URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [include/] [asm-ia64/] [uaccess.h] - Rev 1275
Go to most recent revision | Compare with Previous | Blame | View Log
#ifndef _ASM_IA64_UACCESS_H #define _ASM_IA64_UACCESS_H /* * This file defines various macros to transfer memory areas across * the user/kernel boundary. This needs to be done carefully because * this code is executed in kernel mode and uses user-specified * addresses. Thus, we need to be careful not to let the user to * trick us into accessing kernel memory that would normally be * inaccessible. This code is also fairly performance sensitive, * so we want to spend as little time doing safety checks as * possible. * * To make matters a bit more interesting, these macros sometimes also * called from within the kernel itself, in which case the address * validity check must be skipped. The get_fs() macro tells us what * to do: if get_fs()==USER_DS, checking is performed, if * get_fs()==KERNEL_DS, checking is bypassed. * * Note that even if the memory area specified by the user is in a * valid address range, it is still possible that we'll get a page * fault while accessing it. This is handled by filling out an * exception handler fixup entry for each instruction that has the * potential to fault. When such a fault occurs, the page fault * handler checks to see whether the faulting instruction has a fixup * associated and, if so, sets r8 to -EFAULT and clears r9 to 0 and * then resumes execution at the continuation point. * * Based on <asm-alpha/uaccess.h>. * * Copyright (C) 1998, 1999, 2001, 2003 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> */ #include <linux/errno.h> #include <linux/sched.h> #include <asm/pgtable.h> /* * For historical reasons, the following macros are grossly misnamed: */ #define KERNEL_DS ((mm_segment_t) { ~0UL }) /* cf. access_ok() */ #define USER_DS ((mm_segment_t) { TASK_SIZE-1 }) /* cf. access_ok() */ #define VERIFY_READ 0 #define VERIFY_WRITE 1 #define get_ds() (KERNEL_DS) #define get_fs() (current->addr_limit) #define set_fs(x) (current->addr_limit = (x)) #define segment_eq(a,b) ((a).seg == (b).seg) /* * When accessing user memory, we need to make sure the entire area really is in * user-level space. In order to do this efficiently, we make sure that the page at * address TASK_SIZE is never valid. We also need to make sure that the address doesn't * point inside the virtually mapped linear page table. */ #define __access_ok(addr,size,segment) \ likely(((unsigned long) (addr)) <= (segment).seg \ && ((segment).seg == KERNEL_DS.seg \ || REGION_OFFSET((unsigned long) (addr)) < RGN_MAP_LIMIT)) #define access_ok(type,addr,size) __access_ok((addr),(size),get_fs()) static inline int verify_area (int type, const void *addr, unsigned long size) { return access_ok(type,addr,size) ? 0 : -EFAULT; } /* * These are the main single-value transfer routines. They automatically * use the right size if we just have the right pointer type. * * Careful to not * (a) re-use the arguments for side effects (sizeof/typeof is ok) * (b) require any knowledge of processes at this stage */ #define put_user(x,ptr) __put_user_check((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr)),get_fs()) #define get_user(x,ptr) __get_user_check((x),(ptr),sizeof(*(ptr)),get_fs()) /* * The "__xxx" versions do not do address space checking, useful when * doing multiple accesses to the same area (the programmer has to do the * checks by hand with "access_ok()") */ #define __put_user(x,ptr) __put_user_nocheck((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr))) #define __get_user(x,ptr) __get_user_nocheck((x),(ptr),sizeof(*(ptr))) extern void __get_user_unknown (void); #define __get_user_nocheck(x,ptr,size) \ ({ \ register long __gu_err asm ("r8") = 0; \ register long __gu_val asm ("r9") = 0; \ switch (size) { \ case 1: __get_user_8(ptr); break; \ case 2: __get_user_16(ptr); break; \ case 4: __get_user_32(ptr); break; \ case 8: __get_user_64(ptr); break; \ default: __get_user_unknown(); break; \ } \ (x) = (__typeof__(*(ptr))) __gu_val; \ __gu_err; \ }) #define __get_user_check(x,ptr,size,segment) \ ({ \ register long __gu_err asm ("r8") = -EFAULT; \ register long __gu_val asm ("r9") = 0; \ const __typeof__(*(ptr)) *__gu_addr = (ptr); \ if (__access_ok((long)__gu_addr,size,segment)) { \ __gu_err = 0; \ switch (size) { \ case 1: __get_user_8(__gu_addr); break; \ case 2: __get_user_16(__gu_addr); break; \ case 4: __get_user_32(__gu_addr); break; \ case 8: __get_user_64(__gu_addr); break; \ default: __get_user_unknown(); break; \ } \ } \ (x) = (__typeof__(*(ptr))) __gu_val; \ __gu_err; \ }) struct __large_struct { unsigned long buf[100]; }; #define __m(x) (*(struct __large_struct *)(x)) /* We need to declare the __ex_table section before we can use it in .xdata. */ asm (".section \"__ex_table\", \"a\"\n\t.previous"); #if __GNUC__ >= 3 # define GAS_HAS_LOCAL_TAGS /* define if gas supports local tags a la [1:] */ #endif #ifdef GAS_HAS_LOCAL_TAGS # define _LL "[1:]" #else # define _LL "1:" #endif #define __get_user_64(addr) \ asm ("\n"_LL"\tld8 %0=%2%P2\t// %0 and %1 get overwritten by exception handler\n" \ "\t.xdata4 \"__ex_table\", @gprel(1b), @gprel(1f)+4\n" \ _LL \ : "=r"(__gu_val), "=r"(__gu_err) : "m"(__m(addr)), "1"(__gu_err)); #define __get_user_32(addr) \ asm ("\n"_LL"\tld4 %0=%2%P2\t// %0 and %1 get overwritten by exception handler\n" \ "\t.xdata4 \"__ex_table\", @gprel(1b), @gprel(1f)+4\n" \ _LL \ : "=r"(__gu_val), "=r"(__gu_err) : "m"(__m(addr)), "1"(__gu_err)); #define __get_user_16(addr) \ asm ("\n"_LL"\tld2 %0=%2%P2\t// %0 and %1 get overwritten by exception handler\n" \ "\t.xdata4 \"__ex_table\", @gprel(1b), @gprel(1f)+4\n" \ _LL \ : "=r"(__gu_val), "=r"(__gu_err) : "m"(__m(addr)), "1"(__gu_err)); #define __get_user_8(addr) \ asm ("\n"_LL"\tld1 %0=%2%P2\t// %0 and %1 get overwritten by exception handler\n" \ "\t.xdata4 \"__ex_table\", @gprel(1b), @gprel(1f)+4\n" \ _LL \ : "=r"(__gu_val), "=r"(__gu_err) : "m"(__m(addr)), "1"(__gu_err)); extern void __put_user_unknown (void); #define __put_user_nocheck(x,ptr,size) \ ({ \ register long __pu_err asm ("r8") = 0; \ switch (size) { \ case 1: __put_user_8(x,ptr); break; \ case 2: __put_user_16(x,ptr); break; \ case 4: __put_user_32(x,ptr); break; \ case 8: __put_user_64(x,ptr); break; \ default: __put_user_unknown(); break; \ } \ __pu_err; \ }) #define __put_user_check(x,ptr,size,segment) \ ({ \ register long __pu_err asm ("r8") = -EFAULT; \ __typeof__(*(ptr)) *__pu_addr = (ptr); \ if (__access_ok((long)__pu_addr,size,segment)) { \ __pu_err = 0; \ switch (size) { \ case 1: __put_user_8(x,__pu_addr); break; \ case 2: __put_user_16(x,__pu_addr); break; \ case 4: __put_user_32(x,__pu_addr); break; \ case 8: __put_user_64(x,__pu_addr); break; \ default: __put_user_unknown(); break; \ } \ } \ __pu_err; \ }) /* * The "__put_user_xx()" macros tell gcc they read from memory * instead of writing: this is because they do not write to * any memory gcc knows about, so there are no aliasing issues */ #define __put_user_64(x,addr) \ asm volatile ( \ "\n"_LL"\tst8 %1=%r2%P1\t// %0 gets overwritten by exception handler\n" \ "\t.xdata4 \"__ex_table\", @gprel(1b), @gprel(1f)\n" \ _LL \ : "=r"(__pu_err) : "m"(__m(addr)), "rO"(x), "0"(__pu_err)) #define __put_user_32(x,addr) \ asm volatile ( \ "\n"_LL"\tst4 %1=%r2%P1\t// %0 gets overwritten by exception