URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [fs/] [xfs/] [linux/] [xfs_super.c] - Rev 1765
Compare with Previous | Blame | View Log
/* * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * Further, this software is distributed without any warranty that it is * free of the rightful claim of any third person regarding infringement * or the like. Any license provided herein, whether implied or * otherwise, applies only to this software file. Patent licenses, if * any, provided herein do not apply to combinations of this program with * other software, or any other product whatsoever. * * You should have received a copy of the GNU General Public License along * with this program; if not, write the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston MA 02111-1307, USA. * * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, * Mountain View, CA 94043, or: * * http://www.sgi.com * * For further information regarding this notice, see: * * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ */ #include "xfs.h" #include "xfs_inum.h" #include "xfs_log.h" #include "xfs_clnt.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_dir.h" #include "xfs_dir2.h" #include "xfs_alloc.h" #include "xfs_dmapi.h" #include "xfs_quota.h" #include "xfs_mount.h" #include "xfs_alloc_btree.h" #include "xfs_bmap_btree.h" #include "xfs_ialloc_btree.h" #include "xfs_btree.h" #include "xfs_ialloc.h" #include "xfs_attr_sf.h" #include "xfs_dir_sf.h" #include "xfs_dir2_sf.h" #include "xfs_dinode.h" #include "xfs_inode.h" #include "xfs_bmap.h" #include "xfs_bit.h" #include "xfs_rtalloc.h" #include "xfs_error.h" #include "xfs_itable.h" #include "xfs_rw.h" #include "xfs_acl.h" #include "xfs_cap.h" #include "xfs_mac.h" #include "xfs_attr.h" #include "xfs_buf_item.h" #include "xfs_utils.h" #include "xfs_version.h" #include <linux/blkdev.h> #include <linux/init.h> STATIC struct quotactl_ops linvfs_qops; STATIC struct super_operations linvfs_sops; STATIC kmem_cache_t * linvfs_inode_cachep; STATIC struct xfs_mount_args * xfs_args_allocate( struct super_block *sb) { struct xfs_mount_args *args; args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP); args->logbufs = args->logbufsize = -1; strncpy(args->fsname, bdevname(sb->s_dev), MAXNAMELEN); /* Copy the already-parsed mount(2) flags we're interested in */ if (sb->s_flags & MS_NOATIME) args->flags |= XFSMNT_NOATIME; /* Default to 32 bit inodes on Linux all the time */ args->flags |= XFSMNT_32BITINODES; return args; } __uint64_t xfs_max_file_offset( unsigned int blockshift) { unsigned int pagefactor = 1; unsigned int bitshift = BITS_PER_LONG - 1; /* Figure out maximum filesize, on Linux this can depend on * the filesystem blocksize (on 32 bit platforms). * __block_prepare_write does this in an [unsigned] long... * page->index << (PAGE_CACHE_SHIFT - bbits) * So, for page sized blocks (4K on 32 bit platforms), * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1) * but for smaller blocksizes it is less (bbits = log2 bsize). * Note1: get_block_t takes a long (implicit cast from above) * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch * can optionally convert the [unsigned] long from above into * an [unsigned] long long. */ #if BITS_PER_LONG == 32 pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift); #endif