MEMO_PAGE_ORDER	1	/* 2 PAGES maximum */
#endif
#define MEMO_FREE_UNUSED	/* Free unused pages immediately */
#define MEMO_WARN	1
#define MEMO_GFP_FLAGS	GFP_ATOMIC
#define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
#define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
#define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
 
typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
typedef pcidev_t m_bush_t;	/* Something that addresses DMAable */
 
typedef struct m_link {		/* Link between free memory chunks */
	struct m_link *next;
} m_link_s;
 
#ifdef	SCSI_NCR_DYNAMIC_DMA_MAPPING
typedef struct m_vtob {		/* Virtual to Bus address translation */
	struct m_vtob *next;
	m_addr_t vaddr;
	m_addr_t baddr;
} m_vtob_s;
#define VTOB_HASH_SHIFT		5
#define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
#define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
#define VTOB_HASH_CODE(m)	\
	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
#endif
 
typedef struct m_pool {		/* Memory pool of a given kind */
#ifdef	SCSI_NCR_DYNAMIC_DMA_MAPPING
	m_bush_t bush;
	m_addr_t (*getp)(struct m_pool *);
	void (*freep)(struct m_pool *, m_addr_t);
#define M_GETP()		mp->getp(mp)
#define M_FREEP(p)		mp->freep(mp, p)
#define GetPages()		__GetFreePages(MEMO_GFP_FLAGS, MEMO_PAGE_ORDER)
#define FreePages(p)		free_pages(p, MEMO_PAGE_ORDER)
	int nump;
	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
	struct m_pool *next;
#else
#define M_GETP()		__GetFreePages(MEMO_GFP_FLAGS, MEMO_PAGE_ORDER)
#define M_FREEP(p)		free_pages(p, MEMO_PAGE_ORDER)
#endif	/* SCSI_NCR_DYNAMIC_DMA_MAPPING */
	struct m_link h[PAGE_SHIFT-MEMO_SHIFT+MEMO_PAGE_ORDER+1];
} m_pool_s;
 
static void *___m_alloc(m_pool_s *mp, int size)
{
	int i = 0;
	int s = (1 << MEMO_SHIFT);
	int j;
	m_addr_t a;
	m_link_s *h = mp->h;
 
	if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
		return 0;
 
	while (size > s) {
		s <<= 1;
		++i;
	}
 
	j = i;
	while (!h[j].next) {
		if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
			h[j].next = (m_link_s *) M_GETP();
			if (h[j].next)
				h[j].next->next = 0;
			break;
		}
		++j;
		s <<= 1;
	}
	a = (m_addr_t) h[j].next;
	if (a) {
		h[j].next = h[j].next->next;
		while (j > i) {
			j -= 1;
			s >>= 1;
			h[j].next = (m_link_s *) (a+s);
			h[j].next->next = 0;
		}
	}
#ifdef DEBUG
	printk("___m_alloc(%d) = %p\n", size, (void *) a);
#endif
	return (void *) a;
}
 
static void ___m_free(m_pool_s *mp, void *ptr, int size)
{
	int i = 0;
	int s = (1 << MEMO_SHIFT);
	m_link_s *q;
	m_addr_t a, b;
	m_link_s *h = mp->h;
 
#ifdef DEBUG
	printk("___m_free(%p, %d)\n", ptr, size);
#endif
 
	if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
		return;
 
	while (size > s) {
		s <<= 1;
		++i;
	}
 
	a = (m_addr_t) ptr;
 
	while (1) {
#ifdef MEMO_FREE_UNUSED
		if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
			M_FREEP(a);
			break;
		}
#endif
		b = a ^ s;
		q = &h[i];
		while (q->next && q->next != (m_link_s *) b) {
			q = q->next;
		}
		if (!q->next) {
			((m_link_s *) a)->next = h[i].next;
			h[i].next = (m_link_s *) a;
			break;
		}
		q->next = q->next->next;
		a = a & b;
		s <<= 1;
		++i;
	}
}
 
static void *__m_calloc2(m_pool_s *mp, int size, char *name, int uflags)
{
	void *p;
 
	p = ___m_alloc(mp, size);
 
	if (DEBUG_FLAGS & DEBUG_ALLOC)
		printk ("new %-10s[%4d] @%p.\n", name, size, p);
 
	if (p)
		bzero(p, size);
	else if (uflags & MEMO_WARN)
		printk (NAME53C8XX ": failed to allocate %s[%d]\n", name, size);
 
	return p;
}
 
#define __m_calloc(mp, s, n)	__m_calloc2(mp, s, n, MEMO_WARN)
 
static void __m_free(m_pool_s *mp, void *ptr, int size, char *name)
{
	if (DEBUG_FLAGS & DEBUG_ALLOC)
		printk ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
 
	___m_free(mp, ptr, size);
 
}
 
/*
 * With pci bus iommu support, we use a default pool of unmapped memory 
 * for memory we donnot need to DMA from/to and one pool per pcidev for 
 * memory accessed by the PCI chip. `mp0' is the default not DMAable pool.
 */
 
#ifndef	SCSI_NCR_DYNAMIC_DMA_MAPPING
 
static m_pool_s mp0;
 
#else
 
static m_addr_t ___mp0_getp(m_pool_s *mp)
{
	m_addr_t m = GetPages();
	if (m)
		++mp->nump;
	return m;
}
 
static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
{
	FreePages(m);
	--mp->nump;
}
 
static m_pool_s mp0 = {0, ___mp0_getp, ___mp0_freep};
 
#endif	/* SCSI_NCR_DYNAMIC_DMA_MAPPING */
 
static void *m_calloc(int size, char *name)
{
	u_long flags;
	void *m;
	NCR_LOCK_DRIVER(flags);
	m = __m_calloc(&mp0, size, name);
	NCR_UNLOCK_DRIVER(flags);
	return m;
}
 
static void m_free(void *ptr, int size, char *name)
{
	u_long flags;
	NCR_LOCK_DRIVER(flags);
	__m_free(&mp0, ptr, size, name);
	NCR_UNLOCK_DRIVER(flags);
}
 
/*
 * DMAable pools.
 */
 
#ifndef	SCSI_NCR_DYNAMIC_DMA_MAPPING
 
/* Without pci bus iommu support, all the memory is assumed DMAable */
 
#define __m_calloc_dma(b, s, n)		m_calloc(s, n)
#define __m_free_dma(b, p, s, n)	m_free(p, s, n)
#define __vtobus(b, p)			virt_to_bus(p)
 
#else
 
/*
 * With pci bus iommu support, we maintain one pool per pcidev and a 
 * hashed reverse table for virtual to bus physical address translations.
 */
static m_addr_t ___dma_getp(m_pool_s *mp)
{
	m_addr_t vp;
	m_vtob_s *vbp;
 
	vbp = __m_calloc(&mp0, sizeof(*vbp), "VTOB");
	if (vbp) {
		dma_addr_t daddr;
		vp = (m_addr_t) pci_alloc_consistent(mp->bush,
						PAGE_SIZE<<MEMO_PAGE_ORDER,
						&daddr);
		if (vp) {
			int hc = VTOB_HASH_CODE(vp);
			vbp->vaddr = vp;
			vbp->baddr = daddr;
			vbp->next = mp->vtob[hc];
			mp->vtob[hc] = vbp;
			++mp->nump;
			return vp;
		}
	}
	if (vbp)
		__m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
	return 0;
}
 
static void ___dma_freep(m_pool_s *mp, m_addr_t m)
{
	m_vtob_s **vbpp, *vbp;
	int hc = VTOB_HASH_CODE(m);
 
	vbpp = &mp->vtob[hc];
	while (*vbpp && (*vbpp)->vaddr != m)
		vbpp = &(*vbpp)->next;
	if (*vbpp) {
		vbp = *vbpp;
		*vbpp = (*vbpp)->next;
		pci_free_consistent(mp->bush, PAGE_SIZE<<MEMO_PAGE_ORDER,
				    (void *)vbp->vaddr, (dma_addr_t)vbp->baddr);
		__m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
		--mp->nump;
	}
}
 
static inline m_pool_s *___get_dma_pool(m_bush_t bush)
{
	m_pool_s *mp;
	for (mp = mp0.next; mp && mp->bush != bush; mp = mp->next);
	return mp;
}
 
static m_pool_s *___cre_dma_pool(m_bush_t bush)
{
	m_pool_s *mp;
	mp = __m_calloc(&mp0, sizeof(*mp), "MPOOL");
	if (mp) {
		bzero(mp, sizeof(*mp));
		mp->bush = bush;
		mp->getp = ___dma_getp;
		mp->freep = ___dma_freep;
		mp->next = mp0.next;
		mp0.next = mp;
	}
	return mp;
}
 
static void ___del_dma_pool(m_pool_s *p)
{
	struct m_pool **pp = &mp0.next;
 
	while (*pp && *pp != p)
		pp = &(*pp)->next;
	if (*pp) {
		*pp = (*pp)->next;
		__m_free(&mp0, p, sizeof(*p), "MPOOL");
	}
}
 
static void *__m_calloc_dma(m_bush_t bush, int size, char *name)
{
	u_long flags;
	struct m_pool *mp;
	void *m = 0;
 
