OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [include/] [asm-or32/] [pgtable.h] - Rev 1765

Compare with Previous | Blame | View Log

/* or32 pgtable.h - macros and functions to manipulate page tables
 *
 * Based on:
 * include/asm-cris/pgtable.h
 */
 
#ifndef _OR32_PGTABLE_H
#define _OR32_PGTABLE_H
 
#include <linux/config.h>
 
#ifndef __ASSEMBLY__
#include <asm/mmu.h>
 
/*
 * The Linux memory management assumes a three-level page table setup. On
 * or32, we use that, but "fold" the mid level into the top-level page
 * table. Since the MMU TLB is software loaded through an interrupt, it
 * supports any page table structure, so we could have used a three-level
 * setup, but for the amounts of memory we normally use, a two-level is
 * probably more efficient.
 *
 * This file contains the functions and defines necessary to modify and use
 * the or32 page table tree.
 */
 
extern void paging_init(void);
 
/* The cache doesn't need to be flushed when TLB entries change because 
 * the cache is mapped to physical memory, not virtual memory
 */
#define flush_cache_all()			do { } while (0)
#define flush_cache_mm(mm)			do { } while (0)
#define flush_cache_range(mm, start, end)	do { } while (0)
#define flush_cache_page(vma, vmaddr)		do { } while (0)
#define flush_page_to_ram(page)			do { } while (0)
#define flush_dcache_page(page)                 do { } while (0)
#define flush_icache_range(start, end)          do { } while (0)
#define flush_icache_page(vma,pg)               do { } while (0)
#define flush_icache_user_range(vma,pg,adr,len)	do { } while (0)
 
extern void flush_tlb_all(void);
extern void flush_tlb_mm(struct mm_struct *mm);
extern void flush_tlb_page(struct vm_area_struct *vma, 
			   unsigned long addr);
extern void flush_tlb_range(struct mm_struct *mm,
			    unsigned long start,
			    unsigned long end);
 
static inline void flush_tlb_pgtables(struct mm_struct *mm,
                                      unsigned long start, unsigned long end)
{
        /* or32 does not keep any page table caches in TLB */
}
 
 
static inline void flush_tlb(void) 
{
	flush_tlb_mm(current->mm);
}
 
/* Certain architectures need to do special things when pte's
 * within a page table are directly modified.  Thus, the following
 * hook is made available.
 */
#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
/*
 * (pmds are folded into pgds so this doesn't get actually called,
 * but the define is needed for a generic inline function.)
 */
#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
#define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval)
 
/* PMD_SHIFT determines the size of the area a second-level page table can
 * map. It is equal to the page size times the number of PTE's that fit in
 * a PMD page. A PTE is 4-bytes in or32. Hence the following number.
 */
 
#define PMD_SHIFT	(PAGE_SHIFT + (PAGE_SHIFT-2))
#define PMD_SIZE	(1UL << PMD_SHIFT)
#define PMD_MASK	(~(PMD_SIZE-1))
 
/* PGDIR_SHIFT determines what a third-level page table entry can map.
 * Since we fold into a two-level structure, this is the same as PMD_SHIFT.
 */
 
#define PGDIR_SHIFT	PMD_SHIFT
#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
#define PGDIR_MASK	(~(PGDIR_SIZE-1))
 
/*
 * entries per page directory level: we use a two-level, so
 * we don't really have any PMD directory physically.
 * pointers are 4 bytes so we can use the page size and 
 * divide it by 4 (shift by 2).
 */
#define PTRS_PER_PTE	(1UL << (PAGE_SHIFT-2))
#define PTRS_PER_PMD	1
#define PTRS_PER_PGD	(1UL << (PAGE_SHIFT-2))
 
/* calculate how many PGD entries a user-level program can use
 * the first mappable virtual address is 0
 * (TASK_SIZE is the maximum virtual address space)
 */
 
#define USER_PTRS_PER_PGD       (TASK_SIZE/PGDIR_SIZE)
#define FIRST_USER_PGD_NR       0
 
/*
 * Kernels own virtual memory area. 
 */
 
#define VMALLOC_START     0xd0000000
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
#define VMALLOC_END       0xe0000000
 
/* Define some higher level generic page attributes.
 */
 
#define _PAGE_CC       0x001 /* software: pte contains a translation */
#define _PAGE_CI       0x002 /* cache inhibit          */
#define _PAGE_WBC      0x004 /* write back cache       */
#define _PAGE_WOM      0x008 /* weakly ordered memory  */
 
#define _PAGE_A        0x010 /* accessed               */
#define _PAGE_D        0x020 /* dirty                  */
#define _PAGE_URE      0x040 /* user read enable       */
#define _PAGE_UWE      0x080 /* user write enable      */
 
#define _PAGE_SRE      0x100 /* superuser read enable  */
#define _PAGE_SWE      0x200 /* superuser write enable */
#define _PAGE_EXEC     0x400 /* software: page is executable */
#define _PAGE_U_SHARED 0x800 /* software: page is shared in user space */
 
