URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [fs/] [reiserfs/] [prints.c] - Rev 1765
Compare with Previous | Blame | View Log
/* * Copyright 2000-2002 by Hans Reiser, licensing governed by reiserfs/README */ #include <linux/config.h> #include <linux/sched.h> #include <linux/fs.h> #include <linux/reiserfs_fs.h> #include <linux/string.h> #include <stdarg.h> static char error_buf[1024]; static char fmt_buf[1024]; static char off_buf[80]; static char * reiserfs_cpu_offset (struct cpu_key * key) { if (cpu_key_k_type(key) == TYPE_DIRENTRY) sprintf (off_buf, "%Lu(%Lu)", (unsigned long long)GET_HASH_VALUE (cpu_key_k_offset (key)), (unsigned long long)GET_GENERATION_NUMBER (cpu_key_k_offset (key))); else sprintf (off_buf, "0x%Lx", (unsigned long long)cpu_key_k_offset (key)); return off_buf; } static char * le_offset (struct key * key) { int version; version = le_key_version (key); if (le_key_k_type (version, key) == TYPE_DIRENTRY) sprintf (off_buf, "%Lu(%Lu)", (unsigned long long)GET_HASH_VALUE (le_key_k_offset (version, key)), (unsigned long long)GET_GENERATION_NUMBER (le_key_k_offset (version, key))); else sprintf (off_buf, "0x%Lx", (unsigned long long)le_key_k_offset (version, key)); return off_buf; } static char * cpu_type (struct cpu_key * key) { if (cpu_key_k_type (key) == TYPE_STAT_DATA) return "SD"; if (cpu_key_k_type (key) == TYPE_DIRENTRY) return "DIR"; if (cpu_key_k_type (key) == TYPE_DIRECT) return "DIRECT"; if (cpu_key_k_type (key) == TYPE_INDIRECT) return "IND"; return "UNKNOWN"; } static char * le_type (struct key * key) { int version; version = le_key_version (key); if (le_key_k_type (version, key) == TYPE_STAT_DATA) return "SD"; if (le_key_k_type (version, key) == TYPE_DIRENTRY) return "DIR"; if (le_key_k_type (version, key) == TYPE_DIRECT) return "DIRECT"; if (le_key_k_type (version, key) == TYPE_INDIRECT) return "IND"; return "UNKNOWN"; } /* %k */ static void sprintf_le_key (char * buf, struct key * key) { if (key) sprintf (buf, "[%d %d %s %s]", le32_to_cpu (key->k_dir_id), le32_to_cpu (key->k_objectid), le_offset (key), le_type (key)); else sprintf (buf, "[NULL]"); } /* %K */ static void sprintf_cpu_key (char * buf, struct cpu_key * key) { if (key) sprintf (buf, "[%d %d %s %s]", key->on_disk_key.k_dir_id, key->on_disk_key.k_objectid, reiserfs_cpu_offset (key), cpu_type (key)); else sprintf (buf, "[NULL]"); } static void sprintf_de_head( char *buf, struct reiserfs_de_head *deh ) { if( deh ) sprintf( buf, "[offset=%d dir_id=%d objectid=%d location=%d state=%04x]", deh_offset(deh), deh_dir_id(deh), deh_objectid(deh), deh_location(deh), deh_state(deh) ); else sprintf( buf, "[NULL]" ); } static void sprintf_item_head (char * buf, struct item_head * ih) { if (ih) { sprintf (buf, "%s", (ih_version (ih) == KEY_FORMAT_3_6) ? "*3.6* " : "*3.5*"); sprintf_le_key (buf + strlen (buf), &(ih->ih_key)); sprintf (buf + strlen (buf), ", item_len %d, item_location %d, " "free_space(entry_count) %d", ih_item_len(ih), ih_location(ih), ih_free_space (ih)); } else sprintf (buf, "[NULL]"); } static void sprintf_direntry (char * buf, struct reiserfs_dir_entry * de) { char name[20]; memcpy (name, de->de_name, de->de_namelen > 19 ? 19 : de->de_namelen); name [de->de_namelen > 19 ? 