URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [include/] [asm-m68k/] [dvma.h] - Rev 1276
Go to most recent revision | Compare with Previous | Blame | View Log
/* $Id: dvma.h,v 1.1.1.1 2004-04-15 02:58:20 phoenix Exp $ * include/asm-m68k/dma.h * * Copyright 1995 (C) David S. Miller (davem@caip.rutgers.edu) * * Hacked to fit Sun3x needs by Thomas Bogendoerfer */ #ifndef __M68K_DVMA_H #define __M68K_DVMA_H #include <linux/config.h> #define DVMA_PAGE_SHIFT 13 #define DVMA_PAGE_SIZE (1UL << DVMA_PAGE_SHIFT) #define DVMA_PAGE_MASK (~(DVMA_PAGE_SIZE-1)) #define DVMA_PAGE_ALIGN(addr) (((addr)+DVMA_PAGE_SIZE-1)&DVMA_PAGE_MASK) extern void dvma_init(void); extern int dvma_map_iommu(unsigned long kaddr, unsigned long baddr, int len); #define dvma_malloc(x) dvma_malloc_align(x, 0) #define dvma_map(x, y) dvma_map_align(x, y, 0) #define dvma_map_vme(x, y) (dvma_map(x, y) & 0xfffff) #define dvma_map_align_vme(x, y, z) (dvma_map_align (x, y, z) & 0xfffff) extern unsigned long dvma_map_align(unsigned long kaddr, int len, int align); extern void *dvma_malloc_align(unsigned long len, unsigned long align); extern void dvma_unmap(void *baddr); extern void dvma_free(void *vaddr); #ifdef CONFIG_SUN3 /* sun3 dvma page support */ /* memory and pmegs potentially reserved for dvma */ #define DVMA_PMEG_START 10 #define DVMA_PMEG_END 16 #define DVMA_START 0xf00000 #define DVMA_END 0xfe0000 #define DVMA_SIZE (DVMA_END-DVMA_START) #define IOMMU_TOTAL_ENTRIES 128 #define IOMMU_ENTRIES 120 /* empirical kludge -- dvma regions only seem to work right on 0x10000 byte boundries */ #define DVMA_REGION_SIZE 0x10000 #define DVMA_ALIGN(addr) (((addr)+DVMA_REGION_SIZE-1) & \ ~(DVMA_REGION_SIZE-1)) /* virt <-> phys conversions */ #define dvma_vtop(x) ((unsigned long)(x) & 0xffffff) #define dvma_ptov(x) ((unsigned long)(x) | 0xf000000) #define dvma_vtovme(x) ((unsigned long)(x) & 0x00fffff) #define dvma_vmetov(x) ((unsigned long)(x) | 0xff00000) #define dvma_vtob(x) dvma_vtop(x) #define dvma_btov(x) dvma_ptov(x) static inline int dvma_map_cpu(unsigned long kaddr, unsigned long vaddr, int len) { return 0; } extern unsigned long dvma_page(unsigned long kaddr, unsigned long vaddr); #else /* Sun3x */ /* sun3x dvma page support */ #define DVMA_START 0x0 #define DVMA_END 0xf00000 #define DVMA_SIZE (DVMA_END-DVMA_START) #define IOMMU_TOTAL_ENTRIES 2048 /* the prom takes the top meg */ #define IOMMU_ENTRIES (IOMMU_TOTAL_ENTRIES - 0x80) #define dvma_vtob(x) ((unsigned long)(x) & 0x00ffffff) #define dvma_btov(x) ((unsigned long)(x) | 0xff000000) extern int dvma_map_cpu(unsigned long kaddr, unsigned long vaddr, int len); /* everything below this line is specific to dma used for the onboard ESP scsi on sun3x */ /* Structure to describe the current status of DMA registers on the Sparc */ struct sparc_dma_registers { __volatile__ unsigned long cond_reg; /* DMA condition register */ __volatile__ unsigned long st_addr; /* Start address of this transfer */ __volatile__ unsigned long cnt; /* How many bytes to transfer */ __volatile__ unsigned long dma_test; /* DMA