	NCR_LOCK_DRIVER(flags);
	mp = ___get_dma_pool(bush);
	if (!mp)
		mp = ___cre_dma_pool(bush);
	if (mp)
		m = __m_calloc(mp, size, name);
	if (mp && !mp->nump)
		___del_dma_pool(mp);
	NCR_UNLOCK_DRIVER(flags);
 
	return m;
}
 
static void __m_free_dma(m_bush_t bush, void *m, int size, char *name)
{
	u_long flags;
	struct m_pool *mp;
 
	NCR_LOCK_DRIVER(flags);
	mp = ___get_dma_pool(bush);
	if (mp)
		__m_free(mp, m, size, name);
	if (mp && !mp->nump)
		___del_dma_pool(mp);
	NCR_UNLOCK_DRIVER(flags);
}
 
static m_addr_t __vtobus(m_bush_t bush, void *m)
{
	u_long flags;
	m_pool_s *mp;
	int hc = VTOB_HASH_CODE(m);
	m_vtob_s *vp = 0;
	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
 
	NCR_LOCK_DRIVER(flags);
	mp = ___get_dma_pool(bush);
	if (mp) {
		vp = mp->vtob[hc];
		while (vp && (m_addr_t) vp->vaddr != a)
			vp = vp->next;
	}
	NCR_UNLOCK_DRIVER(flags);
	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
}
 
#endif	/* SCSI_NCR_DYNAMIC_DMA_MAPPING */
 
#define _m_calloc_dma(np, s, n)		__m_calloc_dma(np->pdev, s, n)
#define _m_free_dma(np, p, s, n)	__m_free_dma(np->pdev, p, s, n)
#define m_calloc_dma(s, n)		_m_calloc_dma(np, s, n)
#define m_free_dma(p, s, n)		_m_free_dma(np, p, s, n)
#define _vtobus(np, p)			__vtobus(np->pdev, p)
#define vtobus(p)			_vtobus(np, p)
 
/*
 *  Deal with DMA mapping/unmapping.
 */
 
#ifndef SCSI_NCR_DYNAMIC_DMA_MAPPING
 
/* Linux versions prior to pci bus iommu kernel interface */
 
#define __unmap_scsi_data(pdev, cmd)	do {; } while (0)
#define __map_scsi_single_data(pdev, cmd) (__vtobus(pdev,(cmd)->request_buffer))
#define __map_scsi_sg_data(pdev, cmd)	((cmd)->use_sg)
#define __sync_scsi_data(pdev, cmd)	do {; } while (0)
 
#define scsi_sg_dma_address(sc)		vtobus((sc)->address)
#define scsi_sg_dma_len(sc)		((sc)->length)
 
#else
 
/* Linux version with pci bus iommu kernel interface */
 
/* To keep track of the dma mapping (sg/single) that has been set */
#define __data_mapped	SCp.phase
#define __data_mapping	SCp.have_data_in
 
static void __unmap_scsi_data(pcidev_t pdev, Scsi_Cmnd *cmd)
{
	int dma_dir = scsi_to_pci_dma_dir(cmd->sc_data_direction);
 
	switch(cmd->__data_mapped) {
	case 2:
		pci_unmap_sg(pdev, cmd->buffer, cmd->use_sg, dma_dir);
		break;
	case 1:
		pci_unmap_single(pdev, cmd->__data_mapping,
				 cmd->request_bufflen, dma_dir);
		break;
	}
	cmd->__data_mapped = 0;
}
 
static u_long __map_scsi_single_data(pcidev_t pdev, Scsi_Cmnd *cmd)
{
	dma_addr_t mapping;
	int dma_dir = scsi_to_pci_dma_dir(cmd->sc_data_direction);
 
	if (cmd->request_bufflen == 0)
		return 0;
 
	mapping = pci_map_single(pdev, cmd->request_buffer,
				 cmd->request_bufflen, dma_dir);
	cmd->__data_mapped = 1;
	cmd->__data_mapping = mapping;
 
	return mapping;
}
 
static int __map_scsi_sg_data(pcidev_t pdev, Scsi_Cmnd *cmd)
{
	int use_sg;
	int dma_dir = scsi_to_pci_dma_dir(cmd->sc_data_direction);
 
	if (cmd->use_sg == 0)
		return 0;
 
	use_sg = pci_map_sg(pdev, cmd->buffer, cmd->use_sg, dma_dir);
	cmd->__data_mapped = 2;
	cmd->__data_mapping = use_sg;
 
	return use_sg;
}
 
static void __sync_scsi_data(pcidev_t pdev, Scsi_Cmnd *cmd)
{
	int dma_dir = scsi_to_pci_dma_dir(cmd->sc_data_direction);
 
	switch(cmd->__data_mapped) {
	case 2:
		pci_dma_sync_sg(pdev, cmd->buffer, cmd->use_sg, dma_dir);
		break;
	case 1:
		pci_dma_sync_single(pdev, cmd->__data_mapping,
				    cmd->request_bufflen, dma_dir);
		break;
	}
}
 
#define scsi_sg_dma_address(sc)		sg_dma_address(sc)
#define scsi_sg_dma_len(sc)		sg_dma_len(sc)
 
#endif	/* SCSI_NCR_DYNAMIC_DMA_MAPPING */
 
#define unmap_scsi_data(np, cmd)	__unmap_scsi_data(np->pdev, cmd)
#define map_scsi_single_data(np, cmd)	__map_scsi_single_data(np->pdev, cmd)
#define map_scsi_sg_data(np, cmd)	__map_scsi_sg_data(np->pdev, cmd)
#define sync_scsi_data(np, cmd)		__sync_scsi_data(np->pdev, cmd)
 
/*==========================================================
**
**	SCSI data transfer direction
**
**	Until some linux kernel version near 2.3.40, 
**	low-level scsi drivers were not told about data 
**	transfer direction. We check the existence of this 
**	feature that has been expected for a _long_ time by 
**	all SCSI driver developers by just testing against 
**	the definition of SCSI_DATA_UNKNOWN. Indeed this is 
**	a hack, but testing against a kernel version would 
**	have been a shame. ;-)
**
**==========================================================
*/
#ifdef	SCSI_DATA_UNKNOWN
 
#define scsi_data_direction(cmd)	(cmd->sc_data_direction)
 
#else
 
#define	SCSI_DATA_UNKNOWN	0
#define	SCSI_DATA_WRITE		1
#define	SCSI_DATA_READ		2
#define	SCSI_DATA_NONE		3
 
static __inline__ int scsi_data_direction(Scsi_Cmnd *cmd)
{
	int direction;
 
	switch((int) cmd->cmnd[0]) {
	case 0x08:  /*	READ(6)				08 */
	case 0x28:  /*	READ(10)			28 */
	case 0xA8:  /*	READ(12)			A8 */
		direction = SCSI_DATA_READ;
		break;
	case 0x0A:  /*	WRITE(6)			0A */
	case 0x2A:  /*	WRITE(10)			2A */
	case 0xAA:  /*	WRITE(12)			AA */
		direction = SCSI_DATA_WRITE;
		break;
	default:
		direction = SCSI_DATA_UNKNOWN;
		break;
	}
 
	return direction;
}
 
#endif	/* SCSI_DATA_UNKNOWN */
 
/*==========================================================
**
**	Driver setup.
**
**	This structure is initialized from linux config 
**	options. It can be overridden at boot-up by the boot 
**	command line.
**
**==========================================================
*/
static struct ncr_driver_setup
	driver_setup			= SCSI_NCR_DRIVER_SETUP;
 