19 : de->de_namelen] = 0; sprintf (buf, "\"%s\"==>[%d %d]", name, de->de_dir_id, de->de_objectid); } static void sprintf_block_head (char * buf, struct buffer_head * bh) { sprintf (buf, "level=%d, nr_items=%d, free_space=%d rdkey ", B_LEVEL (bh), B_NR_ITEMS (bh), B_FREE_SPACE (bh)); } static void sprintf_buffer_head (char * buf, struct buffer_head * bh) { sprintf (buf, "dev %s, size %d, blocknr %ld, count %d, list %d, state 0x%lx, page %p, (%s, %s, %s)", kdevname (bh->b_dev), bh->b_size, bh->b_blocknr, atomic_read (&(bh->b_count)), bh->b_list, bh->b_state, bh->b_page, buffer_uptodate (bh) ? "UPTODATE" : "!UPTODATE", buffer_dirty (bh) ? "DIRTY" : "CLEAN", buffer_locked (bh) ? "LOCKED" : "UNLOCKED"); } static void sprintf_disk_child (char * buf, struct disk_child * dc) { sprintf (buf, "[dc_number=%d, dc_size=%u]", dc_block_number(dc), dc_size(dc)); } static char * is_there_reiserfs_struct (char * fmt, int * what, int * skip) { char * k = fmt; *skip = 0; while ((k = strchr (k, '%')) != NULL) { if (k[1] == 'k' || k[1] == 'K' || k[1] == 'h' || k[1] == 't' || k[1] == 'z' || k[1] == 'b' || k[1] == 'y' || k[1] == 'a' ) { *what = k[1]; break; } (*skip) ++; k ++; } return k; } /* debugging reiserfs we used to print out a lot of different variables, like keys, item headers, buffer heads etc. Values of most fields matter. So it took a long time just to write appropriative printk. With this reiserfs_warning you can use format specification for complex structures like you used to do with printfs for integers, doubles and pointers. For instance, to print out key structure you have to write just: reiserfs_warning (NULL, "bad key %k", key); instead of printk ("bad key %lu %lu %lu %lu", key->k_dir_id, key->k_objectid, key->k_offset, key->k_uniqueness); Also if you'd specify a pointer to fs super block as the first argument, device name will be prepended to the output. */ static void prepare_error_buf( const char *fmt, va_list args ) { char * fmt1 = fmt_buf; char * k; char * p = error_buf; int i, j, what, skip; strcpy (fmt1, fmt); while( (k = is_there_reiserfs_struct( fmt1, &what, &skip )) != NULL ) { *k = 0; p += vsprintf (p, fmt1, args); for (i = 0; i < skip; i ++) j = va_arg (args, int); switch (what) { case 'k': sprintf_le_key (p, va_arg(args, struct key *)); break; case 'K': sprintf_cpu_key (p, va_arg(args, struct cpu_key *)); break; case 'h': sprintf_item_head (p, va_arg(args, struct item_head *)); break; case 't': sprintf_direntry (p, va_arg(args, struct reiserfs_dir_entry *)); break; case 'y': sprintf_disk_child (p, va_arg(args, struct disk_child *)); break; case 'z': sprintf_block_head (p, va_arg(args, struct buffer_head *)); break; case 'b': sprintf_buffer_head (p, va_arg(args, struct buffer_head *)); break; case 'a': sprintf_de_head (p, va_arg(args, struct reiserfs_de_head *)); break; } p += strlen (p); fmt1 = k + 2; } vsprintf (p, fmt1, args); } /* in addition to usual conversion specifiers this accepts reiserfs specific conversion specifiers: %k to print little endian key, %K to print cpu key, %h to print item_head, %t to print directory entry %z to print block head (arg must be struct buffer_head * %b to print buffer_head */ #define do_reiserfs_warning(fmt)\ {\ va_list args;\ va_start( args, fmt );\ prepare_error_buf( fmt, args );\ va_end( args );\ } void reiserfs_warning (struct super_block * sb, const char * fmt, ...) { do_reiserfs_warning(fmt); /* console_print (error_buf); */ if (sb) printk (KERN_WARNING "%s:", bdevname(sb->s_dev)); else printk (KERN_WARNING); printk ("%s", error_buf); } void reiserfs_debug (struct super_block *s, int level, const char * fmt, ...) { #ifdef CONFIG_REISERFS_CHECK do_reiserfs_warning(fmt); printk (KERN_DEBUG "%s: %s", bdevname(s->s_dev), error_buf); #else ; #endif } /* The format: maintainer-errorid: [function-name:] message where errorid is unique to the maintainer and function-name is optional, is recommended, so that anyone can easily find the bug with a simple grep for the short to type string maintainer-errorid. Don't bother with reusing errorids, there are lots of numbers out there. Example: reiserfs_panic( p_sb, "reiser-29: reiserfs_new_blocknrs: " "one of search_start or rn(%d) is equal to MAX_B_NUM," "which means that we are optimizing location based on the bogus location of a temp buffer (%p).", rn, bh ); Regular panic()s sometimes clear the screen before the message can be read, thus the need for the while loop. Numbering scheme for panic used by Vladimir and Anatoly( Hans completely ignores this scheme, and considers it pointless complexity): panics in reiserfs_fs.h have numbers from 1000 to 1999 super.c 2000 to 2999 preserve.c (unused) 3000 to 3999 bitmap.c 4000 to 4999 stree.c 5000 to 5999 prints.c 6000 to 6999 namei.c 7000 to 7999 fix_nodes.c 8000 to 8999 dir.c 9000 to 9999 lbalance.c 10000 to 10999 ibalance.c 11000 to 11999 not ready do_balan.c 12000 to 12999 inode.c 13000 to 13999 file.c 14000 to 14999 objectid.c 15000 - 15999 buffer.c 16000 - 16999 symlink.c 17000 - 17999 . */ #ifdef CONFIG_REISERFS_CHECK extern struct tree_balance * cur_tb; #endif void reiserfs_panic (struct super_block * sb, const char * fmt, ...) { show_reiserfs_locks() ; do_reiserfs_warning(fmt); printk ( KERN_EMERG "%s (device %s)\n", error_buf, bdevname(sb->s_dev)); BUG (); /* this is not actually called, but makes reiserfs_panic() "noreturn" */ panic ("REISERFS: panic (device %s): %s\n", sb ? kdevname(sb->s_dev) : "sb == 0", error_buf); } void print_virtual_node (struct virtual_node * vn) { int i; struct virtual_item * vi; printk ("VIRTUAL NODE CONTAINS %d items, has size %d,%s,%s, ITEM_POS=%d POS_IN_ITEM=%d MODE=\'%c\'\n", vn->vn_nr_item, vn->vn_size, (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE )? "left mergeable" : "", (vn->vn_vi[vn->vn_nr_item - 1].vi_type & VI_TYPE_RIGHT_MERGEABLE) ? "right mergeable" : "", vn->vn_affected_item_num, vn->vn_pos_in_item, vn->vn_mode); vi = vn->vn_vi; for (i = 0; i < vn->vn_nr_item; i ++, vi ++) op_print_vi (vi); } void print_path (struct tree_balance * tb, struct path * path) { int h = 0; struct buffer_head * bh; if (tb) { while (tb->insert_size[h]) { bh = PATH_H_PBUFFER (path, h); printk ("block %lu (level=%d), position %d\n", bh ? bh->b_blocknr : 0, bh ? B_LEVEL (bh) : 0, PATH_H_POSITION (path, h)); h ++; } } else { int offset = path->path_length; struct buffer_head * bh; printk ("Offset Bh (b_blocknr, b_count) Position Nr_item\n"); while ( offset > ILLEGAL_PATH_ELEMENT_OFFSET ) { bh = PATH_OFFSET_PBUFFER (path, offset); printk ("%6d %10p (%9lu, %7d) %8d %7d\n", offset, bh, bh ? bh->b_blocknr : 0, bh ? atomic_read (&(bh->b_count)) : 0, PATH_OFFSET_POSITION (path, offset), bh ? B_NR_ITEMS (bh) : -1); offset --; } } } /* this prints internal nodes (4 keys/items in line) (dc_number, dc_size)[k_dirid, k_objectid, k_offset, k_uniqueness](dc_number, dc_size)...