OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [drivers/] [usb/] [hid-core.c] - Rev 1765

Compare with Previous | Blame | View Log

/*
 * $Id: hid-core.c,v 1.1.1.1 2004-04-15 01:54:19 phoenix Exp $
 *
 *  Copyright (c) 1999 Andreas Gal
 *  Copyright (c) 2000-2001 Vojtech Pavlik
 *
 *  USB HID support for Linux
 *
 *  Sponsored by SuSE
 */
 
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 *
 * Should you need to contact me, the author, you can do so either by
 * e-mail - mail your message to <vojtech@suse.cz>, or by paper mail:
 * Vojtech Pavlik, Ucitelska 1576, Prague 8, 182 00 Czech Republic
 */
 
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/smp_lock.h>
#include <linux/spinlock.h>
#include <asm/unaligned.h>
#include <linux/input.h>
 
#undef DEBUG
#undef DEBUG_DATA
 
#include <linux/usb.h>
 
#include "hid.h"
#include <linux/hiddev.h>
 
/*
 * Version Information
 */
 
#define DRIVER_VERSION "v1.8.1"
#define DRIVER_AUTHOR "Andreas Gal, Vojtech Pavlik <vojtech@suse.cz>"
#define DRIVER_DESC "USB HID support drivers"
 
static char *hid_types[] = {"Device", "Pointer", "Mouse", "Device", "Joystick",
				"Gamepad", "Keyboard", "Keypad", "Multi-Axis Controller"};
 
/*
 * Register a new report for a device.
 */
 
static struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
{
	struct hid_report_enum *report_enum = device->report_enum + type;
	struct hid_report *report;
 
	if (report_enum->report_id_hash[id])
		return report_enum->report_id_hash[id];
 
	if (!(report = kmalloc(sizeof(struct hid_report), GFP_KERNEL)))
		return NULL;
	memset(report, 0, sizeof(struct hid_report));
 
	if (id != 0) report_enum->numbered = 1;
 
	report->id = id;
	report->type = type;
	report->size = 0;
	report->device = device;
	report_enum->report_id_hash[id] = report;
 
	list_add_tail(&report->list, &report_enum->report_list);
 
	return report;
}
 
/*
 * Register a new field for this report.
 */
 
static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
{
	struct hid_field *field;
 
	if (report->maxfield == HID_MAX_FIELDS) {
		dbg("too many fields in report");
		return NULL;
	}
 
	if (!(field = kmalloc(sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
		+ values * sizeof(unsigned), GFP_KERNEL))) return NULL;
 
	memset(field, 0, sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
		+ values * sizeof(unsigned));
 
	report->field[report->maxfield] = field;
	field->usage = (struct hid_usage *)(field + 1);
	field->value = (unsigned *)(field->usage + usages);
	field->report = report;
	field->index = report->maxfield++;
 
	return field;
}
 
/*
 * Open a collection. The type/usage is pushed on the stack.
 */
 
static int open_collection(struct hid_parser *parser, unsigned type)
{
	struct hid_collection *collection;
	unsigned usage;
 
	usage = parser->local.usage[0];
 
	if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
		dbg("collection stack overflow");
		return -1;
	}
 
	if (parser->device->maxcollection == parser->device->collection_size) {
		collection = kmalloc(sizeof(struct hid_collection) *
				     parser->device->collection_size * 2,
				     GFP_KERNEL);
		if (collection == NULL) {
			dbg("failed to reallocate collection array");
			return -1;
		}
		memcpy(collection, parser->device->collection,
		       sizeof(struct hid_collection) *
		       parser->device->collection_size);
		memset(collection + parser->device->collection_size, 0,
		       sizeof(struct hid_collection) *
		       parser->device->collection_size);
		kfree(parser->device->collection);
		parser->device->collection = collection;
		parser->device->collection_size *= 2;
	}
 
	parser->collection_stack[parser->collection_stack_ptr++] =
		parser->device->maxcollection;
 
	collection = parser->device->collection + 
		parser->device->maxcollection++;
 
	collection->type = type;
	collection->usage = usage;
	collection->level = parser->collection_stack_ptr - 1;
 
	if (type == HID_COLLECTION_APPLICATION)
		parser->device->maxapplication++;
 
	return 0;
}
 
/*
 * Close a collection.
 */
 
static int close_collection(struct hid_parser *parser)
{
	if (!parser->collection_stack_ptr) {
		dbg("collection stack underflow");
		return -1;
	}
	parser->collection_stack_ptr--;
	return 0;
}
 
/*
 * Climb up the stack, search for the specified collection type
 * and return the usage.
 */
 
static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
{
	int n;
	for (n = parser->collection_stack_ptr - 1; n >= 0; n--)
		if (parser->device->collection[parser->collection_stack[n]].type == type)
			return parser->device->collection[parser->collection_stack[n]].usage;
 
	return 0; /* we know nothing about this usage type */
}
 
/*
 * Add a usage to the temporary parser table.
 */
 
static int hid_add_usage(struct hid_parser *parser, unsigned usage)
{
	if (parser->local.usage_index >= HID_MAX_USAGES) {
		dbg("usage index exceeded");
		return -1;
	}
	parser->local.usage[parser->local.usage_index] = usage;
	parser->local.collection_index[parser->local.usage_index] =
		parser->collection_stack_ptr ? 
		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
	parser->local.usage_index++;
 
	return 0;
}
 
/*
 * Register a new field for this report.
 */
 
static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
{
	struct hid_report *report;
	struct hid_field *field;
	int usages;
	unsigned offset;
	int i;
 
	if (!(report = hid_register_report(parser->device, report_type, parser->global.report_id))) {
		dbg("hid_register_report failed");
		return -1;
	}
 
	if (parser->global.logical_maximum < parser->global.logical_minimum) {
		dbg("logical range invalid %d %d", parser->global.logical_minimum, parser->global.logical_maximum);
		return -1;
	}
 
	usages = parser->local.usage_index;
 
	offset = report->size;
	report->size += parser->global.report_size * parser->global.report_count;
 
	if (usages < parser->global.report_count)
		usages = parser->global.report_count;
 
	if (usages == 0)
		return 0; /* ignore padding fields */
 
	if ((field = hid_register_field(report, usages, parser->global.report_count)) == NULL)
		return 0;
 
