URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [include/] [asm-i386/] [uaccess.h] - Rev 1275
Go to most recent revision | Compare with Previous | Blame | View Log
#ifndef __i386_UACCESS_H #define __i386_UACCESS_H /* * User space memory access functions */ #include <linux/config.h> #include <linux/sched.h> #include <linux/prefetch.h> #include <asm/page.h> #define VERIFY_READ 0 #define VERIFY_WRITE 1 /* * The fs value determines whether argument validity checking should be * performed or not. If get_fs() == USER_DS, checking is performed, with * get_fs() == KERNEL_DS, checking is bypassed. * * For historical reasons, these macros are grossly misnamed. */ #define MAKE_MM_SEG(s) ((mm_segment_t) { (s) }) #define KERNEL_DS MAKE_MM_SEG(0xFFFFFFFF) #define USER_DS MAKE_MM_SEG(PAGE_OFFSET) #define get_ds() (KERNEL_DS) #define get_fs() (current->addr_limit) #define set_fs(x) (current->addr_limit = (x)) #define segment_eq(a,b) ((a).seg == (b).seg) extern int __verify_write(const void *, unsigned long); #define __addr_ok(addr) ((unsigned long)(addr) < (current->addr_limit.seg)) /* * Test whether a block of memory is a valid user space address. * Returns 0 if the range is valid, nonzero otherwise. * * This is equivalent to the following test: * (u33)addr + (u33)size >= (u33)current->addr_limit.seg * * This needs 33-bit arithmetic. We have a carry... */ #define __range_ok(addr,size) ({ \ unsigned long flag,sum; \ asm("addl %3,%1 ; sbbl %0,%0; cmpl %1,%4; sbbl $0,%0" \ :"=&r" (flag), "=r" (sum) \ :"1" (addr),"g" ((int)(size)),"g" (current->addr_limit.seg)); \ flag; }) #ifdef CONFIG_X86_WP_WORKS_OK /** * access_ok: - Checks if a user space pointer is valid * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that * %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe * to write to a block, it is always safe to read from it. * @addr: User space pointer to start of block to check * @size: Size of block to check * * Context: User context only. This function may sleep. * * Checks if a pointer to a block of memory in user space is valid. * * Returns true (nonzero) if the memory block may be valid, false (zero) * if it is definitely invalid. * * Note that, depending on architecture, this function probably just * checks that the pointer is in the user space range - after calling * this function, memory access functions may still return -EFAULT. */ #define access_ok(type,addr,size) (__range_ok(addr,size) == 0) #else #define access_ok(type,addr,size) ( (__range_ok(addr,size) == 0) && \ ((type) == VERIFY_READ || boot_cpu_data.wp_works_ok || \ segment_eq(get_fs(),KERNEL_DS) || \ __verify_write((void *)(addr),(size)))) #endif /** * verify_area: - Obsolete, use access_ok() * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE * @addr: User space pointer to start of block to check * @size: Size of block to check * * Context: User context only. This function may sleep. * * This function has been replaced by access_ok(). * * Checks if a pointer to a block of memory in user space is valid. * * Returns zero if the memory block may be valid, -EFAULT * if it is definitely invalid. * * See access_ok() for more details. */ static inline int verify_area(int type, const void * addr, unsigned long size) { return access_ok(type,addr,size) ? 