*/ static int print_internal (struct buffer_head * bh, int first, int last) { struct key * key; struct disk_child * dc; int i; int from, to; if (!B_IS_KEYS_LEVEL (bh)) return 1; check_internal (bh); if (first == -1) { from = 0; to = B_NR_ITEMS (bh); } else { from = first; to = last < B_NR_ITEMS (bh) ? last : B_NR_ITEMS (bh); } reiserfs_warning (NULL, "INTERNAL NODE (%ld) contains %z\n", bh->b_blocknr, bh); dc = B_N_CHILD (bh, from); reiserfs_warning (NULL, "PTR %d: %y ", from, dc); for (i = from, key = B_N_PDELIM_KEY (bh, from), dc ++; i < to; i ++, key ++, dc ++) { reiserfs_warning (NULL, "KEY %d: %k PTR %d: %y ", i, key, i + 1, dc); if (i && i % 4 == 0) printk ("\n"); } printk ("\n"); return 0; } static int print_leaf (struct buffer_head * bh, int print_mode, int first, int last) { struct block_head * blkh; struct item_head * ih; int i, nr; int from, to; if (!B_IS_ITEMS_LEVEL (bh)) return 1; check_leaf (bh); blkh = B_BLK_HEAD (bh); ih = B_N_PITEM_HEAD (bh,0); nr = blkh_nr_item(blkh); printk ("\n===================================================================\n"); reiserfs_warning (NULL, "LEAF NODE (%ld) contains %z\n", bh->b_blocknr, bh); if (!(print_mode & PRINT_LEAF_ITEMS)) { reiserfs_warning (NULL, "FIRST ITEM_KEY: %k, LAST ITEM KEY: %k\n", &(ih->ih_key), &((ih + nr - 1)->ih_key)); return 0; } if (first < 0 || first > nr - 1) from = 0; else from = first; if (last < 0 || last > nr ) to = nr; else to = last; ih += from; printk ("-------------------------------------------------------------------------------\n"); printk ("|##| type | key | ilen | free_space | version | loc |\n"); for (i = from; i < to; i++, ih ++) { printk ("-------------------------------------------------------------------------------\n"); reiserfs_warning (NULL, "|%2d| %h |\n", i, ih); if (print_mode & PRINT_LEAF_ITEMS) op_print_item (ih, B_I_PITEM (bh, ih)); } printk ("===================================================================\n"); return 0; } char * reiserfs_hashname(int code) { if ( code == YURA_HASH) return "rupasov"; if ( code == TEA_HASH) return "tea"; if ( code == R5_HASH) return "r5"; return "unknown"; } /* return 1 if this is not super block */ static int print_super_block (struct buffer_head * bh) { struct reiserfs_super_block * rs = (struct reiserfs_super_block *)(bh->b_data); int skipped, data_blocks; char *version; if (is_reiserfs_3_5(rs)) { version = "3.5"; } else if (is_reiserfs_3_6(rs)) { version = "3.6"; } else if (is_reiserfs_jr(rs)) { version = ((sb_version(rs) == REISERFS_VERSION_2) ? "3.6" : "3.5"); } else { return 1; } printk ("%s\'s super block in block %ld\n======================\n", kdevname (bh->b_dev), bh->b_blocknr); printk ("Reiserfs version %s\n", version ); printk ("Block count %u\n", sb_block_count(rs)); printk ("Blocksize %d\n", sb_blocksize(rs)); printk ("Free blocks %u\n", sb_free_blocks(rs)); // FIXME: this would be confusing if // someone stores reiserfs super block