	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
	field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
 
	for (i = 0; i < usages; i++) {
		int j = i;
		/* Duplicate the last usage we parsed if we have excess values */
		if (i >= parser->local.usage_index)
			j = parser->local.usage_index - 1;
		field->usage[i].hid = parser->local.usage[j];
		field->usage[i].collection_index =
			parser->local.collection_index[j];
	}
 
	field->maxusage = usages;
	field->flags = flags;
	field->report_offset = offset;
	field->report_type = report_type;
	field->report_size = parser->global.report_size;
	field->report_count = parser->global.report_count;
	field->logical_minimum = parser->global.logical_minimum;
	field->logical_maximum = parser->global.logical_maximum;
	field->physical_minimum = parser->global.physical_minimum;
	field->physical_maximum = parser->global.physical_maximum;
	field->unit_exponent = parser->global.unit_exponent;
	field->unit = parser->global.unit;
 
	return 0;
}
 
/*
 * Read data value from item.
 */
 
static __inline__ __u32 item_udata(struct hid_item *item)
{
	switch (item->size) {
		case 1: return item->data.u8;
		case 2: return item->data.u16;
		case 4: return item->data.u32;
	}
	return 0;
}
 
static __inline__ __s32 item_sdata(struct hid_item *item)
{
	switch (item->size) {
		case 1: return item->data.s8;
		case 2: return item->data.s16;
		case 4: return item->data.s32;
	}
	return 0;
}
 
/*
 * Process a global item.
 */
 
static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
{
	switch (item->tag) {
 
		case HID_GLOBAL_ITEM_TAG_PUSH:
 
			if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
				dbg("global enviroment stack overflow");
				return -1;
			}
 
			memcpy(parser->global_stack + parser->global_stack_ptr++,
				&parser->global, sizeof(struct hid_global));
			return 0;
 
		case HID_GLOBAL_ITEM_TAG_POP:
 
			if (!parser->global_stack_ptr) {
				dbg("global enviroment stack underflow");
				return -1;
			}
 
			memcpy(&parser->global, parser->global_stack + --parser->global_stack_ptr,
				sizeof(struct hid_global));
			return 0;
 
		case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
			parser->global.usage_page = item_udata(item);
			return 0;
 
		case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
			parser->global.logical_minimum = item_sdata(item);
			return 0;
 
		case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
			if (parser->global.logical_minimum < 0)
				parser->global.logical_maximum = item_sdata(item);
			else
				parser->global.logical_maximum = item_udata(item);
			return 0;
 
		case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
			parser->global.physical_minimum = item_sdata(item);
			return 0;
 
		case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
			if (parser->global.physical_minimum < 0)
				parser->global.physical_maximum = item_sdata(item);
			else
				parser->global.physical_maximum = item_udata(item);
			return 0;
 
		case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
			parser->global.unit_exponent = item_udata(item);
			return 0;
 
		case HID_GLOBAL_ITEM_TAG_UNIT:
			parser->global.unit = item_udata(item);
			return 0;
 
		case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
			if ((parser->global.report_size = item_udata(item)) > 32) {
				dbg("invalid report_size %d", parser->global.report_size);
				return -1;
			}
			return 0;
 
		case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
			if ((parser->global.report_count = item_udata(item)) > HID_MAX_USAGES) {
				dbg("invalid report_count %d", parser->global.report_count);
				return -1;
			}
			return 0;
 
		case HID_GLOBAL_ITEM_TAG_REPORT_ID:
			if ((parser->global.report_id = item_udata(item)) == 0) {
				dbg("report_id 0 is invalid");
				return -1;
			}
			return 0;
 
		default:
			dbg("unknown global tag 0x%x", item->tag);
			return -1;
	}
}
 
/*
 * Process a local item.
 */
 
static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
{
	__u32 data;
	unsigned n;
 
	if (item->size == 0) {
		dbg("item data expected for local item");
		return -1;
	}
 
	data = item_udata(item);
 
	switch (item->tag) {
 
		case HID_LOCAL_ITEM_TAG_DELIMITER:
 
			if (data) {
				/*
				 * We treat items before the first delimiter
				 * as global to all usage sets (branch 0).
				 * In the moment we process only these global
				 * items and the first delimiter set.
				 */
				if (parser->local.delimiter_depth != 0) {
					dbg("nested delimiters");
					return -1;
				}
				parser->local.delimiter_depth++;
				parser->local.delimiter_branch++;
			} else {
				if (parser->local.delimiter_depth < 1) {
					dbg("bogus close delimiter");
					return -1;
				}
				parser->local.delimiter_depth--;
			}
			return 1;
 
		case HID_LOCAL_ITEM_TAG_USAGE:
 