#ifdef	SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
static struct ncr_driver_setup
	driver_safe_setup __initdata	= SCSI_NCR_DRIVER_SAFE_SETUP;
#endif
 
#define initverbose (driver_setup.verbose)
#define bootverbose (np->verbose)
 
 
/*==========================================================
**
**	Structures used by the detection routine to transmit 
**	device configuration to the attach function.
**
**==========================================================
*/
typedef struct {
	int	bus;
	u_char	device_fn;
	u_long	base;
	u_long	base_2;
	u_long	io_port;
	u_long	base_c;
	u_long	base_2_c;
	int	irq;
/* port and reg fields to use INB, OUTB macros */
	u_long	base_io;
	volatile struct ncr_reg	*reg;
} ncr_slot;
 
/*==========================================================
**
**	Structure used to store the NVRAM content.
**
**==========================================================
*/
typedef struct {
	int type;
#define	SCSI_NCR_SYMBIOS_NVRAM	(1)
#define	SCSI_NCR_TEKRAM_NVRAM	(2)
#ifdef	SCSI_NCR_NVRAM_SUPPORT
	union {
		Symbios_nvram Symbios;
		Tekram_nvram Tekram;
	} data;
#endif
} ncr_nvram;
 
/*==========================================================
**
**	Structure used by detection routine to save data on 
**	each detected board for attach.
**
**==========================================================
*/
typedef struct {
	pcidev_t  pdev;
	ncr_slot  slot;
	ncr_chip  chip;
	ncr_nvram *nvram;
	u_char host_id;
#ifdef	SCSI_NCR_PQS_PDS_SUPPORT
	u_char pqs_pds;
#endif
	int attach_done;
} ncr_device;
 
static int ncr_attach (Scsi_Host_Template *tpnt, int unit, ncr_device *device);
 
/*==========================================================
**
**	NVRAM detection and reading.
**	 
**	Currently supported:
**	- 24C16 EEPROM with both Symbios and Tekram layout.
**	- 93C46 EEPROM with Tekram layout.
**
**==========================================================
*/
 
#ifdef SCSI_NCR_NVRAM_SUPPORT
/*
 *  24C16 EEPROM reading.
 *
 *  GPOI0 - data in/data out
 *  GPIO1 - clock
 *  Symbios NVRAM wiring now also used by Tekram.
 */
 
#define SET_BIT 0
#define CLR_BIT 1
#define SET_CLK 2
#define CLR_CLK 3
 
/*
 *  Set/clear data/clock bit in GPIO0
 */
static void __init
S24C16_set_bit(ncr_slot *np, u_char write_bit, u_char *gpreg, int bit_mode)
{
	UDELAY (5);
	switch (bit_mode){
	case SET_BIT:
		*gpreg |= write_bit;
		break;
	case CLR_BIT:
		*gpreg &= 0xfe;
		break;
	case SET_CLK:
		*gpreg |= 0x02;
		break;
	case CLR_CLK:
		*gpreg &= 0xfd;
		break;
 
	}
	OUTB (nc_gpreg, *gpreg);
	UDELAY (5);
}
 
/*
 *  Send START condition to NVRAM to wake it up.
 */
static void __init S24C16_start(ncr_slot *np, u_char *gpreg)
{
	S24C16_set_bit(np, 1, gpreg, SET_BIT);
	S24C16_set_bit(np, 0, gpreg, SET_CLK);
	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
}
 
/*
 *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
 */
static void __init S24C16_stop(ncr_slot *np, u_char *gpreg)
{
	S24C16_set_bit(np, 0, gpreg, SET_CLK);
	S24C16_set_bit(np, 1, gpreg, SET_BIT);
}
 
/*
 *  Read or write a bit to the NVRAM,
 *  read if GPIO0 input else write if GPIO0 output
 */
static void __init 
S24C16_do_bit(ncr_slot *np, u_char *read_bit, u_char write_bit, u_char *gpreg)
{
	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
	S24C16_set_bit(np, 0, gpreg, SET_CLK);
	if (read_bit)
		*read_bit = INB (nc_gpreg);
	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
}
 
/*
 *  Output an ACK to the NVRAM after reading,
 *  change GPIO0 to output and when done back to an input
 */
static void __init
S24C16_write_ack(ncr_slot *np, u_char write_bit, u_char *gpreg, u_char *gpcntl)
{
	OUTB (nc_gpcntl, *gpcntl & 0xfe);
	S24C16_do_bit(np, 0, write_bit, gpreg);
	OUTB (nc_gpcntl, *gpcntl);
}
 
/*
 *  Input an ACK from NVRAM after writing,
 *  change GPIO0 to input and when done back to an output
 */
static void __init 
S24C16_read_ack(ncr_slot *np, u_char *read_bit, u_char *gpreg, u_char *gpcntl)
{
	OUTB (nc_gpcntl, *gpcntl | 0x01);
	S24C16_do_bit(np, read_bit, 1, gpreg);
	OUTB (nc_gpcntl, *gpcntl);
}
 
/*
 *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
 *  GPIO0 must already be set as an output
 */
static void __init 
S24C16_write_byte(ncr_slot *np, u_char *ack_data, u_char write_data, 
		  u_char *gpreg, u_char *gpcntl)
{
	int x;
 
	for (x = 0; x < 8; x++)
		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
 
	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
}
 
/*
 *  READ a byte from the NVRAM and then send an ACK to say we have got it,
 *  GPIO0 must already be set as an input
 */
static void __init 
S24C16_read_byte(ncr_slot *np, u_char *read_data, u_char ack_data, 
	         u_char *gpreg, u_char *gpcntl)
{
	int x;
	u_char read_bit;
 
	*read_data = 0;
	for (x = 0; x < 8; x++) {
		S24C16_do_bit(np, &read_bit, 1, gpreg);
		*read_data |= ((read_bit & 0x01) << (7 - x));
	}
 
	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
}
 
/*
 *  Read 'len' bytes starting at 'offset'.
 */
static int __init 
sym_read_S24C16_nvram (ncr_slot *np, int offset, u_char *data, int len)
{
	u_char	gpcntl, gpreg;
	u_char	old_gpcntl, old_gpreg;
	u_char	ack_data;
	int	retv = 1;
	int	x;
 
	/* save current state of GPCNTL and GPREG */
	old_gpreg	= INB (nc_gpreg);
	old_gpcntl	= INB (nc_gpcntl);
	gpcntl		= old_gpcntl & 0x1c;
 
	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
	OUTB (nc_gpreg,  old_gpreg);
	OUTB (nc_gpcntl, gpcntl);
 
	/* this is to set NVRAM into a known state with GPIO0/1 both low */
	gpreg = old_gpreg;
	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
 
	/* now set NVRAM inactive with GPIO0/1 both high */
	S24C16_stop(np, &gpreg);
 
	/* activate NVRAM */
	S24C16_start(np, &gpreg);
 
	/* write device code and random address MSB */
	S24C16_write_byte(np, &ack_data,
		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
	if (ack_data & 0x01)
		goto out;
 
	/* write random address LSB */
	S24C16_write_byte(np, &ack_data,
		offset & 0xff, &gpreg, &gpcntl);
	if (ack_data & 0x01)
		goto out;
 
	/* regenerate START state to set up for reading */
	S24C16_start(np, &gpreg);
 
	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
	S24C16_write_byte(np, &ack_data,
		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
	if (ack_data & 0x01)
		goto out;
 
	/* now set up GPIO0 for inputting data */
	gpcntl |= 0x01;
	OUTB (nc_gpcntl, gpcntl);
 
	/* input all requested data - only part of total NVRAM */
	for (x = 0; x < len; x++) 
		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
 
	/* finally put NVRAM back in inactive mode */
	gpcntl &= 0xfe;
	OUTB (nc_gpcntl, gpcntl);
	S24C16_stop(np, &gpreg);
	retv = 0;
out:
	/* return GPIO0/1 to original states after having accessed NVRAM */
	OUTB (nc_gpcntl, old_gpcntl);
	OUTB (nc_gpreg,  old_gpreg);
 
	return retv;
}
 
#undef SET_BIT
#undef CLR_BIT
#undef SET_CLK
#undef CLR_CLK
 
/*
 *  Try reading Symbios NVRAM.
 *  Return 0 if OK.
 */
static int __init sym_read_Symbios_nvram (ncr_slot *np, Symbios_nvram *nvram)
{
	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
	u_char *data = (u_char *) nvram;
	int len  = sizeof(*nvram);
	u_short	csum;
	int x;
 