test register */ }; /* DVMA chip revisions */ enum dvma_rev { dvmarev0, dvmaesc1, dvmarev1, dvmarev2, dvmarev3, dvmarevplus, dvmahme }; #define DMA_HASCOUNT(rev) ((rev)==dvmaesc1) /* Linux DMA information structure, filled during probe. */ struct Linux_SBus_DMA { struct Linux_SBus_DMA *next; struct sbus_dev *SBus_dev; struct sparc_dma_registers *regs; /* Status, misc info */ int node; /* Prom node for this DMA device */ int running; /* Are we doing DMA now? */ int allocated; /* Are we "owned" by anyone yet? */ /* Transfer information. */ unsigned long addr; /* Start address of current transfer */ int nbytes; /* Size of current transfer */ int realbytes; /* For splitting up large transfers, etc. */ /* DMA revision */ enum dvma_rev revision; }; extern struct Linux_SBus_DMA *dma_chain; /* Broken hardware... */ #define DMA_ISBROKEN(dma) ((dma)->revision == dvmarev1) #define DMA_ISESC1(dma) ((dma)->revision == dvmaesc1) /* Fields in the cond_reg register */ /* First, the version identification bits */ #define DMA_DEVICE_ID 0xf0000000 /* Device identification bits */ #define DMA_VERS0 0x00000000 /* Sunray DMA version */ #define DMA_ESCV1 0x40000000 /* DMA ESC Version 1 */ #define DMA_VERS1 0x80000000 /* DMA rev 1 */ #define DMA_VERS2 0xa0000000 /* DMA rev 2 */ #define DMA_VERHME 0xb0000000 /* DMA hme gate array */ #define DMA_VERSPLUS 0x90000000 /* DMA rev 1 PLUS */ #define DMA_HNDL_INTR 0x00000001 /* An IRQ needs to be handled */ #define DMA_HNDL_ERROR 0x00000002 /* We need to take an error */ #define DMA_FIFO_ISDRAIN 0x0000000c /* The DMA FIFO is draining */ #define DMA_INT_ENAB 0x00000010 /* Turn on interrupts */ #define DMA_FIFO_INV 0x00000020 /* Invalidate the FIFO */ #define DMA_ACC_SZ_ERR 0x00000040 /* The access size was bad */ #define DMA_FIFO_STDRAIN 0x00000040 /* DMA_VERS1 Drain the FIFO */ #define DMA_RST_SCSI 0x00000080 /* Reset the SCSI controller */ #define DMA_RST_ENET DMA_RST_SCSI /* Reset the ENET controller */ #define DMA_ST_WRITE 0x00000100 /* write from device to memory */ #define DMA_ENABLE 0x00000200 /* Fire up DMA, handle requests */ #define DMA_PEND_READ 0x00000400 /* DMA_VERS1/0/PLUS Pending Read */ #define DMA_ESC_BURST 0x00000800 /* 1=16byte 0=32byte */ #define DMA_READ_AHEAD 0x00001800 /* DMA read ahead partial longword */ #define DMA_DSBL_RD_DRN 0x00001000 /* No EC drain on slave reads */ #define DMA_BCNT_ENAB 0x00002000 /* If on, use the byte counter */ #define DMA_TERM_CNTR 0x00004000 /* Terminal counter */ #define DMA_CSR_DISAB 0x00010000 /* No FIFO drains during csr */ #define DMA_SCSI_DISAB 0x00020000 /* No FIFO drains during reg */ #define DMA_DSBL_WR_INV 0x00020000 /* No EC inval. on slave writes */ #define DMA_ADD_ENABLE 0x00040000 /* Special ESC DVMA optimization */ #define DMA_E_BURST8 0x00040000 /* ENET: SBUS r/w burst size */ #define DMA_BRST_SZ 0x000c0000 /* SCSI: SBUS r/w burst size */ #define DMA_BRST64 0x00080000 /* SCSI: 64byte bursts (HME on UltraSparc only) */ #define DMA_BRST32 0x00040000 /* SCSI: 32byte bursts */ #define DMA_BRST16 0x00000000 /* SCSI: 16byte bursts */ #define DMA_BRST0 0x00080000 /* SCSI: no bursts (non-HME gate arrays) */ #define DMA_ADDR_DISAB 0x00100000 /* No FIFO drains during addr */ #define DMA_2CLKS 0x00200000 /* Each transfer = 2 clock ticks */ #define DMA_3CLKS 0x00400000 /* Each transfer = 3 clock ticks */ #define DMA_EN_ENETAUI DMA_3CLKS /* Put lance into AUI-cable mode */ #define DMA_CNTR_DISAB 0x00800000 /* No IRQ when DMA_TERM_CNTR set */ #define DMA_AUTO_NADDR 0x01000000 /* Use "auto nxt addr" feature */ #define DMA_SCSI_ON 0x02000000 /* Enable SCSI dma */ #define DMA_PARITY_OFF 0x02000000 /* HME: disable parity checking */ #define DMA_LOADED_ADDR 0x04000000 /* Address has been loaded */ #define DMA_LOADED_NADDR 0x08000000 /* Next address has been loaded */ /* Values describing the burst-size property from the PROM */ #define DMA_BURST1 0x01 #define DMA_BURST2 0x02 #define DMA_BURST4 0x04 #define DMA_BURST8 0x08 #define DMA_BURST16 0x10 #define DMA_BURST32 0x20 #define DMA_BURST64 0x40 #define DMA_BURSTBITS 0x7f /* Determine highest possible final transfer address given a base */ #define DMA_MAXEND(addr) (0x01000000UL-(((unsigned long)(addr))&0x00ffffffUL)) /* Yes, I hack a lot of elisp in my spare time... */ #define DMA_ERROR_P(regs) ((((regs)->cond_reg) & DMA_HNDL_ERROR)) #define DMA_IRQ_P(regs) ((((regs)->cond_reg) & (DMA_HNDL_INTR | DMA_HNDL_ERROR))) #define DMA_WRITE_P(regs) ((((regs)->cond_reg) & DMA_ST_WRITE)) #define DMA_OFF(regs) ((((regs)->cond_reg) &= (~DMA_ENABLE))) #define DMA_INTSOFF(regs) ((((regs)->cond_reg) &= (~DMA_INT_ENAB))) #define DMA_INTSON(regs) ((((regs)->cond_reg) |= (DMA_INT_ENAB))) #define DMA_PUNTFIFO(regs) ((((regs)->cond_reg) |= DMA_FIFO_INV)) #define DMA_SETSTART(regs, addr) ((((regs)->st_addr) = (char *) addr)) #define DMA_BEGINDMA_W(regs) \ ((((regs)->cond_reg |= (DMA_ST_WRITE|DMA_ENABLE|DMA_INT_ENAB)))) #define DMA_BEGINDMA_R(regs) \ ((((regs)->cond_reg |= ((DMA_ENABLE|DMA_INT_ENAB)&(~DMA_ST_WRITE))))) /* For certain DMA chips, we need to disable ints upon irq entry * and turn them back on when we are done. So in any ESP interrupt * handler you *must* call DMA_IRQ_ENTRY upon entry and DMA_IRQ_EXIT * when leaving the handler. You have been warned... */ #define DMA_IRQ_ENTRY(dma, dregs) do { \ if(DMA_ISBROKEN(dma)) DMA_INTSOFF(dregs); \ } while (0) #define DMA_IRQ_EXIT(dma, dregs) do { \ if(DMA_ISBROKEN(dma)) DMA_INTSON(dregs); \ } while(0) /* Reset the friggin' thing... */ #define DMA_RESET(dma) do { \ struct sparc_dma_registers *regs = dma->regs; \ /* Let the current FIFO drain itself */ \ sparc_dma_pause(regs, (DMA_FIFO_ISDRAIN)); \ /* Reset the logic */ \ regs->cond_reg |= (DMA_RST_SCSI); /* assert */ \ __delay(400); /* let the bits set ;) */ \ regs->cond_reg &= ~(DMA_RST_SCSI); /* de-assert */ \ sparc_dma_enable_interrupts(regs); /* Re-enable interrupts */ \ /* Enable FAST transfers if available */ \ if(dma->revision>dvmarev1) regs->cond_reg |= DMA_3CLKS; \ dma->running = 0; \ } while(0) #endif /* !CONFIG_SUN3 */ #endif /* !(__M68K_DVMA_H) */
Go to most recent revision | Compare with Previous | Blame | View Log