			if (parser->local.delimiter_branch > 1) {
				dbg("alternative usage ignored");
				return 0;
			}
 
			if (item->size <= 2)
				data = (parser->global.usage_page << 16) + data;
 
			return hid_add_usage(parser, data);
 
		case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
 
			if (parser->local.delimiter_branch > 1) {
				dbg("alternative usage ignored");
				return 0;
			}
 
			if (item->size <= 2)
				data = (parser->global.usage_page << 16) + data;
 
			parser->local.usage_minimum = data;
			return 0;
 
		case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
 
			if (parser->local.delimiter_branch > 1) {
				dbg("alternative usage ignored");
				return 0;
			}
 
			if (item->size <= 2)
				data = (parser->global.usage_page << 16) + data;
 
			for (n = parser->local.usage_minimum; n <= data; n++)
				if (hid_add_usage(parser, n)) {
					dbg("hid_add_usage failed\n");
					return -1;
				}
			return 0;
 
		default:
 
			dbg("unknown local item tag 0x%x", item->tag);
			return 0;
	}
	return 0;
}
 
/*
 * Process a main item.
 */
 
static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
{
	__u32 data;
	int ret;
 
	data = item_udata(item);
 
	switch (item->tag) {
		case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
			ret = open_collection(parser, data & 0xff);
			break;
		case HID_MAIN_ITEM_TAG_END_COLLECTION:
			ret = close_collection(parser);
			break;
		case HID_MAIN_ITEM_TAG_INPUT:
			ret = hid_add_field(parser, HID_INPUT_REPORT, data);
			break;
		case HID_MAIN_ITEM_TAG_OUTPUT:
			ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
			break;
		case HID_MAIN_ITEM_TAG_FEATURE:
			ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
			break;
		default:
			dbg("unknown main item tag 0x%x", item->tag);
			ret = 0;
	}
 
	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
 
	return ret;
}
 
/*
 * Process a reserved item.
 */
 
static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
{
	dbg("reserved item type, tag 0x%x", item->tag);
	return 0;
}
 
/*
 * Free a report and all registered fields. The field->usage and
 * field->value table's are allocated behind the field, so we need
 * only to free(field) itself.
 */
 
static void hid_free_report(struct hid_report *report)
{
	unsigned n;
 
	for (n = 0; n < report->maxfield; n++)
		kfree(report->field[n]);
	if (report->data)
		kfree(report->data);
	kfree(report);
}
 
/*
 * Free a device structure, all reports, and all fields.
 */
 
static void hid_free_device(struct hid_device *device)
{
	unsigned i,j;
 
	for (i = 0; i < HID_REPORT_TYPES; i++) {
		struct hid_report_enum *report_enum = device->report_enum + i;
 
		for (j = 0; j < 256; j++) {
			struct hid_report *report = report_enum->report_id_hash[j];
			if (report) hid_free_report(report);
		}
	}
 
	if (device->rdesc) kfree(device->rdesc);
	if (device->collection) kfree(device->collection);
}
 
/*
 * Fetch a report description item from the data stream. We support long
 * items, though they are not used yet.
 */
 
static __u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
{
	if ((end - start) > 0) {
 
		__u8 b = *start++;
		item->type = (b >> 2) & 3;
		item->tag  = (b >> 4) & 15;
 
		if (item->tag == HID_ITEM_TAG_LONG) {
 
			item->format = HID_ITEM_FORMAT_LONG;
 
			if ((end - start) >= 2) {
 
				item->size = *start++;
				item->tag  = *start++;
 
				if ((end - start) >= item->size) {
					item->data.longdata = start;
					start += item->size;
					return start;
				}
			}
		} else {
 
			item->format = HID_ITEM_FORMAT_SHORT;
			item->size = b & 3;
			switch (item->size) {
 
				case 0:
					return start;
 
				case 1:
					if ((end - start) >= 1) {
						item->data.u8 = *start++;
						return start;
					}
					break;
 
				case 2:
					if ((end - start) >= 2) {
						item->data.u16 = le16_to_cpu( get_unaligned(((__u16*)start)++));
						return start;
					}
 
				case 3:
					item->size++;
					if ((end - start) >= 4) {
						item->data.u32 = le32_to_cpu( get_unaligned(((__u32*)start)++));
						return start;
					}
			}
		}
	}
	return NULL;
}
 
/*
 * Parse a report description into a hid_device structure. Reports are
 * enumerated, fields are attached to these reports.
 */
 
static struct hid_device *hid_parse_report(__u8 *start, unsigned size)
{
	struct hid_device *device;
	struct hid_parser *parser;
	struct hid_item item;
	__u8 *end;
	unsigned i;
	static int (*dispatch_type[])(struct hid_parser *parser,
				      struct hid_item *item) = {
		hid_parser_main,
		hid_parser_global,
		hid_parser_local,
		hid_parser_reserved
	};
 
	if (!(device = kmalloc(sizeof(struct hid_device), GFP_KERNEL)))
		return NULL;
	memset(device, 0, sizeof(struct hid_device));
 
	if (!(device->collection = kmalloc(sizeof(struct hid_collection) *
					   HID_DEFAULT_NUM_COLLECTIONS,
					   GFP_KERNEL))) {
		kfree(device);
		return NULL;
	}
	memset(device->collection, 0, sizeof(struct hid_collection) *
	       HID_DEFAULT_NUM_COLLECTIONS);
	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
 
	for (i = 0; i < HID_REPORT_TYPES; i++)
		INIT_LIST_HEAD(&device->report_enum[i].report_list);
 