	/* probe the 24c16 and read the SYMBIOS 24c16 area */
	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
		return 1;
 
	/* check valid NVRAM signature, verify byte count and checksum */
	if (nvram->type != 0 ||
	    memcmp(nvram->trailer, Symbios_trailer, 6) ||
	    nvram->byte_count != len - 12)
		return 1;
 
	/* verify checksum */
	for (x = 6, csum = 0; x < len - 6; x++)
		csum += data[x];
	if (csum != nvram->checksum)
		return 1;
 
	return 0;
}
 
/*
 *  93C46 EEPROM reading.
 *
 *  GPOI0 - data in
 *  GPIO1 - data out
 *  GPIO2 - clock
 *  GPIO4 - chip select
 *
 *  Used by Tekram.
 */
 
/*
 *  Pulse clock bit in GPIO0
 */
static void __init T93C46_Clk(ncr_slot *np, u_char *gpreg)
{
	OUTB (nc_gpreg, *gpreg | 0x04);
	UDELAY (2);
	OUTB (nc_gpreg, *gpreg);
}
 
/* 
 *  Read bit from NVRAM
 */
static void __init T93C46_Read_Bit(ncr_slot *np, u_char *read_bit, u_char *gpreg)
{
	UDELAY (2);
	T93C46_Clk(np, gpreg);
	*read_bit = INB (nc_gpreg);
}
 
/*
 *  Write bit to GPIO0
 */
static void __init T93C46_Write_Bit(ncr_slot *np, u_char write_bit, u_char *gpreg)
{
	if (write_bit & 0x01)
		*gpreg |= 0x02;
	else
		*gpreg &= 0xfd;
 
	*gpreg |= 0x10;
 
	OUTB (nc_gpreg, *gpreg);
	UDELAY (2);
 
	T93C46_Clk(np, gpreg);
}
 
/*
 *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
 */
static void __init T93C46_Stop(ncr_slot *np, u_char *gpreg)
{
	*gpreg &= 0xef;
	OUTB (nc_gpreg, *gpreg);
	UDELAY (2);
 
	T93C46_Clk(np, gpreg);
}
 
/*
 *  Send read command and address to NVRAM
 */
static void __init 
T93C46_Send_Command(ncr_slot *np, u_short write_data, 
		    u_char *read_bit, u_char *gpreg)
{
	int x;
 
	/* send 9 bits, start bit (1), command (2), address (6)  */
	for (x = 0; x < 9; x++)
		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
 
	*read_bit = INB (nc_gpreg);
}
 
/*
 *  READ 2 bytes from the NVRAM
 */
static void __init 
T93C46_Read_Word(ncr_slot *np, u_short *nvram_data, u_char *gpreg)
{
	int x;
	u_char read_bit;
 
	*nvram_data = 0;
	for (x = 0; x < 16; x++) {
		T93C46_Read_Bit(np, &read_bit, gpreg);
 
		if (read_bit & 0x01)
			*nvram_data |=  (0x01 << (15 - x));
		else
			*nvram_data &= ~(0x01 << (15 - x));
	}
}
 
/*
 *  Read Tekram NvRAM data.
 */
static int __init 
T93C46_Read_Data(ncr_slot *np, u_short *data,int len,u_char *gpreg)
{
	u_char	read_bit;
	int	x;
 
	for (x = 0; x < len; x++)  {
 
		/* output read command and address */
		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
		if (read_bit & 0x01)
			return 1; /* Bad */
		T93C46_Read_Word(np, &data[x], gpreg);
		T93C46_Stop(np, gpreg);
	}
 
	return 0;
}
 
/*
 *  Try reading 93C46 Tekram NVRAM.
 */
static int __init 
sym_read_T93C46_nvram (ncr_slot *np, Tekram_nvram *nvram)
{
	u_char gpcntl, gpreg;
	u_char old_gpcntl, old_gpreg;
	int retv = 1;
 
	/* save current state of GPCNTL and GPREG */
	old_gpreg	= INB (nc_gpreg);
	old_gpcntl	= INB (nc_gpcntl);
 
	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
	   1/2/4 out */
	gpreg = old_gpreg & 0xe9;
	OUTB (nc_gpreg, gpreg);
	gpcntl = (old_gpcntl & 0xe9) | 0x09;
	OUTB (nc_gpcntl, gpcntl);
 
	/* input all of NVRAM, 64 words */
	retv = T93C46_Read_Data(np, (u_short *) nvram,
				sizeof(*nvram) / sizeof(short), &gpreg);
 
	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
	OUTB (nc_gpcntl, old_gpcntl);
	OUTB (nc_gpreg,  old_gpreg);
 
	return retv;
}
 
/*
 *  Try reading Tekram NVRAM.
 *  Return 0 if OK.
 */
static int __init 
sym_read_Tekram_nvram (ncr_slot *np, u_short device_id, Tekram_nvram *nvram)
{
	u_char *data = (u_char *) nvram;
	int len = sizeof(*nvram);
	u_short	csum;
	int x;
 
	switch (device_id) {
	case PCI_DEVICE_ID_NCR_53C885:
	case PCI_DEVICE_ID_NCR_53C895:
	case PCI_DEVICE_ID_NCR_53C896:
		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
					  data, len);
		break;
	case PCI_DEVICE_ID_NCR_53C875:
		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
					  data, len);
		if (!x)
			break;
	default:
		x = sym_read_T93C46_nvram(np, nvram);
		break;
	}
	if (x)
		return 1;
 
	/* verify checksum */
	for (x = 0, csum = 0; x < len - 1; x += 2)
		csum += data[x] + (data[x+1] << 8);
	if (csum != 0x1234)
		return 1;
 
	return 0;
}
 
#endif	/* SCSI_NCR_NVRAM_SUPPORT */
 
/*===================================================================
**
**    Detect and try to read SYMBIOS and TEKRAM NVRAM.
**
**    Data can be used to order booting of boards.
**
**    Data is saved in ncr_device structure if NVRAM found. This
**    is then used to find drive boot order for ncr_attach().
**
**    NVRAM data is passed to Scsi_Host_Template later during 
**    ncr_attach() for any device set up.
**
**===================================================================
*/
#ifdef SCSI_NCR_NVRAM_SUPPORT
static void __init ncr_get_nvram(ncr_device *devp, ncr_nvram *nvp)
{
	devp->nvram = nvp;
	if (!nvp)
		return;
	/*
	**    Get access to chip IO registers
	*/
#ifdef SCSI_NCR_IOMAPPED
	request_region(devp->slot.io_port, 128, NAME53C8XX);
	devp->slot.base_io = devp->slot.io_port;
#else
	devp->slot.reg = 
		(struct ncr_reg *) remap_pci_mem(devp->slot.base_c, 128);
	if (!devp->slot.reg)
		return;
#endif
 
	/*
	**    Try to read SYMBIOS nvram.
	**    Try to read TEKRAM nvram if Symbios nvram not found.
	*/
	if	(!sym_read_Symbios_nvram(&devp->slot, &nvp->data.Symbios))
		nvp->type = SCSI_NCR_SYMBIOS_NVRAM;
	else if	(!sym_read_Tekram_nvram(&devp->slot, devp->chip.device_id,
					&nvp->data.Tekram))
		nvp->type = SCSI_NCR_TEKRAM_NVRAM;
	else {
		nvp->type = 0;
		devp->nvram = 0;
	}
 
	/*
	** Release access to chip IO registers
	*/
#ifdef SCSI_NCR_IOMAPPED
	release_region(devp->slot.base_io, 128);
#else
	unmap_pci_mem((u_long) devp->slot.reg, 128ul);
#endif
 
}
 
/*===================================================================
**
**	Display the content of NVRAM for debugging purpose.
**
**===================================================================
*/
#ifdef	SCSI_NCR_DEBUG_NVRAM
static void __init ncr_display_Symbios_nvram(Symbios_nvram *nvram)
{
	int i;
 
	/* display Symbios nvram host data */
	printk(KERN_DEBUG NAME53C8XX ": HOST ID=%d%s%s%s%s%s\n",
		nvram->host_id & 0x0f,
		(nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
		(nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	:"",
		(nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	:"", 
		(nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	:"", 
		(nvram->flags1 & SYMBIOS_SCAN_HI_LO)	? " HI_LO"	:"");
 
