URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [include/] [asm-parisc/] [pgtable.h] - Rev 1774
Go to most recent revision | Compare with Previous | Blame | View Log
#ifndef _PARISC_PGTABLE_H #define _PARISC_PGTABLE_H #include <asm/fixmap.h> #ifndef __ASSEMBLY__ /* * we simulate an x86-style page table for the linux mm code */ #include <linux/spinlock.h> #include <asm/processor.h> #include <asm/cache.h> #include <asm/bitops.h> #define ARCH_STACK_GROWSUP /* * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel * memory. For the return value to be meaningful, ADDR must be >= * PAGE_OFFSET. This operation can be relatively expensive (e.g., * require a hash-, or multi-level tree-lookup or something of that * sort) but it guarantees to return TRUE only if accessing the page * at that address does not cause an error. Note that there may be * addresses for which kern_addr_valid() returns FALSE even though an * access would not cause an error (e.g., this is typically true for * memory mapped I/O regions. * * XXX Need to implement this for parisc. */ #define kern_addr_valid(addr) (1) /* Certain architectures need to do special things when PTEs * within a page table are directly modified. Thus, the following * hook is made available. */ #define set_pte(pteptr, pteval) \ do{ \ *(pteptr) = (pteval); \ } while(0) #endif /* !__ASSEMBLY__ */ #define pte_ERROR(e) \ printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) /* Note: If you change ISTACK_SIZE, you need to change the corresponding * values in vmlinux.lds and vmlinux64.lds (init_istack section). Also, * the "order" and size need to agree. */ #define ISTACK_SIZE 32768 /* Interrupt Stack Size */ #define ISTACK_ORDER 3 /* * NOTE: Many of the below macros use PT_NLEVELS because * it is convenient that PT_NLEVELS == LOG2(pte size in bytes), * i.e. we use 3 level page tables when we use 8 byte pte's * (for 64 bit) and 2 level page tables when we use 4 byte pte's */ #ifdef __LP64__ #define PT_NLEVELS 3 #define PT_INITIAL 4 /* Number of initial page tables */ #else #define PT_NLEVELS 2 #define PT_INITIAL 2 /* Number of initial page tables */ #endif #define MAX_ADDRBITS (PAGE_SHIFT + (PT_NLEVELS)*(PAGE_SHIFT - PT_NLEVELS)) #define MAX_ADDRESS (1UL << MAX_ADDRBITS) #define SPACEID_SHIFT (MAX_ADDRBITS - 32) /* Definitions for 1st level */ #define PGDIR_SHIFT (PAGE_SHIFT + (PT_NLEVELS - 1)*(PAGE_SHIFT - PT_NLEVELS)) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) #define PTRS_PER_PGD (1UL << (PAGE_SHIFT - PT_NLEVELS)) #define USER_PTRS_PER_PGD PTRS_PER_PGD /* Definitions for 2nd level */ #define pgtable_cache_init() do { } while (0) #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT - PT_NLEVELS)) #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) #if PT_NLEVELS == 3 #define PTRS_PER_PMD (1UL << (PAGE_SHIFT - PT_NLEVELS)) #else #define PTRS_PER_PMD 1 #endif /* Definitions for 3rd level */ #define PTRS_PER_PTE (1UL << (PAGE_SHIFT - PT_NLEVELS)) /* * pgd entries used up by user/kernel: */ #define FIRST_USER_PGD_NR 0 #ifndef __ASSEMBLY__ extern void *vmalloc_start; #define PCXL_DMA_MAP_SIZE (8*1024*1024) #define VMALLOC_START ((unsigned long)vmalloc_start) #define VMALLOC_VMADDR(x) ((unsigned long)(x)) #define VMALLOC_END (FIXADDR_START) #endif /* NB: The tlb miss handlers make certain assumptions about the order */ /* of the following bits, so be careful (One example, bits 25-31 */ /* are moved together in one instruction). */ #define _PAGE_READ_BIT 31 /* (0x001) read access allowed */ #define _PAGE_WRITE_BIT 30 /* (0x002) write access allowed */ #define _PAGE_EXEC_BIT 29 /* (0x004) execute access allowed */ #define _PAGE_GATEWAY_BIT 28 /* (0x008) privilege promotion allowed */ #define _PAGE_DMB_BIT 27 /* (0x010) Data Memory Break enable (B bit) */ #define _PAGE_DIRTY_BIT 26 /* (0x020) Page Dirty (D bit) */ #define _PAGE_REFTRAP_BIT 25 /* (0x040) Page Ref. Trap enable (T bit) */ #define _PAGE_NO_CACHE_BIT 24 /* (0x080) Uncached Page (U bit) */ #define _PAGE_ACCESSED_BIT 23 /* (0x100) Software: Page Accessed */ #define _PAGE_PRESENT_BIT 22 /* (0x200) Software: translation valid */ #define _PAGE_FLUSH_BIT 21 /* (0x400) Software: translation valid */ /* for cache flushing only */ #define _PAGE_USER_BIT 20 /* (0x800) Software: User accessable page */ /* N.B. The bits are defined in terms