	if (!(device->rdesc = (__u8 *)kmalloc(size, GFP_KERNEL))) {
		kfree(device->collection);
		kfree(device);
		return NULL;
	}
	memcpy(device->rdesc, start, size);
	device->rsize = size;
 
	if (!(parser = kmalloc(sizeof(struct hid_parser), GFP_KERNEL))) {
		kfree(device->rdesc);
		kfree(device->collection);
		kfree(device);
		return NULL;
	}
	memset(parser, 0, sizeof(struct hid_parser));
	parser->device = device;
 
	end = start + size;
	while ((start = fetch_item(start, end, &item)) != 0) {
		if (item.format != HID_ITEM_FORMAT_SHORT) {
			dbg("unexpected long global item");
			hid_free_device(device);
			kfree(parser);
			return NULL;
		}
		if (dispatch_type[item.type](parser, &item)) {
			dbg("item %u %u %u %u parsing failed\n",
				item.format, (unsigned)item.size, (unsigned)item.type, (unsigned)item.tag);
			hid_free_device(device);
			kfree(parser);
			return NULL;
		}
 
		if (start == end) {
			if (parser->collection_stack_ptr) {
				dbg("unbalanced collection at end of report description");
				hid_free_device(device);
				kfree(parser);
				return NULL;
			}
			if (parser->local.delimiter_depth) {
				dbg("unbalanced delimiter at end of report description");
				hid_free_device(device);
				kfree(parser);
				return NULL;
			}
			kfree(parser);
			return device;
		}
	}
 
	dbg("item fetching failed at offset %d\n", (int)(end - start));
	hid_free_device(device);
	kfree(parser);
	return NULL;
}
 
/*
 * Convert a signed n-bit integer to signed 32-bit integer. Common
 * cases are done through the compiler, the screwed things has to be
 * done by hand.
 */
 
static __inline__ __s32 snto32(__u32 value, unsigned n)
{
	switch (n) {
		case 8:  return ((__s8)value);
		case 16: return ((__s16)value);
		case 32: return ((__s32)value);
	}
	return value & (1 << (n - 1)) ? value | (-1 << n) : value;
}
 
/*
 * Convert a signed 32-bit integer to a signed n-bit integer.
 */
 
static __inline__ __u32 s32ton(__s32 value, unsigned n)
{
	__s32 a = value >> (n - 1);
	if (a && a != -1) return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
	return value & ((1 << n) - 1);
}
 
/*
 * Extract/implement a data field from/to a report.
 */
 
static __inline__ __u32 extract(__u8 *report, unsigned offset, unsigned n)
{
	report += (offset >> 5) << 2; offset &= 31;
	return (le64_to_cpu(get_unaligned((__u64*)report)) >> offset) & ((1 << n) - 1);
}
 
static __inline__ void implement(__u8 *report, unsigned offset, unsigned n, __u32 value)
{
	report += (offset >> 5) << 2; offset &= 31;
	put_unaligned((get_unaligned((__u64*)report)
		& cpu_to_le64(~((((__u64) 1 << n) - 1) << offset)))
		| cpu_to_le64((__u64)value << offset), (__u64*)report);
}
 
/*
 * Search an array for a value.
 */
 
static __inline__ int search(__s32 *array, __s32 value, unsigned n)
{
	while (n--) if (*array++ == value) return 0;
	return -1;
}
 
static void hid_process_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value)
{
	hid_dump_input(usage, value);
	if (hid->claimed & HID_CLAIMED_INPUT)
		hidinput_hid_event(hid, field, usage, value);
	if (hid->claimed & HID_CLAIMED_HIDDEV)
		hiddev_hid_event(hid, field, usage, value);
}
 
 
/*
 * Analyse a received field, and fetch the data from it. The field
 * content is stored for next report processing (we do differential
 * reporting to the layer).
 */
 
static void hid_input_field(struct hid_device *hid, struct hid_field *field, __u8 *data)
{
	unsigned n;
	unsigned count = field->report_count;
	unsigned offset = field->report_offset;
	unsigned size = field->report_size;
	__s32 min = field->logical_minimum;
	__s32 max = field->logical_maximum;
	__s32 value[count]; /* WARNING: gcc specific */
 
	for (n = 0; n < count; n++) {
 
			value[n] = min < 0 ? snto32(extract(data, offset + n * size, size), size) :
						    extract(data, offset + n * size, size);
 
			if (!(field->flags & HID_MAIN_ITEM_VARIABLE) /* Ignore report if ErrorRollOver */
			    && value[n] >= min && value[n] <= max
			    && field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
				return;
	}
 
	for (n = 0; n < count; n++) {
 
		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
 
			if (field->flags & HID_MAIN_ITEM_RELATIVE) {
				if (!value[n]) continue;
			} else {
				if (value[n] == field->value[n]) continue;
			}	
			hid_process_event(hid, field, &field->usage[n], value[n]);
			continue;
		}
 
		if (field->value[n] >= min && field->value[n] <= max
			&& field->usage[field->value[n] - min].hid
			&& search(value, field->value[n], count))
				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0);
 
		if (value[n] >= min && value[n] <= max
			&& field->usage[value[n] - min].hid
			&& search(field->value, value[n], count))
				hid_process_event(hid, field, &field->usage[value[n] - min], 1);
	}
 
	memcpy(field->value, value, count * sizeof(__s32));
}
 
static int hid_input_report(int type, u8 *data, int len, struct hid_device *hid)
{
	struct hid_report_enum *report_enum = hid->report_enum + type;
	struct hid_report *report;
	int n, size;
 