	/* display Symbios nvram drive data */
	for (i = 0 ; i < 15 ; i++) {
		struct Symbios_target *tn = &nvram->target[i];
		printk(KERN_DEBUG NAME53C8XX 
		"-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
		i,
		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
		tn->bus_width,
		tn->sync_period / 4,
		tn->timeout);
	}
}
 
static u_char Tekram_boot_delay[7] __initdata = {3, 5, 10, 20, 30, 60, 120};
 
static void __init ncr_display_Tekram_nvram(Tekram_nvram *nvram)
{
	int i, tags, boot_delay;
	char *rem;
 
	/* display Tekram nvram host data */
	tags = 2 << nvram->max_tags_index;
	boot_delay = 0;
	if (nvram->boot_delay_index < 6)
		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
	default:
	case 0:	rem = "";			break;
	case 1: rem = " REMOVABLE=boot device";	break;
	case 2: rem = " REMOVABLE=all";		break;
	}
 
	printk(KERN_DEBUG NAME53C8XX
		": HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
		nvram->host_id & 0x0f,
		(nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
		(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES":"",
		(nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	:"",
		(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET"	:"",
		(nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	:"",
		(nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	:"",
		(nvram->flags & TEKRAM_SCAN_LUNS)	? " SCAN_LUNS"	:"",
		(nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	:"",
		rem, boot_delay, tags);
 
	/* display Tekram nvram drive data */
	for (i = 0; i <= 15; i++) {
		int sync, j;
		struct Tekram_target *tn = &nvram->target[i];
		j = tn->sync_index & 0xf;
		sync = Tekram_sync[j];
		printk(KERN_DEBUG NAME53C8XX "-%d:%s%s%s%s%s%s PERIOD=%d\n",
		i,
		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
		sync);
	}
}
#endif /* SCSI_NCR_DEBUG_NVRAM */
#endif	/* SCSI_NCR_NVRAM_SUPPORT */
 
 
/*===================================================================
**
**	Utility routines that protperly return data through /proc FS.
**
**===================================================================
*/
#ifdef SCSI_NCR_USER_INFO_SUPPORT
 
struct info_str
{
	char *buffer;
	int length;
	int offset;
	int pos;
};
 
static void copy_mem_info(struct info_str *info, char *data, int len)
{
	if (info->pos + len > info->length)
		len = info->length - info->pos;
 
	if (info->pos + len < info->offset) {
		info->pos += len;
		return;
	}
	if (info->pos < info->offset) {
		data += (info->offset - info->pos);
		len  -= (info->offset - info->pos);
	}
 
	if (len > 0) {
		memcpy(info->buffer + info->pos, data, len);
		info->pos += len;
	}
}
 
static int copy_info(struct info_str *info, char *fmt, ...)
{
	va_list args;
	char buf[81];
	int len;
 
	va_start(args, fmt);
	len = vsprintf(buf, fmt, args);
	va_end(args);
 
	copy_mem_info(info, buf, len);
	return len;
}
 
#endif
 
/*===================================================================
**
**	Driver setup from the boot command line
**
**===================================================================
*/
 
#ifdef MODULE
#define	ARG_SEP	' '
#else
#define	ARG_SEP	','
#endif
 
#define OPT_TAGS		1
#define OPT_MASTER_PARITY	2
#define OPT_SCSI_PARITY		3
#define OPT_DISCONNECTION	4
#define OPT_SPECIAL_FEATURES	5
#define OPT_UNUSED_1		6
#define OPT_FORCE_SYNC_NEGO	7
#define OPT_REVERSE_PROBE	8
#define OPT_DEFAULT_SYNC	9
#define OPT_VERBOSE		10
#define OPT_DEBUG		11
#define OPT_BURST_MAX		12
#define OPT_LED_PIN		13
#define OPT_MAX_WIDE		14
#define OPT_SETTLE_DELAY	15
#define OPT_DIFF_SUPPORT	16
#define OPT_IRQM		17
#define OPT_PCI_FIX_UP		18
#define OPT_BUS_CHECK		19
#define OPT_OPTIMIZE		20
#define OPT_RECOVERY		21
#define OPT_SAFE_SETUP		22
#define OPT_USE_NVRAM		23
#define OPT_EXCLUDE		24
#define OPT_HOST_ID		25
 
#ifdef SCSI_NCR_IARB_SUPPORT
#define OPT_IARB		26
#endif
 
static char setup_token[] __initdata = 
	"tags:"   "mpar:"
	"spar:"   "disc:"
	"specf:"  "ultra:"
	"fsn:"    "revprob:"
	"sync:"   "verb:"
	"debug:"  "burst:"
	"led:"    "wide:"
	"settle:" "diff:"
	"irqm:"   "pcifix:"
	"buschk:" "optim:"
	"recovery:"
	"safe:"   "nvram:"
	"excl:"   "hostid:"
#ifdef SCSI_NCR_IARB_SUPPORT
	"iarb:"
#endif
	;	/* DONNOT REMOVE THIS ';' */
 
#ifdef MODULE
#define	ARG_SEP	' '
#else
#define	ARG_SEP	','
#endif
 
static int __init get_setup_token(char *p)
{
	char *cur = setup_token;
	char *pc;
	int i = 0;
 
	while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
		++pc;
		++i;
		if (!strncmp(p, cur, pc - cur))
			return i;
		cur = pc;
	}
	return 0;
}
 
 
static int __init sym53c8xx__setup(char *str)
{
#ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
	char *cur = str;
	char *pc, *pv;
	int i, val, c;
	int xi = 0;
 
	while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
		char *pe;
 
		val = 0;
		pv = pc;
		c = *++pv;
 
		if	(c == 'n')
			val = 0;
		else if	(c == 'y')
			val = 1;
		else
			val = (int) simple_strtoul(pv, &pe, 0);
 
		switch (get_setup_token(cur)) {
		case OPT_TAGS:
			driver_setup.default_tags = val;
			if (pe && *pe == '/') {
				i = 0;
				while (*pe && *pe != ARG_SEP && 
					i < sizeof(driver_setup.tag_ctrl)-1) {
					driver_setup.tag_ctrl[i++] = *pe++;
				}
				driver_setup.tag_ctrl[i] = '\0';
			}
			break;
		case OPT_MASTER_PARITY:
			driver_setup.master_parity = val;
			break;
		case OPT_SCSI_PARITY:
			driver_setup.scsi_parity = val;
			break;
		case OPT_DISCONNECTION:
			driver_setup.disconnection = val;
			break;
		case OPT_SPECIAL_FEATURES:
			driver_setup.special_features = val;
			break;
		case OPT_FORCE_SYNC_NEGO:
			driver_setup.force_sync_nego = val;
			break;
		case OPT_REVERSE_PROBE:
			driver_setup.reverse_probe = val;
			break;
		case OPT_DEFAULT_SYNC:
			driver_setup.default_sync = val;
			break;
		case OPT_VERBOSE:
			driver_setup.verbose = val;
			break;
		case OPT_DEBUG:
			driver_setup.debug = val;
			break;
		case OPT_BURST_MAX:
			driver_setup.burst_max = val;
			break;
		case OPT_LED_PIN:
			driver_setup.led_pin = val;
			break;
		case OPT_MAX_WIDE:
			driver_setup.max_wide = val? 1:0;
			break;
		case OPT_SETTLE_DELAY:
			driver_setup.settle_delay = val;
			break;
		case OPT_DIFF_SUPPORT:
			driver_setup.diff_support = val;
			break;
		case OPT_IRQM:
			driver_setup.irqm = val;
			break;
		case OPT_PCI_FIX_UP:
			driver_setup.pci_fix_up	= val;
			break;
		case OPT_BUS_CHECK:
			driver_setup.bus_check = val;
			break;
		case OPT_OPTIMIZE:
			driver_setup.optimize = val;
			break;
		case OPT_RECOVERY:
			driver_setup.recovery = val;
			break;
		case OPT_USE_NVRAM:
			driver_setup.use_nvram = val;
			break;
		case OPT_SAFE_SETUP:
			memcpy(&driver_setup, &driver_safe_setup,
				sizeof(driver_setup));
			break;
		case OPT_EXCLUDE:
			if (xi < SCSI_NCR_MAX_EXCLUDES)
				driver_setup.excludes[xi++] = val;
			break;
		case OPT_HOST_ID:
			driver_setup.host_id = val;
			break;
#ifdef SCSI_NCR_IARB_SUPPORT
		case OPT_IARB:
			driver_setup.iarb = val;
			break;
#endif
		default:
			printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur);
			break;
		}
 
		if ((cur = strchr(cur, ARG_SEP)) != NULL)
			++cur;
	}
#endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */
	return 1;
}
 