of a 32 bit word above, so the */ /* following macro is ok for both 32 and 64 bit. */ #define xlate_pabit(x) (31 - x) #define _PAGE_READ (1 << xlate_pabit(_PAGE_READ_BIT)) #define _PAGE_WRITE (1 << xlate_pabit(_PAGE_WRITE_BIT)) #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE) #define _PAGE_EXEC (1 << xlate_pabit(_PAGE_EXEC_BIT)) #define _PAGE_GATEWAY (1 << xlate_pabit(_PAGE_GATEWAY_BIT)) #define _PAGE_DMB (1 << xlate_pabit(_PAGE_DMB_BIT)) #define _PAGE_DIRTY (1 << xlate_pabit(_PAGE_DIRTY_BIT)) #define _PAGE_REFTRAP (1 << xlate_pabit(_PAGE_REFTRAP_BIT)) #define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT)) #define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT)) #define _PAGE_PRESENT (1 << xlate_pabit(_PAGE_PRESENT_BIT)) #define _PAGE_FLUSH (1 << xlate_pabit(_PAGE_FLUSH_BIT)) #define _PAGE_USER (1 << xlate_pabit(_PAGE_USER_BIT)) #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED) #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) #define _PAGE_KERNEL (_PAGE_PRESENT | _PAGE_EXEC | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED) #ifndef __ASSEMBLY__ #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_ACCESSED) /* Others seem to make this executable, I don't know if that's correct or not. The stack is mapped this way though so this is necessary in the short term - dhd@linuxcare.com, 2000-08-08 */ #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_ACCESSED) #define PAGE_WRITEONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE | _PAGE_ACCESSED) #define PAGE_EXECREAD __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC |_PAGE_ACCESSED) #define PAGE_COPY PAGE_EXECREAD #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC |_PAGE_ACCESSED) #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_EXEC | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED) #define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE) #define PAGE_GATEWAY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_GATEWAY| _PAGE_READ) #define PAGE_FLUSH __pgprot(_PAGE_FLUSH) /* * We could have an execute only page using "gateway - promote to priv * level 3", but that is kind of silly. So, the way things are defined * now, we must always have read permission for pages with execute * permission. For the fun of it we'll go ahead and support write only * pages. */ /*xwr*/ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 __P000 /* copy on write */ #define __P011 __P001 /* copy on write */ #define __P100 PAGE_EXECREAD #define __P101 PAGE_EXECREAD #define __P110 __P100 /* copy on write */ #define __P111 __P101 /* copy on write */ #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_WRITEONLY #define __S011 PAGE_SHARED #define __S100 PAGE_EXECREAD #define __S101 PAGE_EXECREAD #define __S110 PAGE_RWX #define __S111 PAGE_RWX extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */ /* initial page tables for 0-8MB for kernel */ extern unsigned long pg0[]; /* zero page used for uninitialized stuff */ extern unsigned long *empty_zero_page; /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) #define pte_none(x) ((pte_val(x) == 0) || (pte_val(x) & _PAGE_FLUSH)) #define pte_present(x) (pte_val(x) & _PAGE_PRESENT) #define pte_clear(xp) do { pte_val(*(xp)) = 0; } while (0) #define pmd_none(x) (!pmd_val(x)) #define pmd_bad(x) ((pmd_val(x) & ~PAGE_MASK) != _PAGE_TABLE) #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) #define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0) #ifdef __LP64__ #define pgd_page(pgd) ((unsigned long) __va(pgd_val(pgd) & PAGE_MASK)) /* For 64 bit we have three level tables */ #define pgd_none(x) (!pgd_val(x)) #define pgd_bad(x) ((pgd_val(x) & ~PAGE_MASK) != _PAGE_TABLE) #define pgd_present(x) (pgd_val(x) & _PAGE_PRESENT) #define pgd_clear(xp) do { pgd_val(*(xp)) = 0; } while (0) #else /* * The "pgd_xxx()" functions here are trivial for a folded two-level * setup: the pgd is never bad, and a pmd always exists (as it's folded * into the pgd entry) */ extern inline int pgd_none(pgd_t pgd) { return 0; } extern inline int pgd_bad(pgd_t pgd) { return 0; } extern inline int pgd_present(pgd_t pgd) { return 1; } extern inline void pgd_clear(pgd_t * pgdp) { } #endif /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; } extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_READ; return