	if (!len) {
		dbg("empty report");
		return -1;
	}
 
#ifdef DEBUG_DATA
	printk(KERN_DEBUG __FILE__ ": report (size %u) (%snumbered)\n", len, report_enum->numbered ? "" : "un");
#endif
 
	n = 0;				/* Normally report number is 0 */
	if (report_enum->numbered) {	/* Device uses numbered reports, data[0] is report number */
		n = *data++;
		len--;
	}
 
	if (!(report = report_enum->report_id_hash[n])) {
		dbg("undefined report_id %d received", n);
#ifdef DEBUG
			printk(KERN_DEBUG __FILE__ ": report (size %u) = ", len);
			for (n = 0; n < len; n++)
				printk(" %02x", data[n]);
			printk("\n");
#endif
 
		return -1;
	}
 
	if (hid->claimed & HID_CLAIMED_HIDDEV)
		hiddev_report_event(hid, report);
 
	size = ((report->size - 1) >> 3) + 1;
 
	if (len < size) {
 
		if (size <= 8) {
			dbg("report %d is too short, (%d < %d)", report->id, len, size);
			return -1;
		}
 
		/*
		 * Some low-speed devices have large reports and maxpacketsize 8.
		 * We buffer the data in that case and parse it when we got it all.
		 * Works only for unnumbered reports. Doesn't make sense for numbered
		 * reports anyway - then they don't need to be large.
		 */
 
		if (!report->data)
			if (!(report->data = kmalloc(size, GFP_ATOMIC))) {
				dbg("couldn't allocate report buffer");
				return -1;
			}
 
		if (report->idx + len > size) {
			dbg("report data buffer overflow");
			report->idx = 0;
			return -1;
		}
 
		memcpy(report->data + report->idx, data, len);
		report->idx += len;
 
		if (report->idx < size)
			return 0;
 
		data = report->data;
	}
 
	for (n = 0; n < report->maxfield; n++)
		hid_input_field(hid, report->field[n], data);
 
	report->idx = 0;
	return 0;
}
 
/*
 * Interrupt input handler.
 */
 
static void hid_irq(struct urb *urb)
{
	if (urb->status) {
		dbg("nonzero status in irq %d", urb->status);
		return;
	}
 
	hid_input_report(HID_INPUT_REPORT, urb->transfer_buffer, urb->actual_length, urb->context);
}
 
/*
 * hid_read_report() reads in report values without waiting for an irq urb.
 */
 
void hid_read_report(struct hid_device *hid, struct hid_report *report)
{
	int len = ((report->size - 1) >> 3) + 1 + hid->report_enum[report->type].numbered;
	u8 data[len];
	int read;
 
	if (hid->quirks & HID_QUIRK_NOGET)
		return;
 
	if ((read = usb_get_report(hid->dev, hid->ifnum, report->type + 1, report->id, data, len)) != len) {
		dbg("reading report type %d id %d failed len %d read %d", report->type + 1, report->id, len, read);
		return;
	}
 
	hid_input_report(report->type, data, len, hid);
}
 
/*
 * Output the field into the report.
 */
 
static void hid_output_field(struct hid_field *field, __u8 *data)
{
	unsigned count = field->report_count;
	unsigned offset = field->report_offset;
	unsigned size = field->report_size;
	unsigned n;
 
	for (n = 0; n < count; n++) {
		if (field->logical_minimum < 0)	/* signed values */
			implement(data, offset + n * size, size, s32ton(field->value[n], size));
		 else				/* unsigned values */
			implement(data, offset + n * size, size, field->value[n]);
	}
}
 
/*
 * Create a report.
 */
 
void hid_output_report(struct hid_report *report, __u8 *data)
{
	unsigned n;
	for (n = 0; n < report->maxfield; n++)
		hid_output_field(report->field[n], data);
}
 
/*
 * Set a field value. The report this field belongs to has to be
 * created and transfered to the device, to set this value in the
 * device.
 */
 
int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
{
	unsigned size = field->report_size;
 
	hid_dump_input(field->usage + offset, value);
 
	if (offset >= field->report_count) {
		dbg("offset exceeds report_count");
		return -1;
	}
	if (field->logical_minimum < 0) {
		if (value != snto32(s32ton(value, size), size)) {
			dbg("value %d is out of range", value);
			return -1;
		}
	}
	if (   (value > field->logical_maximum)
	    || (value < field->logical_minimum)) {
		dbg("value %d is invalid", value);
		return -1;
	}
	field->value[offset] = value;
	return 0;
}
 
int hid_find_field(struct hid_device *hid, unsigned int type, unsigned int code, struct hid_field **field)
{
	struct hid_report_enum *report_enum = hid->report_enum + HID_OUTPUT_REPORT;
	struct list_head *list = report_enum->report_list.next;
	int i, j;
 
	while (list != &report_enum->report_list) {
		struct hid_report *report = (struct hid_report *) list;
		list = list->next;
		for (i = 0; i < report->maxfield; i++) {
			*field = report->field[i];
			for (j = 0; j < (*field)->maxusage; j++)
				if ((*field)->usage[j].type == type && (*field)->usage[j].code == code)
					return j;
		}
	}
	return -1;
}
 
static int hid_submit_out(struct hid_device *hid)
{
	hid->urbout.transfer_buffer_length = le16_to_cpup(&hid->out[hid->outtail].dr.wLength);
	hid->urbout.transfer_buffer = hid->out[hid->outtail].buffer;
	hid->urbout.setup_packet = (void *) &(hid->out[hid->outtail].dr);
	hid->urbout.dev = hid->dev;
 