0 : -EFAULT; } /* * The exception table consists of pairs of addresses: the first is the * address of an instruction that is allowed to fault, and the second is * the address at which the program should continue. No registers are * modified, so it is entirely up to the continuation code to figure out * what to do. * * All the routines below use bits of fixup code that are out of line * with the main instruction path. This means when everything is well, * we don't even have to jump over them. Further, they do not intrude * on our cache or tlb entries. */ struct exception_table_entry { unsigned long insn, fixup; }; /* Returns 0 if exception not found and fixup otherwise. */ extern unsigned long search_exception_table(unsigned long); /* * These are the main single-value transfer routines. They automatically * use the right size if we just have the right pointer type. * * This gets kind of ugly. We want to return _two_ values in "get_user()" * and yet we don't want to do any pointers, because that is too much * of a performance impact. Thus we have a few rather ugly macros here, * and hide all the uglyness from the user. * * The "__xxx" versions of the user access functions are versions that * do not verify the address space, that must have been done previously * with a separate "access_ok()" call (this is used when we do multiple * accesses to the same area of user memory). */ extern void __get_user_1(void); extern void __get_user_2(void); extern void __get_user_4(void); #define __get_user_x(size,ret,x,ptr) \ __asm__ __volatile__("call __get_user_" #size \ :"=a" (ret),"=d" (x) \ :"0" (ptr)) /* Careful: we have to cast the result to the type of the pointer for sign reasons */ /** * get_user: - Get a simple variable from user space. * @x: Variable to store result. * @ptr: Source address, in user space. * * Context: User context only. This function may sleep. * * This macro copies a single simple variable from user space to kernel * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and the result of * dereferencing @ptr must be assignable to @x without a cast. * * Returns zero on success, or -EFAULT on error. * On error, the variable @x is set to zero. */ #define get_user(x,ptr) \ ({ int __ret_gu,__val_gu; \ switch(sizeof (*(ptr))) { \ case 1: __get_user_x(1,__ret_gu,__val_gu,ptr); break; \ case 2: __get_user_x(2,__ret_gu,__val_gu,ptr); break; \ case 4: __get_user_x(4,__ret_gu,__val_gu,ptr); break; \ default: __get_user_x(X,__ret_gu,__val_gu,ptr); break; \ } \ (x) = (__typeof__(*(ptr)))__val_gu; \ __ret_gu; \ }) extern void __put_user_1(void); extern void __put_user_2(void); extern void __put_user_4(void); extern void __put_user_8(void); extern void __put_user_bad(void); /** * put_user: - Write a simple value into user space. * @x: Value to copy to user space. * @ptr: Destination address, in user space. * * Context: User context only. This function may sleep. * * This macro copies a single simple value from kernel space to user * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and @x must be assignable * to the result of dereferencing @ptr. * * Returns zero on success, or -EFAULT on error. */ #define put_user(x,ptr) \ __put_user_check((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr))) /** * __get_user: - Get a simple variable from user space, with less checking. * @x: Variable to store result. * @ptr: Source address, in user space. * * Context: User context only. This function may sleep. * * This macro copies a single simple variable from user space to kernel * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and the result of * dereferencing @ptr must be assignable to @x without a cast. * * Caller must check the pointer with access_ok() before calling this * function. * * Returns zero on success, or -EFAULT on error. * On error, the variable @x is set to zero. */ #define __get_user(x,ptr) \ __get_user_nocheck((x),(ptr),sizeof(*(ptr))) /** * __put_user: - Write a simple value into user space, with less checking. * @x: Value to copy to user space. * @ptr: Destination address, in user space. * * Context: User context only. This function may sleep. * * This macro copies a single simple value from kernel space to user * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and @x must be assignable * to the result of dereferencing @ptr. * * Caller must check the pointer with access_ok() before calling this * function. * * Returns zero on success, or -EFAULT on error. */ #define __put_user(x,ptr) \ __put_user_nocheck((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr))) #define __put_user_nocheck(x,ptr,size) \ ({ \ long __pu_err; \ __put_user_size((x),(ptr),(size),__pu_err); \ __pu_err; \ }) #define __put_user_check(x,ptr,size) \ ({ \ long __pu_err = -EFAULT; \ __typeof__(*(ptr)) *__pu_addr = (ptr); \ if (access_ok(VERIFY_WRITE,__pu_addr,size)) \ __put_user_size((x),__pu_addr,(size),__pu_err); \ __pu_err; \ }) #define __put_user_u64(x, addr, err) \ __asm__ __volatile__( \ "1: movl %%eax,0(%2)\n" \ "2: movl %%edx,4(%2)\n" \ "3:\n" \ ".section .fixup,\"ax\"\n" \ "4: movl %3,%0\n" \ " jmp 3b\n" \ ".previous\n" \ ".section __ex_table,\"a\"\n" \ " .align 4\n" \ " .long 1b,4b\n" \ " .long 2b,4b\n" \ ".previous" \ : "=r"(err) \ : "A" (x), "r" (addr), "i"(-EFAULT), "0"(err)) #define __put_user_size(x,ptr,size,retval) \ do { \ retval = 0; \ switch (size) { \ case 1: __put_user_asm(x,ptr,retval,"b","b","iq"); break; \ case 2: __put_user_asm(x,ptr,retval,"w","w","ir"); break; \ case 4: __put_user_asm(x,ptr,retval,"l","","ir"); break; \ case 8: __put_user_u64(x,ptr,retval); break; \ default: __put_user_bad(); \ } \ } while (0) struct __large_struct { unsigned long buf[100]; }; #define __m(x) (*(struct __large_struct *)(x)) /* * Tell gcc we read from memory instead of writing: this is because * we do not write to any memory gcc knows about, so there are no * aliasing issues. */ #define __put_user_asm(x, addr, err, itype, rtype, ltype) \ __asm__ __volatile__( \ "1: mov"itype" %"rtype"1,%2\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: movl %3,%0\n" \ " jmp 2b\n" \ ".previous\n" \ ".section __ex_table,\"a\"\n" \ " .align 4\n" \ " .long 1b,3b\n" \ ".previous" \ : "=r"(err) \ : ltype (x), "m"(__m(addr)), "i"(-EFAULT), "0"(err)) #define __get_user_nocheck(x,ptr,size) \ ({ \ long __gu_err, __gu_val; \ __get_user_size(__gu_val,(ptr),(size),__gu_err); \ (x) = (__typeof__(*(ptr)))__gu_val; \ __gu_err; \ }) extern long __get_user_bad(void); #define __get_user_size(x,ptr,size,retval) \ do { \ retval = 0; \ switch (size) { \ case 1: __get_user_asm(x,ptr,retval,"b","b","=q"); break; \ case 2: __get_user_asm(x,ptr,retval,"w","w","=r"); break; \ case 4: __get_user_asm(x,ptr,retval,"l","","=r"); break; \ default: (x) = __get_user_bad(); \ } \ } while (0) #define __get_user_asm(x, addr, err, itype, rtype, ltype) \ __asm__ __volatile__( \ "1: mov"itype" %2,%"rtype"1\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: movl %3,%0\n" \ " xor"itype" %"rtype"1,%"rtype"1\n" \ " jmp 2b\n" \ ".previous\n" \ ".section __ex_table,\"a\"\n" \ " .align 4\n" \ " .long 1b,3b\n" \ ".previous" \ : "=r"(err), ltype (x) \ : "m"(__m(addr)), "i"(-EFAULT), "0"(err)) /* * Copy To/From Userspace */ /* Generic arbitrary sized copy. */ #define __copy_user(to,from,size) \ do { \ int __d0, __d1; \ __asm__ __volatile__( \ "0: rep; movsl\n" \ " movl %3,%0\n" \ "1: rep; movsb\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: lea 0(%3,%0,4),%0\n" \ " jmp 2b\n" \ ".previous\n" \ ".section __ex_table,\"a\"\n" \ " .align 4\n" \ " .long 0b,3b\n" \ " .long 1b,2b\n" \ ".previous" \ : "=&c"(size), "=&D" (__d0), "=&S" (__d1) \ : "r"(size & 3), "0"(size / 4), "1"(to), "2"(from) \ : "memory"); \ } while (0) #define __copy_user_zeroing(to,from,size) \ do { \ int __d0, __d1; \ __asm__ __volatile__( \ "0: rep; movsl\n" \ " movl %3,%0\n" \ "1: rep; movsb\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: lea 0(%3,%0,4),%0\n" \ "4: pushl %0\n" \ " pushl %%eax\n" \ " xorl %%eax,%%eax\n" \ " rep; stosb\n" \ " popl %%eax\n" \ " popl %0\n" \ " jmp 2b\n" \ ".previous\n" \ ".section __ex_table,\"a\"\n" \ " .align 4\n" \ " .long 0b,3b\n" \ " .long 1b,4b\n" \ ".previous" \ : "=&c"(size), "=&D" (__d0), "=&S" (__d1) \ : "r"(size & 3), "0"(size / 4), "1"(to), "2"(from) \ : "memory"); \ } while (0) /* We let the __ versions of copy_from/to_user inline, because they're often * used in fast paths and have only a small space overhead. */ static inline unsigned long __generic_copy_from_user_nocheck(void *to, const void *from, unsigned long n) { __copy_user_zeroing(to,from,n); return n; } static inline unsigned long __generic_copy_to_user_nocheck(void *to, const void *from, unsigned long n) { __copy_user(to,from,n); return n; } /* Optimize just a little bit when we know the size of the move. */ #define __constant_copy_user(to, from, size) \ do { \ int __d0, __d1; \ switch (size & 3) { \ default: \ __asm__ __volatile__( \ "0: rep; movsl\n" \ "1:\n" \ ".section .fixup,\"ax\"\n" \ "2: shl $2,%0\n" \ " jmp 1b\n" \ ".previous\n" \ ".section __ex_table,\"a\"\n" \ " .align 4\n" \ " .long 0b,2b\n" \ ".previous" \ : "=c"(size), "=&S" (__d0), "=&D" (__d1)\ : "1"(from), "2"(to), "0"(size/4) \ : "memory"); \ break; \ case 1: \ __asm__ __volatile__( \ "0: rep; movsl\n" \ "1: movsb\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: shl $2,%0\n" \ "4: incl %0\n" \ " jmp 2b\n" \ ".previous\n" \ ".section __ex_table,\"a\"\n" \ " .align 4\n" \ " .long 0b,3b\n" \ " .long 1b,4b\n" \ ".previous" \ : "=c"(size), "=&S" (__d0), "=&D" (__d1)\ : "1"(from), "2"(to), "0"(size/4) \ : "memory"); \ break; \ case 2: \ __asm__ __volatile__( \ "0: rep; movsl\n" \ "1: movsw\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: shl $2,%0\n" \ "4: addl $2,%0\n" \ " jmp 2b\n" \ ".previous\n" \ ".section __ex_table,\"a\"\n" \ " .align 4\n" \ " .long 0b,3b\n" \ " .long 1b,4b\n" \ ".previous" \ : "=c"(size), "=&S" (__d0), "=&D" (__d1)\ : "1"(from), "2"(to), "0"(size/4) \ : "memory"); \ break; \ case 3: \ __asm__ __volatile__( \ "0: rep; movsl\n" \ "1: movsw\n" \ "2: movsb\n" \ "3:\n" \ ".section .fixup,\"ax\"\n" \ "4: shl $2,%0\n" \ "5: addl $2,%0\n" \ "6: incl %0\n" \ " jmp 3b\n" \ ".previous\n" \ ".section __ex_table,\"a\"\n" \ " .align 4\n" \ " .long 0b,4b\n" \ " .long 1b,5b\n" \ " .long 2b,6b\n" \ ".previous" \ : "=c"(size), "=&S" (__d0), "=&D" (__d1)\ : "1"(from), "2"(to), "0"(size/4) \ : "memory"); \ break; \ } \ } while (0) /* Optimize just a little bit when we know the size of