/*===================================================================
**
**	Get device queue depth from boot command line.
**
**===================================================================
*/
#define DEF_DEPTH	(driver_setup.default_tags)
#define ALL_TARGETS	-2
#define NO_TARGET	-1
#define ALL_LUNS	-2
#define NO_LUN		-1
 
static int device_queue_depth(int unit, int target, int lun)
{
	int c, h, t, u, v;
	char *p = driver_setup.tag_ctrl;
	char *ep;
 
	h = -1;
	t = NO_TARGET;
	u = NO_LUN;
	while ((c = *p++) != 0) {
		v = simple_strtoul(p, &ep, 0);
		switch(c) {
		case '/':
			++h;
			t = ALL_TARGETS;
			u = ALL_LUNS;
			break;
		case 't':
			if (t != target)
				t = (target == v) ? v : NO_TARGET;
			u = ALL_LUNS;
			break;
		case 'u':
			if (u != lun)
				u = (lun == v) ? v : NO_LUN;
			break;
		case 'q':
			if (h == unit &&
				(t == ALL_TARGETS || t == target) &&
				(u == ALL_LUNS    || u == lun))
				return v;
			break;
		case '-':
			t = ALL_TARGETS;
			u = ALL_LUNS;
			break;
		default:
			break;
		}
		p = ep;
	}
	return DEF_DEPTH;
}
 
/*===================================================================
**
**	Print out information about driver configuration.
**
**===================================================================
*/
static void __init ncr_print_driver_setup(void)
{
#define YesNo(y)	y ? 'y' : 'n'
	printk (NAME53C8XX ": setup=disc:%c,specf:%d,tags:%d,sync:%d,"
		"burst:%d,wide:%c,diff:%d,revprob:%c,buschk:0x%x\n",
		YesNo(driver_setup.disconnection),
		driver_setup.special_features,
		driver_setup.default_tags,
		driver_setup.default_sync,
		driver_setup.burst_max,
		YesNo(driver_setup.max_wide),
		driver_setup.diff_support,
		YesNo(driver_setup.reverse_probe),
		driver_setup.bus_check);
 
	printk (NAME53C8XX ": setup=mpar:%c,spar:%c,fsn=%c,verb:%d,debug:0x%x,"
		"led:%c,settle:%d,irqm:0x%x,nvram:0x%x,pcifix:0x%x\n",
		YesNo(driver_setup.master_parity),
		YesNo(driver_setup.scsi_parity),
		YesNo(driver_setup.force_sync_nego),
		driver_setup.verbose,
		driver_setup.debug,
		YesNo(driver_setup.led_pin),
		driver_setup.settle_delay,
		driver_setup.irqm,
		driver_setup.use_nvram,
		driver_setup.pci_fix_up);
#undef YesNo
}
 
/*===================================================================
**
**   SYM53C8XX devices description table.
**
**===================================================================
*/
 
static ncr_chip	ncr_chip_table[] __initdata	= SCSI_NCR_CHIP_TABLE;
 
#ifdef	SCSI_NCR_PQS_PDS_SUPPORT
/*===================================================================
**
**    Detect all NCR PQS/PDS boards and keep track of their bus nr.
**
**    The NCR PQS or PDS card is constructed as a DEC bridge
**    behind which sit a proprietary NCR memory controller and
**    four or two 53c875s as separate devices.  In its usual mode
**    of operation, the 875s are slaved to the memory controller
**    for all transfers.  We can tell if an 875 is part of a
**    PQS/PDS or not since if it is, it will be on the same bus
**    as the memory controller.  To operate with the Linux
**    driver, the memory controller is disabled and the 875s
**    freed to function independently.  The only wrinkle is that
**    the preset SCSI ID (which may be zero) must be read in from
**    a special configuration space register of the 875.
**
**===================================================================
*/
#define	SCSI_NCR_MAX_PQS_BUS	16
static int pqs_bus[SCSI_NCR_MAX_PQS_BUS] __initdata = { 0 };
 
static void __init ncr_detect_pqs_pds(void)
{
	short index;
	pcidev_t dev = PCIDEV_NULL;
 
	for(index=0; index < SCSI_NCR_MAX_PQS_BUS; index++) {
		u_char tmp;
 
		dev = pci_find_device(0x101a, 0x0009, dev);
		if (dev == PCIDEV_NULL) {
			pqs_bus[index] = -1;
			break;
		}
		printk(KERN_INFO NAME53C8XX ": NCR PQS/PDS memory controller detected on bus %d\n", PciBusNumber(dev));
		pci_read_config_byte(dev, 0x44, &tmp);
		/* bit 1: allow individual 875 configuration */
		tmp |= 0x2;
		pci_write_config_byte(dev, 0x44, tmp);
		pci_read_config_byte(dev, 0x45, &tmp);
		/* bit 2: drive individual 875 interrupts to the bus */
		tmp |= 0x4;
		pci_write_config_byte(dev, 0x45, tmp);
 
		pqs_bus[index] = PciBusNumber(dev);
	}
}
#endif /* SCSI_NCR_PQS_PDS_SUPPORT */
 
/*===================================================================
**
**   Read and check the PCI configuration for any detected NCR 
**   boards and save data for attaching after all boards have 
**   been detected.
**
**===================================================================
*/
static int __init
sym53c8xx_pci_init(Scsi_Host_Template *tpnt, pcidev_t pdev, ncr_device *device)
{
	u_short vendor_id, device_id, command;
	u_char cache_line_size, latency_timer;
	u_char suggested_cache_line_size = 0;
	u_char pci_fix_up = driver_setup.pci_fix_up;
	u_char revision;
	u_int irq;
	u_long base, base_c, base_2, base_2_c, io_port; 
	int i;
	ncr_chip *chip;
 
	printk(KERN_INFO NAME53C8XX ": at PCI bus %d, device %d, function %d\n",
		PciBusNumber(pdev),
		(int) (PciDeviceFn(pdev) & 0xf8) >> 3,
		(int) (PciDeviceFn(pdev) & 7));
 
#ifdef SCSI_NCR_DYNAMIC_DMA_MAPPING
	if (!pci_dma_supported(pdev, 0xffffffff)) {
		printk(KERN_WARNING NAME53C8XX
		       "32 BIT PCI BUS DMA ADDRESSING NOT SUPPORTED\n");
		return -1;
	}
#endif
 
	/*
	**    Read info from the PCI config space.
	**    pci_read_config_xxx() functions are assumed to be used for 
	**    successfully detected PCI devices.
	*/
	vendor_id = PciVendorId(pdev);
	device_id = PciDeviceId(pdev);
	irq	  = PciIrqLine(pdev);
 
	i = pci_get_base_address(pdev, 0, &io_port);
	io_port = pci_get_base_cookie(pdev, 0);
 
	base_c = pci_get_base_cookie(pdev, i);
	i = pci_get_base_address(pdev, i, &base);
 
	base_2_c = pci_get_base_cookie(pdev, i);
	(void) pci_get_base_address(pdev, i, &base_2);
 
	pci_read_config_word(pdev, PCI_COMMAND,		&command);
	pci_read_config_byte(pdev, PCI_CLASS_REVISION,	&revision);
	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,	&cache_line_size);
	pci_read_config_byte(pdev, PCI_LATENCY_TIMER,	&latency_timer);
 
#ifdef SCSI_NCR_PQS_PDS_SUPPORT
	/*
	**    Match the BUS number for PQS/PDS devices.
	**    Read the SCSI ID from a special register mapped
	**    into the configuration space of the individual
	**    875s.  This register is set up by the PQS bios
	*/
	for(i = 0; i < SCSI_NCR_MAX_PQS_BUS && pqs_bus[i] != -1; i++) {
		u_char tmp;
		if (pqs_bus[i] == PciBusNumber(pdev)) {
			pci_read_config_byte(pdev, 0x84, &tmp);
			device->pqs_pds = 1;
			device->host_id = tmp;
			break;
		}
	}
#endif /* SCSI_NCR_PQS_PDS_SUPPORT */
 