	if (usb_submit_urb(&hid->urbout)) {
		err("usb_submit_urb(out) failed");
		return -1;
	}
 
	return 0;
}
 
static void hid_ctrl(struct urb *urb)
{
	struct hid_device *hid = urb->context;
 
	if (urb->status)
		warn("ctrl urb status %d received", urb->status);
 
	hid->outtail = (hid->outtail + 1) & (HID_CONTROL_FIFO_SIZE - 1);
 
	if (hid->outhead != hid->outtail)
		hid_submit_out(hid);
}
 
void hid_write_report(struct hid_device *hid, struct hid_report *report)
{
	if (hid->report_enum[report->type].numbered) {
		hid->out[hid->outhead].buffer[0] = report->id;
		hid_output_report(report, hid->out[hid->outhead].buffer + 1);
		hid->out[hid->outhead].dr.wLength = cpu_to_le16(((report->size + 7) >> 3) + 1);
	} else {
		hid_output_report(report, hid->out[hid->outhead].buffer);
		hid->out[hid->outhead].dr.wLength = cpu_to_le16((report->size + 7) >> 3);
	}
 
	hid->out[hid->outhead].dr.wValue = cpu_to_le16(((report->type + 1) << 8) | report->id);
 
	hid->outhead = (hid->outhead + 1) & (HID_CONTROL_FIFO_SIZE - 1);
 
	if (hid->outhead == hid->outtail)
		hid->outtail = (hid->outtail + 1) & (HID_CONTROL_FIFO_SIZE - 1);
 
	if (hid->urbout.status != -EINPROGRESS)
		hid_submit_out(hid);
}
 
int hid_open(struct hid_device *hid)
{
	if (hid->open++)
		return 0;
 
	hid->urb.dev = hid->dev;
 
	if (usb_submit_urb(&hid->urb))
		return -EIO;
 
	return 0;
}
 
void hid_close(struct hid_device *hid)
{
	if (!--hid->open)
		usb_unlink_urb(&hid->urb);
}
 
/*
 * Initialize all readable reports
 */
void hid_init_reports(struct hid_device *hid)
{
	int i;
	struct hid_report *report;
	struct hid_report_enum *report_enum;
	struct list_head *list;
 
	for (i = 0; i < HID_REPORT_TYPES; i++) {
		if (i == HID_FEATURE_REPORT || i == HID_INPUT_REPORT) {
			report_enum = hid->report_enum + i;
			list = report_enum->report_list.next;
			while (list != &report_enum->report_list) {
				report = (struct hid_report *) list;
				hid_read_report(hid, report);
				usb_set_idle(hid->dev, hid->ifnum, 0, report->id);
				list = list->next;
			}
		}
	}
}
 
#define USB_VENDOR_ID_WACOM		0x056a
#define USB_DEVICE_ID_WACOM_PENPARTNER	0x0000
#define USB_DEVICE_ID_WACOM_GRAPHIRE	0x0010
#define USB_DEVICE_ID_WACOM_INTUOS	0x0020
#define USB_DEVICE_ID_WACOM_PL		0x0030
#define USB_DEVICE_ID_WACOM_INTUOS2	0x0041
 
#define USB_VENDOR_ID_KBGEAR		0x084e
#define USB_DEVICE_ID_KBGEAR_JAMSTUDIO	0x1001
 
#define USB_VENDOR_ID_AIPTEK		0x08ca
#define USB_DEVICE_ID_AIPTEK_01	0x0001
#define USB_DEVICE_ID_AIPTEK_10	0x0010
#define USB_DEVICE_ID_AIPTEK_20	0x0020
#define USB_DEVICE_ID_AIPTEK_21	0x0021
#define USB_DEVICE_ID_AIPTEK_22	0x0022
#define USB_DEVICE_ID_AIPTEK_23	0x0023
#define USB_DEVICE_ID_AIPTEK_24	0x0024
 
#define USB_VENDOR_ID_ATEN		0x0557
#define USB_DEVICE_ID_ATEN_UC100KM	0x2004
#define USB_DEVICE_ID_ATEN_CS124U	0x2202
#define USB_DEVICE_ID_ATEN_2PORTKVM	0x2204
#define USB_DEVICE_ID_ATEN_4PORTKVM	0x2205
 
#define USB_VENDOR_ID_TOPMAX		0x0663
#define USB_DEVICE_ID_TOPMAX_COBRAPAD	0x0103
 
#define USB_VENDOR_ID_HAPP		0x078b
#define USB_DEVICE_ID_UGCI_DRIVING	0x0010
#define USB_DEVICE_ID_UGCI_FLYING	0x0020
#define USB_DEVICE_ID_UGCI_FIGHTING	0x0030
 
#define USB_VENDOR_ID_GRIFFIN		0x077d
#define USB_DEVICE_ID_POWERMATE		0x0410 /* Griffin PowerMate */
#define USB_DEVICE_ID_SOUNDKNOB		0x04AA /* Griffin SoundKnob */
 
#define USB_VENDOR_ID_ONTRAK	0x0a07
#define USB_DEVICE_ID_ONTRAK_ADU100	0x0064
 
#define USB_VENDOR_ID_TANGTOP		0x0d3d
#define USB_DEVICE_ID_TANGTOP_USBPS2	0x0001
 