/* 0x001 is cache coherency bit, which should always be set to
 *       1 - for SMP (when we support it)
 *       0 - otherwise
 *
 * we just reuse this bit in software for _PAGE_PRESENT and 
 * force it to 0 when loading it into TLB. 
 */
#define _PAGE_PRESENT  _PAGE_CC
#define _PAGE_USER     _PAGE_URE
#define _PAGE_WRITE    (_PAGE_UWE | _PAGE_SWE)
#define _PAGE_DIRTY    _PAGE_D
#define _PAGE_ACCESSED _PAGE_A
#define _PAGE_NO_CACHE _PAGE_CI
#define _PAGE_SHARED   _PAGE_U_SHARED
#define _PAGE_READ     (_PAGE_URE | _PAGE_SRE)
 
#define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
#define _PAGE_BASE     (_PAGE_PRESENT | _PAGE_ACCESSED)
#define _PAGE_ALL      (_PAGE_PRESENT | _PAGE_ACCESSED)
#define _KERNPG_TABLE   (_PAGE_BASE | _PAGE_SRE | _PAGE_SWE | _PAGE_ACCESSED | _PAGE_DIRTY)
 
#define PAGE_NONE       __pgprot(_PAGE_ALL)
#define PAGE_READONLY   __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE )
#define PAGE_READONLY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
#define PAGE_SHARED     __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE | _PAGE_SHARED)
#define PAGE_SHARED_X   __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE | _PAGE_SHARED | _PAGE_EXEC)
#define PAGE_COPY       __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE )
#define PAGE_COPY_X     __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
 
#define PAGE_KERNEL     __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
 
#define __P000	PAGE_NONE
#define __P001	PAGE_READONLY_X
#define __P010	PAGE_COPY
#define __P011	PAGE_COPY_X
#define __P100	PAGE_READONLY
#define __P101	PAGE_READONLY_X
#define __P110	PAGE_COPY
#define __P111	PAGE_COPY_X
 
#define __S000	PAGE_NONE
#define __S001	PAGE_READONLY_X
#define __S010	PAGE_SHARED
#define __S011	PAGE_SHARED_X
#define __S100	PAGE_READONLY
#define __S101	PAGE_READONLY_X
#define __S110	PAGE_SHARED
#define __S111	PAGE_SHARED_X
 
/* zero page used for uninitialized stuff */
extern unsigned long empty_zero_page[2048];
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
 
/* number of bits that fit into a memory pointer */
#define BITS_PER_PTR			(8*sizeof(unsigned long))
 
/* to align the pointer to a pointer address */
#define PTR_MASK			(~(sizeof(void*)-1))
 
/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
/* 64-bit machines, beware!  SRB. */
#define SIZEOF_PTR_LOG2			2
 
/* to find an entry in a page-table */
#define PAGE_PTR(address) \
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
 
/* to set the page-dir */
#define SET_PAGE_DIR(tsk,pgdir)
 
#define pte_none(x)	(!pte_val(x))
#define pte_present(x)	(pte_val(x) & _PAGE_PRESENT)
#define pte_clear(xp)	do { pte_val(*(xp)) = 0; } while (0)
 
#define pmd_none(x)	(!pmd_val(x))
#define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK)) != 0)
#define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
#define pmd_clear(xp)	do { pmd_val(*(xp)) = 0; } while (0)
 
/*
 * The "pgd_xxx()" functions here are trivial for a folded two-level
 * setup: the pgd is never bad, and a pmd always exists (as it's folded
 * into the pgd entry)
 */
static inline int pgd_none(pgd_t pgd)		{ return 0; }
static inline int pgd_bad(pgd_t pgd)		{ return 0; }
static inline int pgd_present(pgd_t pgd)	{ return 1; }
static inline void pgd_clear(pgd_t * pgdp)	{ }
 
/*
 * The following only work if pte_present() is true.
 * Undefined behaviour if not..
 */
 
static inline int pte_read(pte_t pte)           { return pte_val(pte) & _PAGE_READ; }
static inline int pte_write(pte_t pte)          { return pte_val(pte) & _PAGE_WRITE; }
static inline int pte_exec(pte_t pte)           { return pte_val(pte) & _PAGE_EXEC; }
static inline int pte_dirty(pte_t pte)          { return pte_val(pte) & _PAGE_DIRTY; }
static inline int pte_young(pte_t pte)          { return pte_val(pte) & _PAGE_ACCESSED; }
 
static inline pte_t pte_wrprotect(pte_t pte)
{
        pte_val(pte) &= ~(_PAGE_WRITE);
        return pte;
}
 
static inline pte_t pte_rdprotect(pte_t pte)
{
        pte_val(pte) &= ~(_PAGE_READ);
	return pte;
}
 
static inline pte_t pte_exprotect(pte_t pte)
{
        pte_val(pte) &= ~(_PAGE_EXEC);
	return pte;
}
 
static inline pte_t pte_mkclean(pte_t pte)
{
	pte_val(pte) &= ~(_PAGE_DIRTY); 
	return pte; 
}
 