in some data block ;) // skipped = (bh->b_blocknr * bh->b_size) / sb_blocksize(rs); skipped = bh->b_blocknr; data_blocks = sb_block_count(rs) - skipped - 1 - sb_bmap_nr(rs) - (!is_reiserfs_jr(rs) ? sb_jp_journal_size(rs) + 1 : sb_reserved_for_journal(rs)) - sb_free_blocks(rs); printk ("Busy blocks (skipped %d, bitmaps - %d, journal (or reserved) blocks - %d\n" "1 super block, %d data blocks\n", skipped, sb_bmap_nr(rs), (!is_reiserfs_jr(rs) ? (sb_jp_journal_size(rs) + 1) : sb_reserved_for_journal(rs)) , data_blocks); printk ("Root block %u\n", sb_root_block(rs)); printk ("Journal block (first) %d\n", sb_jp_journal_1st_block(rs)); printk ("Journal dev %d\n", sb_jp_journal_dev(rs)); printk ("Journal orig size %d\n", sb_jp_journal_size(rs)); printk ("FS state %d\n", sb_fs_state(rs)); printk ("Hash function \"%s\"\n", reiserfs_hashname(sb_hash_function_code(rs))); printk ("Tree height %d\n", sb_tree_height(rs)); return 0; } static int print_desc_block (struct buffer_head * bh) { struct reiserfs_journal_desc * desc; desc = (struct reiserfs_journal_desc *)(bh->b_data); if (memcmp(desc->j_magic, JOURNAL_DESC_MAGIC, 8)) return 1; printk ("Desc block %lu (j_trans_id %d, j_mount_id %d, j_len %d)", bh->b_blocknr, desc->j_trans_id, desc->j_mount_id, desc->j_len); return 0; } void print_block (struct buffer_head * bh, ...)//int print_mode, int first, int last) { va_list args; int mode, first, last; va_start (args, bh); if ( ! bh ) { printk("print_block: buffer is NULL\n"); return; } mode = va_arg (args, int); first = va_arg (args, int); last = va_arg (args, int); if (print_leaf (bh, mode, first, last)) if (print_internal (bh, first, last)) if (print_super_block (bh)) if (print_desc_block (bh)) printk ("Block %ld contains unformatted data\n", bh->b_blocknr); } char print_tb_buf[2048]; /* this stores initial state of tree balance in the print_tb_buf */ void store_print_tb (struct tree_balance * tb) { int h = 0; int i; struct buffer_head * tbSh, * tbFh; if (!tb) return; sprintf (print_tb_buf, "\n" "BALANCING %d\n" "MODE=%c, ITEM_POS=%d POS_IN_ITEM=%d\n" "=====================================================================\n" "* h * S * L * R * F * FL * FR * CFL * CFR *\n", tb->tb_sb->u.reiserfs_sb.s_do_balance, tb->tb_mode, PATH_LAST_POSITION (tb->tb_path), tb->tb_path->pos_in_item); for (h = 0; h < sizeof(tb->insert_size) / sizeof (tb->insert_size[0]); h ++) { if (PATH_H_PATH_OFFSET (tb->tb_path, h) <= tb->tb_path->path_length && PATH_H_PATH_OFFSET (tb->tb_path, h) > ILLEGAL_PATH_ELEMENT_OFFSET) { tbSh = PATH_H_PBUFFER (tb->tb_path, h); tbFh = PATH_H_PPARENT (tb->tb_path, h); } else { tbSh = 0; tbFh = 0; } sprintf (print_tb_buf + strlen (print_tb_buf), "* %d * %3ld(%2d) * %3ld(%2d) * %3ld(%2d) * %5ld * %5ld * %5ld * %5ld * %5ld *\n", h, (tbSh) ? (tbSh->b_blocknr):(-1), (tbSh) ? atomic_read (&(tbSh->b_count)) : -1, (tb->L[h]) ? (tb->L[h]->b_blocknr):(-1), (tb->L[h]) ? atomic_read (&(tb->L[h]->b_count)) : -1, (tb->R[h]) ? (tb->R[h]->b_blocknr):(-1), (tb->R[h]) ? atomic_read (&(tb->R[h]->b_count)) : -1, (tbFh) ? (tbFh->b_blocknr):(-1), (tb->FL[h]) ? (tb->FL[h]->b_blocknr):(-1), (tb->FR[h]) ? (tb->FR[h]->b_blocknr):(-1), (tb->CFL[h]) ? (tb->CFL[h]->b_blocknr):(-1), (tb->CFR[h]) ? (tb->CFR[h]->b_blocknr):(-1)); } sprintf (print_tb_buf + strlen (print_tb_buf), "=====================================================================\n" "* h * size * ln * lb * rn * rb * blkn * s0 * s1 * s1b * s2 * s2b * curb * lk * rk *\n" "* 0 * %4d * %2d * %2d * %2d * %2d * %4d * %2d * %2d * %3d * %2d * %3d * %4d * %2d * %2d *\n", tb->insert_size[0], tb->lnum[0], tb->lbytes, tb->rnum[0],tb->rbytes, tb->blknum[0], tb->s0num, tb->s1num,tb->s1bytes, tb->s2num, tb->s2bytes, tb->cur_blknum, tb->lkey[0], tb->rkey[0]); /* this prints balance parameters for non-leaf levels */ h = 0; do { h++; sprintf (print_tb_buf + strlen (print_tb_buf), "* %d * %4d * %2d * * %2d * * %2d *\n", h, tb->insert_size[h], tb->lnum[h], tb->rnum[h], tb->blknum[h]); } while (tb->insert_size[h]); sprintf (print_tb_buf + strlen (print_tb_buf), "=====================================================================\n" "FEB list: "); /* print FEB list (list of buffers in form (bh (b_blocknr, b_count), that will be used for new nodes) */ h = 0; for (i = 0; i < sizeof (tb->FEB) / sizeof (tb->FEB[0]); i ++) sprintf (print_tb_buf + strlen (print_tb_buf), "%p (%lu %d)%s", tb->FEB[i], tb->FEB[i] ? tb->FEB[i]->b_blocknr : 0, tb->FEB[i] ? atomic_read (&(tb->FEB[i]->b_count)) : 0, (i == sizeof (tb->FEB) / sizeof (tb->FEB[0]) - 1) ? "\n" : ", "); sprintf (print_tb_buf + strlen (print_tb_buf), "======================== the end ====================================\n"); } void print_cur_tb (char * mes) { printk ("%s\n%s", mes, print_tb_buf); } static void check_leaf_block_head (struct buffer_head * bh) { struct block_head * blkh; int nr; blkh = B_BLK_HEAD (bh); nr = blkh_nr_item(blkh); if ( nr > (bh->b_size - BLKH_SIZE) / IH_SIZE) reiserfs_panic (0, "vs-6010: check_leaf_block_head: invalid item number %z", bh); if ( blkh_free_space(blkh) > bh->b_size - BLKH_SIZE - IH_SIZE * nr ) reiserfs_panic (0, "vs-6020: check_leaf_block_head: invalid free space %z", bh); } static void check_internal_block_head (struct buffer_head * bh) { struct block_head * blkh; blkh = B_BLK_HEAD (bh); if (!(B_LEVEL (bh) > DISK_LEAF_NODE_LEVEL && B_LEVEL (bh) <= MAX_HEIGHT)) reiserfs_panic (0, "vs-6025: check_internal_block_head: invalid level %z", bh); if (B_NR_ITEMS (bh) > (bh->b_size - BLKH_SIZE) / IH_SIZE) reiserfs_panic (0, "vs-6030: check_internal_block_head: invalid item number %z", bh); if (B_FREE_SPACE (bh) != bh->b_size - BLKH_SIZE - KEY_SIZE * B_NR_ITEMS (bh) - DC_SIZE * (B_NR_ITEMS (bh) + 1)) reiserfs_panic (0, "vs-6040: check_internal_block_head: invalid free space %z", bh); } void check_leaf (struct buffer_head * bh) { int i; struct item_head * ih; if (!bh) return; check_leaf_block_head (bh); for (i = 0, ih = B_N_PITEM_HEAD (bh, 0); i < B_NR_ITEMS (bh); i ++, ih ++) op_check_item (ih, B_I_PITEM (bh, ih)); } void check_internal (struct buffer_head * bh) { if (!bh) return; check_internal_block_head (bh); } void print_statistics (struct super_block * s) { /* printk ("reiserfs_put_super: session statistics: balances %d, fix_nodes %d, \ bmap with search %d, without %d, dir2ind %d, ind2dir %d\n", s->u.reiserfs_sb.s_do_balance, s->u.reiserfs_sb.s_fix_nodes, s->u.reiserfs_sb.s_bmaps, s->u.reiserfs_sb.s_bmaps_without_search, s->u.reiserfs_sb.s_direct2indirect, s->u.reiserfs_sb.s_indirect2direct); */ }