#define USB_VENDOR_ID_OKI		0x070a
#define USB_VENDOR_ID_OKI_MULITI	0x0007
 
#define USB_VENDOR_ID_ESSENTIAL_REALITY	0x0d7f
#define USB_DEVICE_ID_ESSENTIAL_REALITY_P5	0x0100
 
#define USB_VENDOR_ID_MGE		0x0463
#define USB_DEVICE_ID_MGE_UPS		0xffff
#define USB_DEVICE_ID_MGE_UPS1		0x0001
 
#define USB_VENDOR_ID_NEC		0x073e
#define USB_DEVICE_ID_NEC_USB_GAME_PAD	0x0301
 
struct hid_blacklist {
	__u16 idVendor;
	__u16 idProduct;
	unsigned quirks;
} hid_blacklist[] = {
	{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PENPARTNER, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE + 1, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE + 2, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 1, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 2, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 3, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 4, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 1, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 2, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 3, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 4, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 5, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 1, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 2, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 3, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 4, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_KBGEAR, USB_DEVICE_ID_KBGEAR_JAMSTUDIO, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_UC100KM, HID_QUIRK_NOGET },
	{ USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_CS124U, HID_QUIRK_NOGET },
	{ USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_2PORTKVM, HID_QUIRK_NOGET },
	{ USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_4PORTKVM, HID_QUIRK_NOGET },
	{ USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_01, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_10, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_20, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_21, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_22, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_23, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_24, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_POWERMATE, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_SOUNDKNOB, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_TOPMAX, USB_DEVICE_ID_TOPMAX_COBRAPAD, HID_QUIRK_BADPAD },
	{ USB_VENDOR_ID_HAPP, USB_DEVICE_ID_UGCI_DRIVING, HID_QUIRK_BADPAD|HID_QUIRK_MULTI_INPUT },
	{ USB_VENDOR_ID_HAPP, USB_DEVICE_ID_UGCI_FLYING, HID_QUIRK_BADPAD|HID_QUIRK_MULTI_INPUT },
	{ USB_VENDOR_ID_HAPP, USB_DEVICE_ID_UGCI_FIGHTING, HID_QUIRK_BADPAD|HID_QUIRK_MULTI_INPUT },
 	{ USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100, HID_QUIRK_IGNORE },
 	{ USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 100, HID_QUIRK_IGNORE },
 	{ USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 200, HID_QUIRK_IGNORE },
 	{ USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 300, HID_QUIRK_IGNORE },
 	{ USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 400, HID_QUIRK_IGNORE },
 	{ USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 500, HID_QUIRK_IGNORE },
 	{ USB_VENDOR_ID_TANGTOP, USB_DEVICE_ID_TANGTOP_USBPS2, HID_QUIRK_NOGET },
	{ USB_VENDOR_ID_OKI, USB_VENDOR_ID_OKI_MULITI, HID_QUIRK_NOGET },
	{ USB_VENDOR_ID_ESSENTIAL_REALITY, USB_DEVICE_ID_ESSENTIAL_REALITY_P5, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1, HID_QUIRK_IGNORE },
	{ USB_VENDOR_ID_NEC, USB_DEVICE_ID_NEC_USB_GAME_PAD, HID_QUIRK_BADPAD },
	{ 0, 0 }
};
 
static struct hid_device *usb_hid_configure(struct usb_device *dev, int ifnum)
{
	struct usb_interface_descriptor *interface = dev->actconfig->interface[ifnum].altsetting + 0;
	struct hid_descriptor *hdesc;
	struct hid_device *hid;
	unsigned quirks = 0, rsize = 0;
	char *buf;
	int n;
 
	for (n = 0; hid_blacklist[n].idVendor; n++)
		if ((hid_blacklist[n].idVendor == dev->descriptor.idVendor) &&
			(hid_blacklist[n].idProduct == dev->descriptor.idProduct))
				quirks = hid_blacklist[n].quirks;
 
	if (quirks & HID_QUIRK_IGNORE)
		return NULL;
 
	if (usb_get_extra_descriptor(interface, USB_DT_HID, &hdesc) && ((!interface->bNumEndpoints) ||
		usb_get_extra_descriptor(&interface->endpoint[0], USB_DT_HID, &hdesc))) {
			dbg("class descriptor not present\n");
			return NULL;
	}
 
	for (n = 0; n < hdesc->bNumDescriptors; n++)
		if (hdesc->desc[n].bDescriptorType == USB_DT_REPORT)
			rsize = le16_to_cpu(hdesc->desc[n].wDescriptorLength);
 
	if (!rsize || rsize > HID_MAX_DESCRIPTOR_SIZE) {
		dbg("weird size of report descriptor (%u)", rsize);
		return NULL;
	}
 
	{
		__u8 rdesc[rsize];
 
		if ((n = usb_get_class_descriptor(dev, interface->bInterfaceNumber, USB_DT_REPORT, 0, rdesc, rsize)) < 0) {
			dbg("reading report descriptor failed");
			return NULL;
		}
 
#ifdef DEBUG_DATA
		printk(KERN_DEBUG __FILE__ ": report descriptor (size %u, read %d) = ", rsize, n);
		for (n = 0; n < rsize; n++)
			printk(" %02x", (unsigned) rdesc[n]);
		printk("\n");
#endif
 
		if (!(hid = hid_parse_report(rdesc, rsize))) {
			dbg("parsing report descriptor failed");
			return NULL;
		}
	}
 
	hid->quirks = quirks;
 
	for (n = 0; n < interface->bNumEndpoints; n++) {
 
		struct usb_endpoint_descriptor *endpoint = &interface->endpoint[n];
		int pipe, maxp;
 
		if ((endpoint->bmAttributes & 3) != 3)		/* Not an interrupt endpoint */
			continue;
 
		if (!(endpoint->bEndpointAddress & 0x80))	/* Not an input endpoint */
			continue;
 
		pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress);
		maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe));
 