the move. */ #define __constant_copy_user_zeroing(to, from, size) \ do { \ int __d0, __d1; \ switch (size & 3) { \ default: \ __asm__ __volatile__( \ "0: rep; movsl\n" \ "1:\n" \ ".section .fixup,\"ax\"\n" \ "2: pushl %0\n" \ " pushl %%eax\n" \ " xorl %%eax,%%eax\n" \ " rep; stosl\n" \ " popl %%eax\n" \ " popl %0\n" \ " shl $2,%0\n" \ " jmp 1b\n" \ ".previous\n" \ ".section __ex_table,\"a\"\n" \ " .align 4\n" \ " .long 0b,2b\n" \ ".previous" \ : "=c"(size), "=&S" (__d0), "=&D" (__d1)\ : "1"(from), "2"(to), "0"(size/4) \ : "memory"); \ break; \ case 1: \ __asm__ __volatile__( \ "0: rep; movsl\n" \ "1: movsb\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: pushl %0\n" \ " pushl %%eax\n" \ " xorl %%eax,%%eax\n" \ " rep; stosl\n" \ " stosb\n" \ " popl %%eax\n" \ " popl %0\n" \ " shl $2,%0\n" \ " incl %0\n" \ " jmp 2b\n" \ "4: pushl %%eax\n" \ " xorl %%eax,%%eax\n" \ " stosb\n" \ " popl %%eax\n" \ " incl %0\n" \ " jmp 2b\n" \ ".previous\n" \ ".section __ex_table,\"a\"\n" \ " .align 4\n" \ " .long 0b,3b\n" \ " .long 1b,4b\n" \ ".previous" \ : "=c"(size), "=&S" (__d0), "=&D" (__d1)\ : "1"(from), "2"(to), "0"(size/4) \ : "memory"); \ break; \ case 2: \ __asm__ __volatile__( \ "0: rep; movsl\n" \ "1: movsw\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: pushl %0\n" \ " pushl %%eax\n" \ " xorl %%eax,%%eax\n" \ " rep; stosl\n" \ " stosw\n" \ " popl %%eax\n" \ " popl %0\n" \ " shl $2,%0\n" \ " addl $2,%0\n" \ " jmp 2b\n" \ "4: pushl %%eax\n" \ " xorl %%eax,%%eax\n" \ " stosw\n" \ " popl %%eax\n" \ " addl $2,%0\n" \ " jmp 2b\n" \ ".previous\n" \ ".section __ex_table,\"a\"\n" \ " .align 4\n" \ " .long 0b,3b\n" \ " .long 1b,4b\n" \ ".previous" \ : "=c"(size), "=&S" (__d0), "=&D" (__d1)\ : "1"(from), "2"(to), "0"(size/4) \ : "memory"); \ break; \ case 3: \ __asm__ __volatile__( \ "0: rep; movsl\n" \ "1: movsw\n" \ "2: movsb\n" \ "3:\n" \ ".section .fixup,\"ax\"\n" \ "4: pushl %0\n" \ " pushl %%eax\n" \ " xorl %%eax,%%eax\n" \ " rep; stosl\n" \ " stosw\n" \ " stosb\n" \ " popl %%eax\n" \ " popl %0\n" \ " shl $2,%0\n" \ " addl $3,%0\n" \ " jmp 2b\n" \ "5: pushl %%eax\n" \ " xorl %%eax,%%eax\n" \ " stosw\n" \ " stosb\n" \ " popl %%eax\n" \ " addl $3,%0\n" \ " jmp 2b\n" \ "6: pushl %%eax\n" \ " xorl %%eax,%%eax\n" \ " stosb\n" \ " popl %%eax\n" \ " incl %0\n" \ " jmp 3b\n" \ ".previous\n" \ ".section __ex_table,\"a\"\n" \ " .align 4\n" \ " .long 0b,4b\n" \ " .long 1b,5b\n" \ " .long 2b,6b\n" \ ".previous" \ : "=c"(size), "=&S" (__d0), "=&D" (__d1)\ : "1"(from), "2"(to), "0"(size/4) \ : "memory"); \ break; \ } \ } while (0) unsigned long __generic_copy_to_user(void *, const void *, unsigned long); unsigned long __generic_copy_from_user(void *, const void *, unsigned long); static inline unsigned long __constant_copy_to_user(void *to, const void *from, unsigned long n) { prefetch(from); if (access_ok(VERIFY_WRITE, to, n)) __constant_copy_user(to,from,n); return n; } static inline unsigned long __constant_copy_from_user(void *to, const void *from, unsigned long n) { if (access_ok(VERIFY_READ, from, n)) __constant_copy_user_zeroing(to,from,n); else memset(to, 0, n); return n; } static inline unsigned long __constant_copy_to_user_nocheck(void *to, const void *from, unsigned long n) { __constant_copy_user(to,from,n); return n; } static inline unsigned long __constant_copy_from_user_nocheck(void *to, const void *from, unsigned long n) { __constant_copy_user_zeroing(to,from,n); return