handler\n" \ "\t.xdata4 \"__ex_table\", @gprel(1b), @gprel(1f)\n" \ _LL \ : "=r"(__pu_err) : "m"(__m(addr)), "rO"(x), "0"(__pu_err)) #define __put_user_16(x,addr) \ asm volatile ( \ "\n"_LL"\tst2 %1=%r2%P1\t// %0 gets overwritten by exception handler\n" \ "\t.xdata4 \"__ex_table\", @gprel(1b), @gprel(1f)\n" \ _LL \ : "=r"(__pu_err) : "m"(__m(addr)), "rO"(x), "0"(__pu_err)) #define __put_user_8(x,addr) \ asm volatile ( \ "\n"_LL"\tst1 %1=%r2%P1\t// %0 gets overwritten by exception handler\n" \ "\t.xdata4 \"__ex_table\", @gprel(1b), @gprel(1f)\n" \ _LL \ : "=r"(__pu_err) : "m"(__m(addr)), "rO"(x), "0"(__pu_err)) /* * Complex access routines */ extern unsigned long __copy_user (void *to, const void *from, unsigned long count); #define __copy_to_user(to,from,n) __copy_user((to), (from), (n)) #define __copy_from_user(to,from,n) __copy_user((to), (from), (n)) #define copy_to_user(to,from,n) __copy_tofrom_user((to), (from), (n), 1) #define copy_from_user(to,from,n) __copy_tofrom_user((to), (from), (n), 0) #define __copy_tofrom_user(to,from,n,check_to) \ ({ \ void *__cu_to = (to); \ const void *__cu_from = (from); \ long __cu_len = (n); \ \ if (__access_ok((long) ((check_to) ? __cu_to : __cu_from), __cu_len, get_fs())) { \ __cu_len = __copy_user(__cu_to, __cu_from, __cu_len); \ } \ __cu_len; \ }) extern unsigned long __do_clear_user (void *, unsigned long); #define __clear_user(to,n) \ ({ \ __do_clear_user(to,n); \ }) #define clear_user(to,n) \ ({ \ unsigned long __cu_len = (n); \ if (__access_ok((long) to, __cu_len, get_fs())) { \ __cu_len = __do_clear_user(to, __cu_len); \ } \ __cu_len; \ }) /* Returns: -EFAULT if exception before terminator, N if the entire buffer filled, else strlen. */ extern long __strncpy_from_user (char *to, const char *from, long to_len); #define strncpy_from_user(to,from,n) \ ({ \ const char * __sfu_from = (from); \ long __sfu_ret = -EFAULT; \ if (__access_ok((long) __sfu_from, 0, get_fs())) \ __sfu_ret = __strncpy_from_user((to), __sfu_from, (n)); \ __sfu_ret; \ }) /* Returns: 0 if bad, string length+1 (memory size) of string if ok */ extern unsigned long __strlen_user (const char *); #define strlen_user(str) \ ({ \ const char *__su_str = (str); \ unsigned long __su_ret = 0; \ if (__access_ok((long) __su_str, 0, get_fs())) \ __su_ret = __strlen_user(__su_str); \ __su_ret; \ }) /* * Returns: 0 if exception before NUL or reaching the supplied limit * (N), a value greater than N if the limit would be exceeded, else * strlen. */ extern unsigned long __strnlen_user (const char *, long); #define strnlen_user(str, len) \ ({ \ const char *__su_str = (str); \ unsigned long __su_ret = 0; \ if (__access_ok((long) __su_str, 0, get_fs())) \ __su_ret = __strnlen_user(__su_str, len); \ __su_ret; \ }) struct exception_table_entry { int addr; /* gp-relative address of insn this fixup is for */ int cont; /* gp-relative continuation address; if bit 2 is set, r9 is set to 0 */ }; struct exception_fixup { unsigned long cont; /* continuation point (bit 2: clear r9 if set) */ }; extern struct exception_fixup search_exception_table (unsigned long addr); extern void handle_exception (struct pt_regs *regs, struct exception_fixup fixup); #ifdef GAS_HAS_LOCAL_TAGS #define SEARCH_EXCEPTION_TABLE(regs) search_exception_table(regs->cr_iip + ia64_psr(regs)->ri); #else #define SEARCH_EXCEPTION_TABLE(regs) search_exception_table(regs->cr_iip); #endif static inline int done_with_exception (struct pt_regs *regs) { struct exception_fixup fix; fix = SEARCH_EXCEPTION_TABLE(regs); if (fix.cont) { handle_exception(regs, fix); return 1; } return 0; } #endif /* _ASM_IA64_UACCESS_H */
Go to most recent revision | Compare with Previous | Blame | View Log