		FILL_INT_URB(&hid->urb, dev, pipe, hid->buffer, maxp > 32 ? 32 : maxp, hid_irq, hid, endpoint->bInterval);
 
		break;
	}
 
	if (n == interface->bNumEndpoints) {
		dbg("couldn't find an input interrupt endpoint");
		hid_free_device(hid);
		return NULL;
	}
 
	hid->version = hdesc->bcdHID;
	hid->country = hdesc->bCountryCode;
	hid->dev = dev;
	hid->ifnum = interface->bInterfaceNumber;
 
	for (n = 0; n < HID_CONTROL_FIFO_SIZE; n++) {
		hid->out[n].dr.bRequestType = USB_TYPE_CLASS | USB_RECIP_INTERFACE;
		hid->out[n].dr.bRequest = USB_REQ_SET_REPORT;
		hid->out[n].dr.wIndex = cpu_to_le16(hid->ifnum);
	}
 
	hid->name[0] = 0;
 
	if (!(buf = kmalloc(63, GFP_KERNEL)))
		return NULL;
 
	if (usb_string(dev, dev->descriptor.iManufacturer, buf, 63) > 0) {
		strcat(hid->name, buf);
		if (usb_string(dev, dev->descriptor.iProduct, buf, 63) > 0)
			sprintf(hid->name, "%s %s", hid->name, buf);
	} else
		sprintf(hid->name, "%04x:%04x", dev->descriptor.idVendor, dev->descriptor.idProduct);
 
	kfree(buf);
 
	FILL_CONTROL_URB(&hid->urbout, dev, usb_sndctrlpipe(dev, 0),
		(void*) &hid->out[0].dr, hid->out[0].buffer, 1, hid_ctrl, hid);
 
/*
 * Some devices don't like this and crash. I don't know of any devices
 * needing this, so it is disabled for now.
 */
 
#if 0
	if (interface->bInterfaceSubClass == 1)
		usb_set_protocol(dev, hid->ifnum, 1);
#endif
 
	return hid;
}
 
static void* hid_probe(struct usb_device *dev, unsigned int ifnum,
		       const struct usb_device_id *id)
{
	struct hid_device *hid;
	int i;
	char *c;
 
	dbg("HID probe called for ifnum %d", ifnum);
 
	if (!(hid = usb_hid_configure(dev, ifnum)))
		return NULL;
 
	hid_init_reports(hid);
	hid_dump_device(hid);
 
	if (!hidinput_connect(hid))
		hid->claimed |= HID_CLAIMED_INPUT;
	if (!hiddev_connect(hid))
		hid->claimed |= HID_CLAIMED_HIDDEV;
	printk(KERN_INFO);
 
	if (hid->claimed & HID_CLAIMED_INPUT)
		printk("input");
	if (hid->claimed == (HID_CLAIMED_INPUT | HID_CLAIMED_HIDDEV))
		printk(",");
	if (hid->claimed & HID_CLAIMED_HIDDEV)
		printk("hiddev%d", hid->minor);
 
	c = "Device";
	for (i = 0; i < hid->maxcollection; i++) {
		if (hid->collection[i].type == HID_COLLECTION_APPLICATION &&
		   (hid->collection[i].usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
		   (hid->collection[i].usage & 0xffff) < ARRAY_SIZE(hid_types)) {
			c = hid_types[hid->collection[i].usage & 0xffff];
			break;
		}
	}
 
	printk(": USB HID v%x.%02x %s [%s] on usb%d:%d.%d\n",
		hid->version >> 8, hid->version & 0xff, c, hid->name,
		dev->bus->busnum, dev->devnum, ifnum);
 
	return hid;
}
 
static void hid_disconnect(struct usb_device *dev, void *ptr)
{
	struct hid_device *hid = ptr;
 
	dbg("cleanup called");
	usb_unlink_urb(&hid->urb);
	if (hid->claimed & HID_CLAIMED_INPUT)
		hidinput_disconnect(hid);
	if (hid->claimed & HID_CLAIMED_HIDDEV)
		hiddev_disconnect(hid);
	hid_free_device(hid);
}
 
static struct usb_device_id hid_usb_ids [] = {
	{ match_flags: USB_DEVICE_ID_MATCH_INT_CLASS,
	    bInterfaceClass: USB_INTERFACE_CLASS_HID },
	{ }						/* Terminating entry */
};
 
MODULE_DEVICE_TABLE (usb, hid_usb_ids);
 
static struct usb_driver hid_driver = {
	name:		"hid",
	probe:		hid_probe,
	disconnect:	hid_disconnect,
	id_table:	hid_usb_ids,
};
 
static int __init hid_init(void)
{
	hiddev_init();
	usb_register(&hid_driver);
	info(DRIVER_VERSION " " DRIVER_AUTHOR);
	info(DRIVER_DESC);
 
	return 0;
}
 
static void __exit hid_exit(void)
{
	hiddev_exit();
	usb_deregister(&hid_driver);
}
 
module_init(hid_init);
module_exit(hid_exit);
 
MODULE_AUTHOR( DRIVER_AUTHOR );
MODULE_DESCRIPTION( DRIVER_DESC );
MODULE_LICENSE("GPL");
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.