	/*
	**	If user excludes this chip, donnot initialize it.
	*/
	for (i = 0 ; i < SCSI_NCR_MAX_EXCLUDES ; i++) {
		if (driver_setup.excludes[i] ==
				(io_port & PCI_BASE_ADDRESS_IO_MASK))
			return -1;
	}
	/*
	**    Check if the chip is supported
	*/
	if ((device_id == PCI_DEVICE_ID_LSI_53C1010) ||
			(device_id == PCI_DEVICE_ID_LSI_53C1010_66)){
		printk(NAME53C8XX ": not initializing, device not supported\n");
		return -1;
	}
	chip = 0;
	for (i = 0; i < sizeof(ncr_chip_table)/sizeof(ncr_chip_table[0]); i++) {
		if (device_id != ncr_chip_table[i].device_id)
			continue;
		if (revision > ncr_chip_table[i].revision_id)
			continue;
		chip = &device->chip;
		memcpy(chip, &ncr_chip_table[i], sizeof(*chip));
		chip->revision_id = revision;
		break;
	}
 
	/*
	**	Ignore Symbios chips controlled by SISL RAID controller.
	**	This controller sets value 0x52414944 at RAM end - 16.
	*/
#if defined(__i386__) && !defined(SCSI_NCR_PCI_MEM_NOT_SUPPORTED)
	if (chip && (base_2_c & PCI_BASE_ADDRESS_MEM_MASK)) {
		unsigned int ram_size, ram_val;
		u_long ram_ptr;
 
		if (chip->features & FE_RAM8K)
			ram_size = 8192;
		else
			ram_size = 4096;
 
		ram_ptr = remap_pci_mem(base_2_c & PCI_BASE_ADDRESS_MEM_MASK,
					ram_size);
		if (ram_ptr) {
			ram_val = readl_raw(ram_ptr + ram_size - 16);
			unmap_pci_mem(ram_ptr, ram_size);
			if (ram_val == 0x52414944) {
				printk(NAME53C8XX": not initializing, "
				       "driven by SISL RAID controller.\n");
				return -1;
			}
		}
	}
#endif /* i386 and PCI MEMORY accessible */
 
	if (!chip) {
		printk(NAME53C8XX ": not initializing, device not supported\n");
		return -1;
	}
 
#ifdef __powerpc__
	/*
	**	Fix-up for power/pc.
	**	Should not be performed by the driver.
	*/
	if ((command & (PCI_COMMAND_IO | PCI_COMMAND_MEMORY))
		    != (PCI_COMMAND_IO | PCI_COMMAND_MEMORY)) {
		printk(NAME53C8XX ": setting%s%s...\n",
		(command & PCI_COMMAND_IO)     ? "" : " PCI_COMMAND_IO",
		(command & PCI_COMMAND_MEMORY) ? "" : " PCI_COMMAND_MEMORY");
		command |= (PCI_COMMAND_IO | PCI_COMMAND_MEMORY);
		pci_write_config_word(pdev, PCI_COMMAND, command);
	}
 
#if LINUX_VERSION_CODE < LinuxVersionCode(2,2,0)
	if ( is_prep ) {
		if (io_port >= 0x10000000) {
			printk(NAME53C8XX ": reallocating io_port (Wacky IBM)");
			io_port = (io_port & 0x00FFFFFF) | 0x01000000;
			pci_write_config_dword(pdev,
					       PCI_BASE_ADDRESS_0, io_port);
		}
		if (base >= 0x10000000) {
			printk(NAME53C8XX ": reallocating base (Wacky IBM)");
			base = (base & 0x00FFFFFF) | 0x01000000;
			pci_write_config_dword(pdev,
					       PCI_BASE_ADDRESS_1, base);
		}
		if (base_2 >= 0x10000000) {
			printk(NAME53C8XX ": reallocating base2 (Wacky IBM)");
			base_2 = (base_2 & 0x00FFFFFF) | 0x01000000;
			pci_write_config_dword(pdev,
					       PCI_BASE_ADDRESS_2, base_2);
		}
	}
#endif
#endif	/* __powerpc__ */
 
#if defined(__i386__) && !defined(MODULE)
	if (!cache_line_size) {
#if LINUX_VERSION_CODE < LinuxVersionCode(2,1,75)
		extern char x86;
		switch(x86) {
#else
		switch(boot_cpu_data.x86) {
#endif
		case 4:	suggested_cache_line_size = 4; break;
		case 6:
		case 5:	suggested_cache_line_size = 8; break;
		}
	}
#endif	/* __i386__ */
 
	/*
	**    Check availability of IO space, memory space.
	**    Enable master capability if not yet.
	**
	**    We shouldn't have to care about the IO region when 
	**    we are using MMIO. But calling check_region() from 
	**    both the ncr53c8xx and the sym53c8xx drivers prevents 
	**    from attaching devices from the both drivers.
	**    If you have a better idea, let me know.
	*/
/* #ifdef SCSI_NCR_IOMAPPED */
#if 1
	if (!(command & PCI_COMMAND_IO)) { 
		printk(NAME53C8XX ": I/O base address (0x%lx) disabled.\n",
			(long) io_port);
		io_port = 0;
	}
#endif
	if (!(command & PCI_COMMAND_MEMORY)) {
		printk(NAME53C8XX ": PCI_COMMAND_MEMORY not set.\n");
		base	= 0;
		base_2	= 0;
	}
	io_port &= PCI_BASE_ADDRESS_IO_MASK;
	base	&= PCI_BASE_ADDRESS_MEM_MASK;
	base_2	&= PCI_BASE_ADDRESS_MEM_MASK;
 
/* #ifdef SCSI_NCR_IOMAPPED */
#if 1
	if (io_port && check_region (io_port, 128)) {
		printk(NAME53C8XX ": IO region 0x%lx[0..127] is in use\n",
			(long) io_port);
		io_port = 0;
	}
	if (!io_port)
		return -1;
#endif
#ifndef SCSI_NCR_IOMAPPED
	if (!base) {
		printk(NAME53C8XX ": MMIO base address disabled.\n");
		return -1;
	}
#endif
 
/* The ncr53c8xx driver never did set the PCI parity bit.	*/
/* Since setting this bit is known to trigger spurious MDPE	*/
/* errors on some 895 controllers when noise on power lines is	*/
/* too high, I donnot want to change previous ncr53c8xx driver	*/
/* behaviour on that point (the sym53c8xx driver set this bit).	*/
#if 0
	/*
	**    Set MASTER capable and PARITY bit, if not yet.
	*/
	if ((command & (PCI_COMMAND_MASTER | PCI_COMMAND_PARITY))
		     != (PCI_COMMAND_MASTER | PCI_COMMAND_PARITY)) {
		printk(NAME53C8XX ": setting%s%s...(fix-up)\n",
		(command & PCI_COMMAND_MASTER) ? "" : " PCI_COMMAND_MASTER",
		(command & PCI_COMMAND_PARITY) ? "" : " PCI_COMMAND_PARITY");
		command |= (PCI_COMMAND_MASTER | PCI_COMMAND_PARITY);
		pci_write_config_word(pdev, PCI_COMMAND, command);
	}
#else
	/*
	**    Set MASTER capable if not yet.
	*/
	if ((command & PCI_COMMAND_MASTER) != PCI_COMMAND_MASTER) {
		printk(NAME53C8XX ": setting PCI_COMMAND_MASTER...(fix-up)\n");
		command |= PCI_COMMAND_MASTER;
		pci_write_config_word(pdev, PCI_COMMAND, command);
	}
#endif
 
	/*
	**    Fix some features according to driver setup.
	*/
	if (!(driver_setup.special_features & 1))
		chip->features &= ~FE_SPECIAL_SET;
	else {
		if (driver_setup.special_features & 2)
			chip->features &= ~FE_WRIE;
		if (driver_setup.special_features & 4)
			chip->features &= ~FE_NOPM;
	}
 
	/*
	**	Some features are required to be enabled in order to 
	**	work around some chip problems. :) ;)
	**	(ITEM 12 of a DEL about the 896 I haven't yet).
	**	We must ensure the chip will use WRITE AND INVALIDATE.
	**	The revision number limit is for now arbitrary.
	*/
	if (device_id == PCI_DEVICE_ID_NCR_53C896 && revision <= 0x10) {
		chip->features	|= (FE_WRIE | FE_CLSE);
		pci_fix_up	|=  3;	/* Force appropriate PCI fix-up */
	}
 