pte; } extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; } extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_READ; return pte; } extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ #define __mk_pte(addr,pgprot) \ ({ \ pte_t __pte; \ \ pte_val(__pte) = ((addr)+pgprot_val(pgprot)); \ \ __pte; \ }) /* * Change "struct page" to physical address. */ #define page_to_phys(page) PAGE_TO_PA(page) #ifdef CONFIG_DISCONTIGMEM #define PAGE_TO_PA(page) \ ((((page)-(page)->zone->zone_mem_map) << PAGE_SHIFT) \ + ((page)->zone->zone_start_paddr)) #else #define PAGE_TO_PA(page) ((page - mem_map) << PAGE_SHIFT) #endif #define mk_pte(page, pgprot) \ ({ \ pte_t __pte; \ \ pte_val(__pte) = ((unsigned long)(PAGE_TO_PA(page))) | \ pgprot_val(pgprot); \ \ __pte; \ }) /* This takes a physical page address that is used by the remapping functions */ #define mk_pte_phys(physpage, pgprot) \ ({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; }) extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } /* Permanent address of a page. On parisc we don't have highmem. */ #ifdef CONFIG_DISCONTIGMEM #define pte_page(x) (phys_to_page(pte_val(x))) #else #define pte_page(x) (mem_map+(pte_val(x) >> PAGE_SHIFT)) #endif #define pmd_page(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) #define pgd_index(address) ((address) >> PGDIR_SHIFT) /* to find an entry in a page-table-directory */ #define pgd_offset(mm, address) \ ((mm)->pgd + ((address) >> PGDIR_SHIFT)) /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) /* Find an entry in the second-level page table.. */ #ifdef __LP64__ #define pmd_offset(dir,address) \ ((pmd_t *) pgd_page(*(dir)) + (((address)>>PMD_SHIFT) & (PTRS_PER_PMD-1))) #else #define pmd_offset(dir,addr) ((pmd_t *) dir) #endif /* Find an entry in the third-level page table.. */ #define pte_offset(pmd, address) \ ((pte_t *) pmd_page(*(pmd)) + (((address)>>PAGE_SHIFT) & (PTRS_PER_PTE-1))) extern void paging_init (void); /* Used for deferring calls to flush_dcache_page() */ #define PG_dcache_dirty PG_arch_1 struct vm_area_struct; /* forward declaration (include/linux/mm.h) */ extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t); /* Encode and de-code a swap entry */ #define SWP_TYPE(x) ((x).val & 0x1f) #define SWP_OFFSET(x) ( (((x).val >> 5) & 0xf) | \ (((x).val >> 7) & ~0xf) ) #define SWP_ENTRY(type, offset) ((swp_entry_t) { (type) | \ ((offset & 0xf) << 5) | \ ((offset & ~0xf) << 7) }) #define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define swp_entry_to_pte(x) ((pte_t) { (x).val }) static inline int ptep_test_and_clear_young(pte_t *ptep) { #ifdef CONFIG_SMP return test_and_clear_bit(xlate_pabit(_PAGE_ACCESSED_BIT), ptep); #else pte_t pte = *ptep; if (!pte_young(pte)) return 0; set_pte(ptep, pte_mkold(pte)); return 1; #endif } static inline int ptep_test_and_clear_dirty(pte_t *ptep) { #ifdef CONFIG_SMP return test_and_clear_bit(xlate_pabit(_PAGE_DIRTY_BIT), ptep); #else pte_t pte = *ptep; if (!pte_dirty(pte)) return 0; set_pte(ptep, pte_mkclean(pte)); return 1; #endif } #ifdef CONFIG_SMP extern spinlock_t pa_dbit_lock; #else static int pa_dbit_lock; /* dummy to keep the compilers happy */ #endif static inline pte_t ptep_get_and_clear(pte_t *ptep) { pte_t old_pte; pte_t pte; spin_lock(&pa_dbit_lock); pte = old_pte = *ptep; pte_val(pte) &= ~_PAGE_PRESENT; pte_val(pte) |= _PAGE_FLUSH; set_pte(ptep,pte); spin_unlock(&pa_dbit_lock); return old_pte; } static inline void ptep_set_wrprotect(pte_t *ptep) { #ifdef CONFIG_SMP unsigned long new, old; do { old = pte_val(*ptep); new = pte_val(pte_wrprotect(__pte (old))); } while (cmpxchg((unsigned long *) ptep, old, new) != old); #else pte_t old_pte = *ptep; set_pte(ptep, pte_wrprotect(old_pte)); #endif } static inline void ptep_mkdirty(pte_t *ptep) { #ifdef CONFIG_SMP set_bit(xlate_pabit(_PAGE_DIRTY_BIT), ptep); #else pte_t old_pte = *ptep; set_pte(ptep, pte_mkdirty(old_pte)); #endif } #define pte_same(A,B) (pte_val(A) == pte_val(B)) #endif /* !__ASSEMBLY__ */ /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ #define PageSkip(page) (0) #define io_remap_page_range remap_page_range /* We provide our own get_unmapped_area to provide cache coherency */ #define HAVE_ARCH_UNMAPPED_AREA #endif /* _PARISC_PGTABLE_H */
Go to most recent revision | Compare with Previous | Blame | View Log