return (((__uint64_t)pagefactor) << bitshift) - 1; } STATIC __inline__ void xfs_set_inodeops( struct inode *inode) { vnode_t *vp = LINVFS_GET_VP(inode); if (vp->v_type == VNON) { remove_inode_hash(inode); make_bad_inode(inode); } else if (S_ISREG(inode->i_mode)) { inode->i_op = &linvfs_file_inode_operations; inode->i_fop = &linvfs_file_operations; inode->i_mapping->a_ops = &linvfs_aops; } else if (S_ISDIR(inode->i_mode)) { inode->i_op = &linvfs_dir_inode_operations; inode->i_fop = &linvfs_dir_operations; } else if (S_ISLNK(inode->i_mode)) { inode->i_op = &linvfs_symlink_inode_operations; if (inode->i_blocks) inode->i_mapping->a_ops = &linvfs_aops; } else { inode->i_op = &linvfs_file_inode_operations; init_special_inode(inode, inode->i_mode, kdev_t_to_nr(inode->i_rdev)); } } STATIC __inline__ void xfs_revalidate_inode( xfs_mount_t *mp, vnode_t *vp, xfs_inode_t *ip) { struct inode *inode = LINVFS_GET_IP(vp); inode->i_mode = (ip->i_d.di_mode & MODEMASK) | VTTOIF(vp->v_type); inode->i_nlink = ip->i_d.di_nlink; inode->i_uid = ip->i_d.di_uid; inode->i_gid = ip->i_d.di_gid; if (((1 << vp->v_type) & ((1<<VBLK) | (1<<VCHR))) == 0) { inode->i_rdev = NODEV; } else { xfs_dev_t dev = ip->i_df.if_u2.if_rdev; inode->i_rdev = XFS_DEV_TO_KDEVT(dev); } inode->i_blksize = PAGE_CACHE_SIZE; inode->i_generation = ip->i_d.di_gen; i_size_write(inode, ip->i_d.di_size); inode->i_blocks = XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks); inode->i_atime = ip->i_d.di_atime.t_sec; inode->i_mtime = ip->i_d.di_mtime.t_sec; inode->i_ctime = ip->i_d.di_ctime.t_sec; if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE) inode->i_flags |= S_IMMUTABLE; else inode->i_flags &= ~S_IMMUTABLE; if (ip->i_d.di_flags & XFS_DIFLAG_APPEND) inode->i_flags |= S_APPEND; else inode->i_flags &= ~S_APPEND; if (ip->i_d.di_flags & XFS_DIFLAG_SYNC) inode->i_flags |= S_SYNC; else inode->i_flags &= ~S_SYNC; if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME) inode->i_flags |= S_NOATIME; else inode->i_flags &= ~S_NOATIME; vp->v_flag &= ~VMODIFIED; } void xfs_initialize_vnode( bhv_desc_t *bdp, vnode_t *vp, bhv_desc_t *inode_bhv, int unlock) { xfs_inode_t *ip = XFS_BHVTOI(inode_bhv); struct inode *inode = LINVFS_GET_IP(vp); if (!inode_bhv->bd_vobj) { vp->v_vfsp = bhvtovfs(bdp); bhv_desc_init(inode_bhv, ip, vp, &xfs_vnodeops); bhv_insert(VN_BHV_HEAD(vp), inode_bhv); } vp->v_type = IFTOVT(ip->i_d.di_mode); /* Have we been called during the new inode create process, * in which case we are too early to fill in the Linux inode. */ if (vp->v_type == VNON) return; xfs_revalidate_inode(XFS_BHVTOM(bdp), vp, ip); /* For new inodes we need to set the ops vectors, * and unlock the inode. */ if (unlock && (inode->i_state & I_NEW)) { xfs_set_inodeops(inode); unlock_new_inode(inode); } } struct inode * xfs_get_inode( bhv_desc_t *bdp, xfs_ino_t ino, int flags) { struct vfs *vfsp = bhvtovfs(bdp); return iget_locked(vfsp->vfs_super, ino); } void xfs_flush_inode( xfs_inode_t *ip) { struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip)); filemap_fdatawrite(inode->i_mapping); } void xfs_flush_device( xfs_inode_t *ip) { struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip)); fsync_no_super(inode->i_dev); xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC); } struct dentry * d_alloc_anon(struct inode *inode) { struct dentry *dentry; spin_lock(&dcache_lock); list_for_each_entry(dentry, &inode->i_dentry, d_alias) { if (!