n; } /** * copy_to_user: - Copy a block of data into user space. * @to: Destination address, in user space. * @from: Source address, in kernel space. * @n: Number of bytes to copy. * * Context: User context only. This function may sleep. * * Copy data from kernel space to user space. * * Returns number of bytes that could not be copied. * On success, this will be zero. */ #define copy_to_user(to,from,n) \ (__builtin_constant_p(n) ? \ __constant_copy_to_user((to),(from),(n)) : \ __generic_copy_to_user((to),(from),(n))) /** * copy_from_user: - Copy a block of data from user space. * @to: Destination address, in kernel space. * @from: Source address, in user space. * @n: Number of bytes to copy. * * Context: User context only. This function may sleep. * * Copy data from user space to kernel space. * * Returns number of bytes that could not be copied. * On success, this will be zero. * * If some data could not be copied, this function will pad the copied * data to the requested size using zero bytes. */ #define copy_from_user(to,from,n) \ (__builtin_constant_p(n) ? \ __constant_copy_from_user((to),(from),(n)) : \ __generic_copy_from_user((to),(from),(n))) /** * __copy_to_user: - Copy a block of data into user space, with less checking. * @to: Destination address, in user space. * @from: Source address, in kernel space. * @n: Number of bytes to copy. * * Context: User context only. This function may sleep. * * Copy data from kernel space to user space. Caller must check * the specified block with access_ok() before calling this function. * * Returns number of bytes that could not be copied. * On success, this will be zero. */ #define __copy_to_user(to,from,n) \ (__builtin_constant_p(n) ? \ __constant_copy_to_user_nocheck((to),(from),(n)) : \ __generic_copy_to_user_nocheck((to),(from),(n))) /** * __copy_from_user: - Copy a block of data from user space, with less checking. * @to: Destination address, in kernel space. * @from: Source address, in user space. * @n: Number of bytes to copy. * * Context: User context only. This function may sleep. * * Copy data from user space to kernel space. Caller must check * the specified block with access_ok() before calling this function. * * Returns number of bytes that could not be copied. * On success, this will be zero. * * If some data could not be copied, this function will pad the copied * data to the requested size using zero bytes. */ #define __copy_from_user(to,from,n) \ (__builtin_constant_p(n) ? \ __constant_copy_from_user_nocheck((to),(from),(n)) : \ __generic_copy_from_user_nocheck((to),(from),(n))) long strncpy_from_user(char *dst, const char *src, long count); long __strncpy_from_user(char *dst, const char *src, long count); /** * strlen_user: - Get the size of a string in user space. * @str: The string to measure. * * Context: User context only. This function may sleep. * * Get the size of a NUL-terminated string in user space. * * Returns the size of the string INCLUDING the terminating NUL. * On exception, returns 0. * * If there is a limit on the length of a valid string, you may wish to * consider using strnlen_user() instead. */ #define strlen_user(str) strnlen_user(str, ~0UL >> 1) long strnlen_user(const char *str, long n); unsigned long clear_user(void *mem, unsigned long len); unsigned long __clear_user(void *mem, unsigned long len); #endif /* __i386_UACCESS_H */
Go to most recent revision | Compare with Previous | Blame | View Log