URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [include/] [asm-ia64/] [pgalloc.h] - Rev 1275
Go to most recent revision | Compare with Previous | Blame | View Log
#ifndef _ASM_IA64_PGALLOC_H #define _ASM_IA64_PGALLOC_H /* * This file contains the functions and defines necessary to allocate * page tables. * * This hopefully works with any (fixed) ia-64 page-size, as defined * in <asm/page.h> (currently 8192). * * Copyright (C) 1998-2002 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> * Copyright (C) 2000, Goutham Rao <goutham.rao@intel.com> */ #include <linux/config.h> #include <linux/compiler.h> #include <linux/mm.h> #include <linux/threads.h> #include <asm/mmu_context.h> #include <asm/processor.h> /* * Very stupidly, we used to get new pgd's and pmd's, init their contents * to point to the NULL versions of the next level page table, later on * completely re-init them the same way, then free them up. This wasted * a lot of work and caused unnecessary memory traffic. How broken... * We fix this by caching them. */ #define pgd_quicklist (local_cpu_data->pgd_quick) #define pmd_quicklist (local_cpu_data->pmd_quick) #define pte_quicklist (local_cpu_data->pte_quick) #define pgtable_cache_size (local_cpu_data->pgtable_cache_sz) static inline pgd_t* pgd_alloc_one_fast (struct mm_struct *mm) { unsigned long *ret = pgd_quicklist; if (__builtin_expect(ret != NULL, 1)) { pgd_quicklist = (unsigned long *)(*ret); ret[0] = 0; --pgtable_cache_size; } else ret = NULL; return (pgd_t *) ret; } static inline pgd_t* pgd_alloc (struct mm_struct *mm) { /* the VM system never calls pgd_alloc_one_fast(), so we do it here. */ pgd_t *pgd = pgd_alloc_one_fast(mm); if (__builtin_expect(pgd == NULL, 0)) { pgd = (pgd_t *)__get_free_page(GFP_KERNEL); if (__builtin_expect(pgd != NULL, 1)) clear_page(pgd); } return pgd; } static inline void pgd_free (pgd_t *pgd) { *(unsigned long *)pgd = (unsigned long) pgd_quicklist; pgd_quicklist = (unsigned long *) pgd; ++pgtable_cache_size; } static inline void pgd_populate (struct mm_struct *mm, pgd_t *pgd_entry, pmd_t *pmd) { pgd_val(*pgd_entry) = __pa(pmd); } static inline pmd_t* pmd_alloc_one_fast (struct mm_struct *mm, unsigned long addr) { unsigned long *ret = (unsigned long *)pmd_quicklist; if (__builtin_expect(ret != NULL, 1)) { pmd_quicklist = (unsigned long *)(*ret); ret[0] = 0; --pgtable_cache_size; } return (pmd_t *)ret; } static inline pmd_t* pmd_alloc_one (struct mm_struct *mm, unsigned long addr) { pmd_t *pmd = (pmd_t *) __get_free_page(GFP_KERNEL); if (__builtin_expect(pmd != NULL, 1)) clear_page(pmd); return pmd; } static inline void pmd_free (pmd_t *pmd) { *(unsigned long *)pmd = (unsigned long) pmd_quicklist; pmd_quicklist = (unsigned long *) pmd; ++pgtable_cache_size; } static inline void pmd_populate (struct mm_struct *mm, pmd_t *pmd_entry, pte_t *pte) { pmd_val(*pmd_entry) = __pa(pte); } static inline pte_t* pte_alloc_one_fast (struct mm_struct *mm, unsigned long addr) { unsigned long *ret = (unsigned long *)pte_quicklist; if (__builtin_expect(ret != NULL, 1)) { pte_quicklist = (unsigned long *)(*ret); ret[0] = 0; --pgtable_cache_size; } return (pte_t *)ret; } static inline pte_t* pte_alloc_one (struct mm_struct *mm, unsigned long addr) { pte_t *pte = (pte_t *) __get_free_page(GFP_KERNEL); if (__builtin_expect(pte != NULL, 1)) clear_page(pte); return pte; } static inline void pte_free (pte_t *pte) { *(unsigned long *)pte = (unsigned long) pte_quicklist; pte_quicklist = (unsigned long *) pte; ++pgtable_cache_size; } extern int do_check_pgt_cache (int, int); /* * Now for some TLB flushing routines. This is the kind of stuff that * can be very expensive, so try to avoid them whenever possible. */ /* * Flush everything (kernel mapping may also have changed due to * vmalloc/vfree). */ extern void local_flush_tlb_all (void); #ifdef CONFIG_SMP extern void smp_flush_tlb_all (void); extern void smp_flush_tlb_mm (struct mm_struct *mm); # define flush_tlb_all() smp_flush_tlb_all() #else # define flush_tlb_all() local_flush_tlb_all() #endif static inline void local_flush_tlb_mm (struct mm_struct *mm) { if (mm == current->active_mm) activate_context(mm); } /* * Flush a specified user mapping. This is called, e.g., as a result of fork() and * exit(). fork() ends up here because the copy-on-write mechanism needs to write-protect * the PTEs of the parent task. */ static inline void flush_tlb_mm (struct mm_struct *mm) { if (!mm) return; mm->context = 0; if (atomic_read(&mm->mm_users) == 0) return; /* happens as a result of exit_mmap() */ #ifdef CONFIG_SMP smp_flush_tlb_mm(mm); #else local_flush_tlb_mm(mm); #endif } extern void flush_tlb_range (struct mm_struct *mm, unsigned long start, unsigned long end); /* * Page-granular tlb flush. */ static inline void flush_tlb_page (struct vm_area_struct *vma, unsigned long addr) { #ifdef CONFIG_SMP flush_tlb_range(vma->vm_mm, (addr & PAGE_MASK), (addr & PAGE_MASK) + PAGE_SIZE); #else if (vma->vm_mm == current->active_mm) asm volatile ("ptc.l %0,%1" :: "r"(addr), "r"(PAGE_SHIFT << 2) : "memory"); else vma->vm_mm->context = 0; #endif } /* * Flush the TLB entries mapping the virtually mapped linear page * table corresponding to address range [START-END). */ static inline void flush_tlb_pgtables (struct mm_struct *mm, unsigned long start, unsigned long end) { if (unlikely(end - start >= 1024*1024*1024*1024UL || rgn_index(start) != rgn_index(end - 1))) /* * This condition is very rare and normal applications shouldn't get * here. No attempt has been made to optimize for this case. */ flush_tlb_all(); else flush_tlb_range(mm, ia64_thash(start), ia64_thash(end)); } /* * Cache flushing routines. This is the kind of stuff that can be very expensive, so try * to avoid them whenever possible. */ #define flush_cache_all() do { } while (0) #define flush_cache_mm(mm) do { } while (0) #define flush_cache_range(mm, start, end) do { } while (0) #define flush_cache_page(vma, vmaddr) do { } while (0) #define flush_page_to_ram(page) do { } while (0) #define flush_icache_page(vma,page) do { } while (0) #define flush_dcache_page(page) \ do { \ clear_bit(PG_arch_1, &(page)->flags); \ } while (0) extern void flush_icache_range (unsigned long start, unsigned long end); #define flush_icache_user_range(vma, page, user_addr, len) \ do { \ unsigned long _addr = (unsigned long) page_address(page) + ((user_addr) & ~PAGE_MASK); \ flush_icache_range(_addr, _addr + (len)); \ } while (0) static inline void clear_user_page (void *addr, unsigned long vaddr, struct page *page) { clear_page(addr); flush_dcache_page(page); } static inline void copy_user_page (void *to, void *from, unsigned long vaddr, struct page *page) { copy_page(to, from); flush_dcache_page(page); } /* * IA-64 doesn't have any external MMU info: the page tables contain all the necessary * information. However, we use this macro to take care of any (delayed) i-cache flushing * that may be necessary. */ static inline void update_mmu_cache (struct vm_area_struct *vma, unsigned long vaddr, pte_t pte) { unsigned long addr; struct page *page; if (!pte_exec(pte)) return; /* not an executable page... */ page = pte_page(pte); /* don't use VADDR: it may not be mapped on this CPU (or may have just been flushed): */ addr = (unsigned long) page_address(page); if (test_bit(PG_arch_1, &page->flags)) return; /* i-cache is already coherent with d-cache */ flush_icache_range(addr, addr + PAGE_SIZE); set_bit(PG_arch_1, &page->flags); /* mark page as clean */ } #endif /* _ASM_IA64_PGALLOC_H */
Go to most recent revision | Compare with Previous | Blame | View Log