#ifdef	SCSI_NCR_PCI_FIX_UP_SUPPORT
	/*
	**    Try to fix up PCI config according to wished features.
	*/
	if ((pci_fix_up & 1) && (chip->features & FE_CLSE) && 
	    !cache_line_size && suggested_cache_line_size) {
		cache_line_size = suggested_cache_line_size;
		pci_write_config_byte(pdev,
				      PCI_CACHE_LINE_SIZE, cache_line_size);
		printk(NAME53C8XX ": PCI_CACHE_LINE_SIZE set to %d (fix-up).\n",
			cache_line_size);
	}
 
	if ((pci_fix_up & 2) && cache_line_size &&
	    (chip->features & FE_WRIE) && !(command & PCI_COMMAND_INVALIDATE)) {
		printk(NAME53C8XX": setting PCI_COMMAND_INVALIDATE (fix-up)\n");
		command |= PCI_COMMAND_INVALIDATE;
		pci_write_config_word(pdev, PCI_COMMAND, command);
	}
 
	/*
	**    Tune PCI LATENCY TIMER according to burst max length transfer.
	**    (latency timer >= burst length + 6, we add 10 to be quite sure)
	*/
 
	if (chip->burst_max && (latency_timer == 0 || (pci_fix_up & 4))) {
		u_char lt = (1 << chip->burst_max) + 6 + 10;
		if (latency_timer < lt) {
			printk(NAME53C8XX 
			       ": changing PCI_LATENCY_TIMER from %d to %d.\n",
			       (int) latency_timer, (int) lt);
			latency_timer = lt;
			pci_write_config_byte(pdev,
					      PCI_LATENCY_TIMER, latency_timer);
		}
	}
 
#endif	/* SCSI_NCR_PCI_FIX_UP_SUPPORT */
 
 	/*
	**    Initialise ncr_device structure with items required by ncr_attach.
	*/
	device->pdev		= pdev;
	device->slot.bus	= PciBusNumber(pdev);
	device->slot.device_fn	= PciDeviceFn(pdev);
	device->slot.base	= base;
	device->slot.base_2	= base_2;
	device->slot.base_c	= base_c;
	device->slot.base_2_c	= base_2_c;
	device->slot.io_port	= io_port;
	device->slot.irq	= irq;
	device->attach_done	= 0;
 
	return 0;
}
 
/*===================================================================
**
**    Detect all 53c8xx hosts and then attach them.
**
**    If we are using NVRAM, once all hosts are detected, we need to 
**    check any NVRAM for boot order in case detect and boot order 
**    differ and attach them using the order in the NVRAM.
**
**    If no NVRAM is found or data appears invalid attach boards in 
**    the order they are detected.
**
**===================================================================
*/
static int __init 
sym53c8xx__detect(Scsi_Host_Template *tpnt, u_short ncr_chip_ids[], int chips)
{
	pcidev_t pcidev;
	int i, j, hosts, count;
	int attach_count = 0;
	ncr_device *devtbl, *devp;
#ifdef SCSI_NCR_NVRAM_SUPPORT
	ncr_nvram  nvram0, nvram, *nvp;
#endif
 
	/*
	**    PCI is required.
	*/
	if (!pci_present())
		return 0;
 
#ifdef SCSI_NCR_DEBUG_INFO_SUPPORT
	ncr_debug = driver_setup.debug;
#endif
	if (initverbose >= 2)
		ncr_print_driver_setup();
 
	/*
	**	Allocate the device table since we donnot want to 
	**	overflow the kernel stack.
	**	1 x 4K PAGE is enough for more than 40 devices for i386.
	*/
	devtbl = m_calloc(PAGE_SIZE, "devtbl");
	if (!devtbl)
		return 0;
 
	/*
	**    Detect all NCR PQS/PDS memory controllers.
	*/
#ifdef	SCSI_NCR_PQS_PDS_SUPPORT
	ncr_detect_pqs_pds();
#endif
 
	/* 
	**    Detect all 53c8xx hosts.
	**    Save the first Symbios NVRAM content if any 
	**    for the boot order.
	*/
	hosts	= PAGE_SIZE		/ sizeof(*devtbl);
#ifdef SCSI_NCR_NVRAM_SUPPORT
	nvp = (driver_setup.use_nvram & 0x1) ? &nvram0 : 0;
#endif
	j = 0;
	count = 0;
	pcidev = PCIDEV_NULL;
	while (1) {
		char *msg = "";
		if (count >= hosts)
			break;
		if (j >= chips)
			break;
		i = driver_setup.reverse_probe ? chips - 1 - j : j;
		pcidev = pci_find_device(PCI_VENDOR_ID_NCR, ncr_chip_ids[i],
					 pcidev);
		if (pcidev == PCIDEV_NULL) {
			++j;
			continue;
		}
		if (pci_enable_device(pcidev)) /* @!*!$&*!%-*#;! */
			continue;
		/* Some HW as the HP LH4 may report twice PCI devices */
		for (i = 0; i < count ; i++) {
			if (devtbl[i].slot.bus	     == PciBusNumber(pcidev) && 
			    devtbl[i].slot.device_fn == PciDeviceFn(pcidev))
				break;
		}
		if (i != count)	/* Ignore this device if we already have it */
			continue;
		devp = &devtbl[count];
		devp->host_id = driver_setup.host_id;
		devp->attach_done = 0;
		if (sym53c8xx_pci_init(tpnt, pcidev, devp)) {
			continue;
		}
		++count;
#ifdef SCSI_NCR_NVRAM_SUPPORT
		if (nvp) {
			ncr_get_nvram(devp, nvp);
			switch(nvp->type) {
			case SCSI_NCR_SYMBIOS_NVRAM:
				/*
				 *   Switch to the other nvram buffer, so that 
				 *   nvram0 will contain the first Symbios 
				 *   format NVRAM content with boot order.
				 */
				nvp = &nvram;
				msg = "with Symbios NVRAM";
				break;
			case SCSI_NCR_TEKRAM_NVRAM:
				msg = "with Tekram NVRAM";
				break;
			}
		}
#endif
#ifdef	SCSI_NCR_PQS_PDS_SUPPORT
		if (devp->pqs_pds)
			msg = "(NCR PQS/PDS)";
#endif
		printk(KERN_INFO NAME53C8XX ": 53c%s detected %s\n",
		       devp->chip.name, msg);
	}
 
	/*
	**    If we have found a SYMBIOS NVRAM, use first the NVRAM boot 
	**    sequence as device boot order.
	**    check devices in the boot record against devices detected. 
	**    attach devices if we find a match. boot table records that 
	**    do not match any detected devices will be ignored. 
	**    devices that do not match any boot table will not be attached
	**    here but will attempt to be attached during the device table 
	**    rescan.
	*/
#ifdef SCSI_NCR_NVRAM_SUPPORT
	if (!nvp || nvram0.type != SCSI_NCR_SYMBIOS_NVRAM)
		goto next;
	for (i = 0; i < 4; i++) {
		Symbios_host *h = &nvram0.data.Symbios.host[i];
		for (j = 0 ; j < count ; j++) {
			devp = &devtbl[j];
			if (h->device_fn != devp->slot.device_fn ||
			    h->bus_nr	 != devp->slot.bus	 ||
			    h->device_id != devp->chip.device_id)
				continue;
			if (devp->attach_done)
				continue;
			if (h->flags & SYMBIOS_INIT_SCAN_AT_BOOT) {
				ncr_get_nvram(devp, nvp);
				if (!ncr_attach (tpnt, attach_count, devp))
					attach_count++;
			}
#if 0	/* Restore previous behaviour of ncr53c8xx driver */
			else if (!(driver_setup.use_nvram & 0x80))
				printk(KERN_INFO NAME53C8XX
				       ": 53c%s state OFF thus not attached\n",
				       devp->chip.name);
#endif
			else
				continue;
 
			devp->attach_done = 1;
			break;
		}
	}
next:
#endif
 
	/* 
	**    Rescan device list to make sure all boards attached.
	**    Devices without boot records will not be attached yet
	**    so try to attach them here.
	*/
	for (i= 0; i < count; i++) {
		devp = &devtbl[i];
		if (!devp->attach_done) {
#ifdef SCSI_NCR_NVRAM_SUPPORT
			ncr_get_nvram(devp, nvp);
#endif
			if (!ncr_attach (tpnt, attach_count, devp))
				attach_count++;
		}
	}
 
	m_free(devtbl, PAGE_SIZE, "devtbl");
 
	return attach_count;
}
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.