(dentry->d_flags & DCACHE_NFSD_DISCONNECTED)) goto found; } spin_unlock(&dcache_lock); dentry = d_alloc_root(inode); if (likely(dentry != NULL)) dentry->d_flags |= DCACHE_NFSD_DISCONNECTED; return dentry; found: dget_locked(dentry); dentry->d_vfs_flags |= DCACHE_REFERENCED; spin_unlock(&dcache_lock); iput(inode); return dentry; } /*ARGSUSED*/ int xfs_blkdev_get( xfs_mount_t *mp, const char *name, struct block_device **bdevp) { struct nameidata nd; int error; error = path_lookup(name, LOOKUP_POSITIVE|LOOKUP_FOLLOW, &nd); if (error) { printk("XFS: Invalid device [%s], error=%d\n", name, error); return -error; } /* I think we actually want bd_acquire here.. --hch */ *bdevp = bdget(kdev_t_to_nr(nd.dentry->d_inode->i_rdev)); if (*bdevp) error = blkdev_get(*bdevp, FMODE_READ|FMODE_WRITE, 0, BDEV_FS); else error = -ENOMEM; path_release(&nd); return -error; } void xfs_blkdev_put( struct block_device *bdev) { if (bdev) blkdev_put(bdev, BDEV_FS); } void xfs_flush_buftarg( xfs_buftarg_t *btp) { pagebuf_delwri_flush(btp, PBDF_WAIT, NULL); } void xfs_free_buftarg( xfs_buftarg_t *btp) { xfs_flush_buftarg(btp); kmem_free(btp, sizeof(*btp)); } int xfs_readonly_buftarg( xfs_buftarg_t *btp) { return is_read_only(btp->pbr_kdev); } void xfs_relse_buftarg( xfs_buftarg_t *btp) { destroy_buffers(btp->pbr_kdev); truncate_inode_pages(btp->pbr_mapping, 0LL); } unsigned int xfs_getsize_buftarg( xfs_buftarg_t *btp) { return block_size(btp->pbr_kdev); } void xfs_setsize_buftarg( xfs_buftarg_t *btp, unsigned int blocksize, unsigned int sectorsize) { btp->pbr_bsize = blocksize; btp->pbr_sshift = ffs(sectorsize) - 1; btp->pbr_smask = sectorsize - 1; if (set_blocksize(btp->pbr_kdev, sectorsize)) { printk(KERN_WARNING "XFS: Cannot set_blocksize to %u on device 0x%x\n", sectorsize, kdev_t_to_nr(btp->pbr_kdev)); } } xfs_buftarg_t * xfs_alloc_buftarg( struct block_device *bdev) { xfs_buftarg_t *btp; btp = kmem_zalloc(sizeof(*btp), KM_SLEEP); btp->pbr_dev = bdev->bd_dev; btp->pbr_kdev = to_kdev_t(btp->pbr_dev); btp->pbr_bdev = bdev; btp->pbr_mapping = bdev->bd_inode->i_mapping; xfs_setsize_buftarg(btp, PAGE_CACHE_SIZE, get_hardsect_size(btp->pbr_kdev)); switch (MAJOR(btp->pbr_dev)) { case MD_MAJOR: case EVMS_MAJOR: btp->pbr_flags = PBR_ALIGNED_ONLY; break; case LVM_BLK_MAJOR: btp->pbr_flags = PBR_SECTOR_ONLY; break; } return btp; } STATIC struct inode * linvfs_alloc_inode( struct super_block *sb) { vnode_t *vp; vp = (vnode_t *)kmem_cache_alloc(linvfs_inode_cachep, kmem_flags_convert(KM_SLEEP)); if (!vp) return NULL; return LINVFS_GET_IP(vp); } STATIC void linvfs_destroy_inode( struct inode *inode) { kmem_cache_free(linvfs_inode_cachep, LINVFS_GET_VP(inode)); } #define VNODE_SIZE \ (sizeof(vnode_t) - sizeof(struct inode) + offsetof(struct inode, u)) STATIC void init_once( void *data, kmem_cache_t *cachep, unsigned long flags) { vnode_t *vp = (vnode_t *)data; if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == SLAB_CTOR_CONSTRUCTOR) { struct inode *inode = LINVFS_GET_IP(vp); memset(vp, 0, VNODE_SIZE); __inode_init_once(inode); } } STATIC int init_inodecache( void ) { linvfs_inode_cachep = kmem_cache_create("linvfs_icache", VNODE_SIZE, 0, SLAB_HWCACHE_ALIGN, init_once, NULL); if (linvfs_inode_cachep == NULL) return -ENOMEM; return 0; } STATIC void destroy_inodecache( void ) { if (kmem_cache_destroy(linvfs_inode_cachep)) printk(KERN_WARNING "%s: cache still in use!