static inline pte_t pte_mkold(pte_t pte)
{
	pte_val(pte) &= ~(_PAGE_ACCESSED);
	return pte;
}
 
static inline pte_t pte_mkwrite(pte_t pte)
{
        pte_val(pte) |= _PAGE_WRITE;
        return pte;
}
 
static inline pte_t pte_mkread(pte_t pte)
{
        pte_val(pte) |= _PAGE_READ;
        return pte;
}
 
static inline pte_t pte_mkexec(pte_t pte)
{
        pte_val(pte) |= _PAGE_EXEC;
        return pte;
}
 
static inline pte_t pte_mkdirty(pte_t pte)
{
        pte_val(pte) |= _PAGE_DIRTY;
        return pte;
}
 
static inline pte_t pte_mkyoung(pte_t pte)
{
        pte_val(pte) |= _PAGE_ACCESSED;
        return pte;
}
 
/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 */
 
/* What actually goes as arguments to the various functions is less than
 * obvious, but a rule of thumb is that struct page's goes as struct page *,
 * really physical DRAM addresses are unsigned long's, and DRAM "virtual"
 * addresses (the 0xc0xxxxxx's) goes as void *'s.
 */
 
static inline pte_t __mk_pte(void * page, pgprot_t pgprot)
{
	pte_t pte;
	/* the PTE needs a physical address */
	pte_val(pte) = __pa(page) | pgprot_val(pgprot);
	return pte;
}
 
#define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot))
 
#define mk_pte_phys(physpage, pgprot) \
({                                                                      \
        pte_t __pte;                                                    \
                                                                        \
        pte_val(__pte) = (physpage) + pgprot_val(pgprot);               \
        __pte;                                                          \
})
 
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
 
 
/* pte_val refers to a page in the 0x0xxxxxxx physical DRAM interval
 * __pte_page(pte_val) refers to the "virtual" DRAM interval
 * pte_pagenr refers to the page-number counted starting from the virtual DRAM start
 */
 
static inline unsigned long __pte_page(pte_t pte)
{
	/* the PTE contains a physical address */
	return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
}
 
#define pte_pagenr(pte)         ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
 
/* permanent address of a page */
 
#define __page_address(page)    (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
#define pte_page(pte)           (mem_map+pte_pagenr(pte))
 
/* only the pte's themselves need to point to physical DRAM (see above)
 * the pagetable links are purely handled within the kernel SW and thus
 * don't need the __pa and __va transformations.
 */
#define page_pte(page) page_pte_prot(page, __pgprot(0))
 
#define pmd_page(pmd) \
((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
 
/* to find an entry in a page-table-directory. */
#define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
 
#define __pgd_offset(address) pgd_index(address)
 
#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
 
/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
 
#define __pmd_offset(address) \
                (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
 
static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
{
        return (pmd_t *) dir;
}
 
/* Find an entry in the third-level page table.. */
#define __pte_offset(address) \
                ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
 
#define pte_offset(dir, address) ((pte_t *) pmd_page(*(dir)) + \
                __pte_offset(address))
 
#define pte_ERROR(e) \
        printk("%s:%d: bad pte %p(%08lx).\n", __FILE__, __LINE__, &(e), pte_val(e))
#define pmd_ERROR(e) \
        printk("%s:%d: bad pmd %p(%08lx).\n", __FILE__, __LINE__, &(e), pmd_val(e))
#define pgd_ERROR(e) \
        printk("%s:%d: bad pgd %p(%08lx).\n", __FILE__, __LINE__, &(e), pgd_val(e))
 
extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */
 
/*
 * or32 doesn't have any external MMU info: the kernel page
 * tables contain all the necessary information.
 * 
 * Actually I am not sure on what this could be used for.
 */
static inline void update_mmu_cache(struct vm_area_struct * vma,
	unsigned long address, pte_t pte)
{
}
 
#define __pgd_offset(address) pgd_index(address)
 
#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
 
/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
 
#define __pmd_offset(address) \
                (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
 
/* Find an entry in the third-level page table.. */
#define __pte_offset(address) \
                ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
 
#define pte_offset(dir, address) ((pte_t *) pmd_page(*(dir)) + \
                 __pte_offset(address))                                                   
 
 
/* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */
/* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */
 
#define SWP_TYPE(x)                     (((x).val >> 5) & 0x7f)
#define SWP_OFFSET(x)                   ((x).val >> 12)
#define SWP_ENTRY(type, offset)         ((swp_entry_t) { ((type) << 5) | ((offset) << 12) })
#define pte_to_swp_entry(pte)           ((swp_entry_t) { pte_val(pte) })
#define swp_entry_to_pte(x)             ((pte_t) { (x).val })
 
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
#define PageSkip(page)          (0)
#define kern_addr_valid(addr)   (1)
 
#include <asm-generic/pgtable.h>
 
/*
 * No page table caches to initialise
 */
#define pgtable_cache_init()   do { } while (0)
 
#endif /* __ASSEMBLY__ */
#endif /* _OR32_PGTABLE_H */
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.