\n", __FUNCTION__); } /* * Attempt to flush the inode, this will actually fail * if the inode is pinned, but we dirty the inode again * at the point when it is unpinned after a log write, * since this is when the inode itself becomes flushable. */ STATIC void linvfs_write_inode( struct inode *inode, int sync) { vnode_t *vp = LINVFS_GET_VP(inode); int error, flags = FLUSH_INODE; if (vp) { vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address); if (sync) flags |= FLUSH_SYNC; VOP_IFLUSH(vp, flags, error); } } STATIC void linvfs_clear_inode( struct inode *inode) { vnode_t *vp = LINVFS_GET_VP(inode); if (vp) { vn_rele(vp); vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address); /* * Do all our cleanup, and remove this vnode. */ vn_remove(vp); } } #define SYNCD_FLAGS (SYNC_FSDATA|SYNC_BDFLUSH|SYNC_ATTR|SYNC_REFCACHE) STATIC int syncd(void *arg) { vfs_t *vfsp = (vfs_t *) arg; int error; daemonize(); reparent_to_init(); sigmask_lock(); sigfillset(¤t->blocked); __recalc_sigpending(current); sigmask_unlock(); sprintf(current->comm, "xfssyncd"); vfsp->vfs_sync_task = current; wmb(); wake_up(&vfsp->vfs_wait_sync_task); for (;;) { set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(xfs_syncd_interval); if (vfsp->vfs_flag & VFS_UMOUNT) break; if (vfsp->vfs_flag & VFS_RDONLY) continue; VFS_SYNC(vfsp, SYNCD_FLAGS, NULL, error); } vfsp->vfs_sync_task = NULL; wmb(); wake_up(&vfsp->vfs_wait_sync_task); return 0; } STATIC int linvfs_start_syncd(vfs_t *vfsp) { int pid; pid = kernel_thread(syncd, (void *) vfsp, CLONE_VM | CLONE_FS | CLONE_FILES); if (pid < 0) return pid; wait_event(vfsp->vfs_wait_sync_task, vfsp->vfs_sync_task); return 0; } STATIC void linvfs_stop_syncd(vfs_t *vfsp) { vfsp->vfs_flag |= VFS_UMOUNT; wmb(); wake_up_process(vfsp->vfs_sync_task); wait_event(vfsp->vfs_wait_sync_task, !vfsp->vfs_sync_task); } STATIC void linvfs_put_super( struct super_block *sb) { vfs_t *vfsp = LINVFS_GET_VFS(sb); int error; linvfs_stop_syncd(vfsp); VFS_SYNC(vfsp, SYNC_ATTR|SYNC_DELWRI, NULL, error); if (!error) VFS_UNMOUNT(vfsp, 0, NULL, error); if (error) { printk("XFS unmount got error %d\n", error); printk("%s: vfsp/0x%p left dangling!\n", __FUNCTION__, vfsp); return; } vfs_deallocate(vfsp); } STATIC void linvfs_write_super( struct super_block *sb) { vfs_t *vfsp = LINVFS_GET_VFS(sb); int error; if (sb->s_flags & MS_RDONLY) { sb->s_dirt = 0; /* paranoia */ return; } /* Push the log and superblock a little */ VFS_SYNC(vfsp, SYNC_FSDATA, NULL, error); sb->s_dirt = 0; } STATIC int linvfs_sync_super( struct super_block *sb) { vfs_t *vfsp = LINVFS_GET_VFS(sb); int error; VFS_SYNC(vfsp, SYNC_FSDATA|SYNC_WAIT, NULL, error); return -error; } STATIC int linvfs_statfs( struct super_block *sb, struct statfs *statp) { vfs_t *vfsp = LINVFS_GET_VFS(sb); int error; VFS_STATVFS(vfsp, statp, NULL, error); return -error; } STATIC int linvfs_remount( struct super_block *sb, int *flags, char *options) { vfs_t *vfsp = LINVFS_GET_VFS(sb); struct xfs_mount_args *args = xfs_args_allocate(sb); int error; VFS_PARSEARGS(vfsp, options, args, 1, error); if (!error) VFS_MNTUPDATE(vfsp, flags, args, error); kmem_free(args, sizeof(*args)); return -error; } STATIC void linvfs_freeze_fs( struct super_block *sb) { vfs_t *vfsp = LINVFS_GET_VFS(sb); vnode_t *vp; int error; if (sb->s_flags & MS_RDONLY) return; VFS_ROOT(vfsp, &vp, error); VOP_IOCTL(vp, LINVFS_GET_IP(vp), NULL, 0, XFS_IOC_FREEZE, 0, error); VN_RELE(vp); } STATIC void linvfs_unfreeze_fs( struct super_block *sb) { vfs_t *vfsp = LINVFS_GET_VFS(sb); vnode_t *vp; int error; VFS_ROOT(vfsp, &vp, error); VOP_IOCTL(vp, LINVFS_GET_IP(vp), NULL, 0, XFS_IOC_THAW, 0, error); VN_RELE(vp); } STATIC int linvfs_dentry_to_fh( struct dentry *dentry, __u32 *data, int *lenp, int need_parent) { struct inode *inode = dentry->d_inode ; vnode_t *vp = LINVFS_GET_VP(inode); int maxlen = *lenp; xfs_fid2_t fid; int error; if (maxlen < 3) return 255 ; VOP_FID2(vp, (struct fid *)&fid, error); data[0] = (__u32)fid.fid_ino; /* 32 bits of inode is OK */ data[1] = fid.fid_gen; *lenp = 2 ; if (maxlen < 4 || ! need_parent) return 2 ; inode = dentry->d_parent->d_inode ; vp = LINVFS_GET_VP(inode); VOP_FID2(vp, (struct fid *)&fid, error); data[2] = (__u32)fid.fid_ino; /* 32 bits of inode is OK */ *lenp = 3 ; if (maxlen < 4) return 3 ; data[3] = fid.fid_gen; *lenp = 4 ; return 4 ; } STATIC struct dentry * linvfs_fh_to_dentry( struct super_block *sb, __u32 *data, int len, int fhtype, int parent) { vnode_t *vp; struct inode *inode = NULL; struct dentry *result; xfs_fid2_t xfid; vfs_t *vfsp = LINVFS_GET_VFS(sb); int error; xfid.fid_len = sizeof(xfs_fid2_t) - sizeof(xfid.fid_len); xfid.fid_pad = 0; if (!parent) { xfid.fid_gen = data[1]; xfid.fid_ino = (__u64)data[0]; } else { if (fhtype == 4) xfid.fid_gen = data[3]; else xfid.fid_gen = 0; xfid.fid_ino = (__u64)data[2]; } VFS_VGET(vfsp, &vp, (fid_t *)&xfid, error); if (error || vp == NULL) return ERR_PTR(-ESTALE) ; inode = LINVFS_GET_IP(vp); result = d_alloc_anon(inode); if (unlikely(result == NULL)) { iput(inode); return ERR_PTR(-ENOMEM); } return result; } STATIC int linvfs_show_options( struct seq_file *m, struct vfsmount *mnt) { struct vfs *vfsp = LINVFS_GET_VFS(mnt->mnt_sb); int error; VFS_SHOWARGS(vfsp, m, error); return error; } STATIC int linvfs_getxstate( struct super_block *sb, struct fs_quota_stat *fqs) { struct vfs *vfsp = LINVFS_GET_VFS(sb); int error; VFS_QUOTACTL(vfsp, Q_XGETQSTAT, 0, (caddr_t)fqs, error); return -error; } STATIC int linvfs_setxstate( struct super_block *sb, unsigned int flags, int op) { struct vfs *vfsp = LINVFS_GET_VFS(sb); int error; VFS_QUOTACTL(vfsp, op, 0, (caddr_t)&flags, error); return -error; } STATIC int linvfs_getxquota( struct super_block *sb, int type, qid_t id, struct fs_disk_quota *fdq) { struct vfs *vfsp = LINVFS_GET_VFS(sb); int error, getmode; getmode = (type == GRPQUOTA) ? Q_XGETGQUOTA : Q_XGETQUOTA; VFS_QUOTACTL(vfsp, getmode, id, (caddr_t)fdq, error); return -error; } STATIC int linvfs_setxquota( struct super_block *sb, int type, qid_t id, struct fs_disk_quota *fdq) { struct vfs *vfsp = LINVFS_GET_VFS(sb); int error, setmode; setmode = (type == GRPQUOTA) ? Q_XSETGQLIM : Q_XSETQLIM; VFS_QUOTACTL(vfsp, setmode, id, (caddr_t)fdq, error); return -error; } STATIC struct super_block * linvfs_read_super( struct super_block *sb, void *data, int silent) { vnode_t *rootvp; struct vfs *vfsp = vfs_allocate(); struct xfs_mount_args *args = xfs_args_allocate(sb); struct statfs statvfs; int error; vfsp->vfs_super = sb; LINVFS_SET_VFS(sb, vfsp); if (sb->s_flags & MS_RDONLY) vfsp->vfs_flag |= VFS_RDONLY; bhv_insert_all_vfsops(vfsp); VFS_PARSEARGS(vfsp, (char *)data, args, 0, error); if (error) { bhv_remove_all_vfsops(vfsp, 1); goto fail_vfsop; } sb_min_blocksize(sb, BBSIZE); sb->s_qcop = &linvfs_qops; sb->s_op = &linvfs_sops; VFS_MOUNT(vfsp, args, NULL, error); if (error) { bhv_remove_all_vfsops(vfsp, 1); goto fail_vfsop; } VFS_STATVFS(vfsp, &statvfs, NULL, error); if (error) goto fail_unmount; sb->s_dirt = 1; sb->s_magic = statvfs.f_type; sb->s_blocksize = statvfs.f_bsize; sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1; sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits); set_posix_acl_flag(sb); VFS_ROOT(vfsp, &rootvp, error); if (error) goto fail_unmount; sb->s_root = d_alloc_root(LINVFS_GET_IP(rootvp)); if (!sb->s_root) goto fail_vnrele; if (is_bad_inode(sb->s_root->d_inode)) goto fail_vnrele; if (linvfs_start_syncd(vfsp)) goto fail_vnrele; vn_trace_exit(rootvp, __FUNCTION__, (inst_t *)__return_address); kmem_free(args, sizeof(*args)); return sb; fail_vnrele: if (sb->s_root) { dput(sb->s_root); sb->s_root = NULL; } else { VN_RELE(rootvp); } fail_unmount: VFS_UNMOUNT(vfsp, 0, NULL, error); fail_vfsop: vfs_deallocate(vfsp); kmem_free(args, sizeof(*args)); return NULL; } STATIC struct super_operations linvfs_sops = { .alloc_inode = linvfs_alloc_inode, .destroy_inode = linvfs_destroy_inode, .write_inode = linvfs_write_inode, .clear_inode = linvfs_clear_inode, .put_super = linvfs_put_super, .write_super = linvfs_write_super, .sync_fs = linvfs_sync_super, .write_super_lockfs = linvfs_freeze_fs, .unlockfs = linvfs_unfreeze_fs, .statfs = linvfs_statfs, .remount_fs = linvfs_remount, .fh_to_dentry = linvfs_fh_to_dentry, .dentry_to_fh = linvfs_dentry_to_fh, .show_options = linvfs_show_options, }; STATIC struct quotactl_ops linvfs_qops = { .get_xstate = linvfs_getxstate, .set_xstate = linvfs_setxstate, .get_xquota = linvfs_getxquota, .set_xquota = linvfs_setxquota, }; STATIC struct file_system_type xfs_fs_type = { .owner = THIS_MODULE, .name = "xfs", .read_super = linvfs_read_super, .fs_flags = FS_REQUIRES_DEV, }; STATIC int __init init_xfs_fs( void ) { int error; struct sysinfo si; static char message[] __initdata = KERN_INFO \ XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n"; printk(message); si_meminfo(&si); xfs_physmem = si.totalram; ktrace_init(64); error = init_inodecache(); if (error < 0) goto undo_inodecache; error = pagebuf_init(); if (error < 0) goto undo_pagebuf; vn_init(); xfs_init(); uuid_init(); vfs_initdmapi(); vfs_initquota(); error = register_filesystem(&xfs_fs_type); if (error) goto undo_register; return 0; undo_register: pagebuf_terminate(); undo_pagebuf: destroy_inodecache(); undo_inodecache: return error; } STATIC void __exit exit_xfs_fs( void ) { unregister_filesystem(&xfs_fs_type); xfs_cleanup(); vfs_exitquota(); vfs_exitdmapi(); pagebuf_terminate(); destroy_inodecache(); ktrace_uninit(); } module_init(init_xfs_fs); module_exit(exit_xfs_fs); MODULE_AUTHOR("Silicon Graphics, Inc."); MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled"); MODULE_LICENSE("GPL");