URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [include/] [asm-ppc64/] [pgtable.h] - Rev 1774
Go to most recent revision | Compare with Previous | Blame | View Log
#ifndef _PPC64_PGTABLE_H #define _PPC64_PGTABLE_H /* * This file contains the functions and defines necessary to modify and use * the ppc64 hashed page table. */ #ifndef __ASSEMBLY__ #include <asm/processor.h> /* For TASK_SIZE */ #include <asm/mmu.h> #include <asm/page.h> #endif /* __ASSEMBLY__ */ /* PMD_SHIFT determines what a second-level page table entry can map */ #define PMD_SHIFT (PAGE_SHIFT + PAGE_SHIFT - 3) #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT - 3) + (PAGE_SHIFT - 2)) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * Entries per page directory level. The PTE level must use a 64b record * for each page table entry. The PMD and PGD level use a 32b record for * each entry by assuming that each entry is page aligned. */ #define PTE_INDEX_SIZE 9 #define PMD_INDEX_SIZE 10 #define PGD_INDEX_SIZE 10 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE) #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) #if 0 /* DRENG / PPPBBB This is a compiler bug!!! */ #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) #else #define USER_PTRS_PER_PGD (1024) #endif #define FIRST_USER_PGD_NR 0 #define EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \ PGD_INDEX_SIZE + PAGE_SHIFT) /* * Define the address range of the vmalloc VM area. */ #define VMALLOC_START (0xD000000000000000) #define VMALLOC_VMADDR(x) ((unsigned long)(x)) #ifndef CONFIG_SHARED_MEMORY_ADDRESSING #define VMALLOC_END (VMALLOC_START + VALID_EA_BITS) #else #define VMALLOC_END (VMALLOC_START + (VALID_EA_BITS >> 1)) #define SMALLOC_START (VMALLOC_START + (VALID_EA_BITS >> 1) + 1) #define SMALLOC_END (VMALLOC_START + VALID_EA_BITS) #define SMALLOC_EA_SHIFT 40 #define SMALLOC_ESID_SHIFT 12 #endif /* * Define the address range of the imalloc VM area. * (used for ioremap) */ #define IMALLOC_START (ioremap_bot) #define IMALLOC_VMADDR(x) ((unsigned long)(x)) #define IMALLOC_BASE (0xE000000000000000) #define IMALLOC_END (IMALLOC_BASE + VALID_EA_BITS) /* * Define the address range mapped virt <-> physical */ #define KRANGE_START KERNELBASE #define KRANGE_END (KRANGE_START + VALID_EA_BITS) /* * Define the user address range */ #define USER_START (0UL) #define USER_END (USER_START + VALID_EA_BITS) /* * Bits in a linux-style PTE. These match the bits in the * (hardware-defined) PowerPC PTE as closely as possible. */ #define _PAGE_PRESENT 0x001UL /* software: pte contains a translation */ #define _PAGE_USER 0x002UL /* matches one of the PP bits */ #define _PAGE_RW 0x004UL /* software: user write access allowed */ #define _PAGE_GUARDED 0x008UL #define _PAGE_COHERENT 0x010UL /* M: enforce memory coherence (SMP systems) */ #define _PAGE_NO_CACHE 0x020UL /* I: cache inhibit */ #define _PAGE_WRITETHRU 0x040UL /* W: cache write-through */ #define _PAGE_DIRTY 0x080UL /* C: page changed */ #define _PAGE_ACCESSED 0x100UL /* R: page referenced */ #define _PAGE_HPTENOIX 0x200UL /* software: pte HPTE slot unknown */ #define _PAGE_HASHPTE 0x400UL /* software: pte has an associated HPTE */ #define _PAGE_EXEC 0x800UL /* software: i-cache coherence required */ #define _PAGE_SECONDARY 0x8000UL /* software: HPTE is in secondary group */ #define _PAGE_GROUP_IX 0x7000UL /* software: HPTE index within group */ /* Bits 0x7000 identify the index within an HPT Group */ #define _PAGE_HPTEFLAGS (_PAGE_HASHPTE | _PAGE_HPTENOIX | _PAGE_SECONDARY | _PAGE_GROUP_IX) /* PAGE_MASK gives the right answer below, but only by accident */ /* It should be preserving the high 48 bits and then specifically */ /* preserving _PAGE_SECONDARY | _PAGE_GROUP_IX */ #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_HPTEFLAGS) #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT) #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY) /* __pgprot defined in asm-ppc64/page.h */ #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED) #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER) #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC) #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE) #define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \ _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED) /* * The PowerPC can only do execute protection on a segment (256MB) basis, * not on a page basis. So we consider execute permission the same as read. * Also, write permissions imply read permissions. * This is the closest we can get.. */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY_X #define __P010 PAGE_COPY #define __P011 PAGE_COPY_X #define __P100 PAGE_READONLY #define __P101 PAGE_READONLY_X #define __P110 PAGE_COPY #define __P111 PAGE_COPY_X #define __S000 PAGE_NONE #define __S001 PAGE_READONLY_X #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED_X #define __S100 PAGE_READONLY #define __S101 PAGE_READONLY_X #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED_X #ifndef __ASSEMBLY__ /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; #define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page)) #endif /* __ASSEMBLY__ */ /* shift to put page number into pte */ #define PTE_SHIFT (16) #ifndef __ASSEMBLY__ /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. * * mk_pte_phys takes a physical address as input * * mk_pte takes a (struct page *) as input */ #define mk_pte_phys(physpage,pgprot) \ ({ \ pte_t pte; \ pte_val(pte) = (((physpage)<<(PTE_SHIFT-PAGE_SHIFT)) | pgprot_val(pgprot)); \ pte; \ }) #define mk_pte(page,pgprot) \ ({ \ pte_t pte; \ pte_val(pte) = ((unsigned long)((page) - mem_map) << PTE_SHIFT) | \ pgprot_val(pgprot); \ pte; \ }) #define pte_modify(_pte, newprot) \ (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))) #define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0) #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) /* pte_clear moved to later in this file */ #define pte_pagenr(x) ((unsigned long)((pte_val(x) >> PTE_SHIFT))) #define pte_page(x) (mem_map+pte_pagenr(x)) #define pmd_set(pmdp, ptep) (pmd_val(*(pmdp)) = (__ba_to_bpn(ptep))) #define pmd_none(pmd) (!pmd_val(pmd)) #define pmd_bad(pmd) ((pmd_val(pmd)) == 0) #define pmd_present(pmd) ((pmd_val(pmd)) != 0) #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0) #define pmd_page(pmd) (__bpn_to_ba(pmd_val(pmd))) #define pgd_set(pgdp, pmdp) (pgd_val(*(pgdp)) = (__ba_to_bpn(pmdp))) #define pgd_none(pgd) (!pgd_val(pgd)) #define pgd_bad(pgd) ((pgd_val(pgd)) == 0) #define pgd_present(pgd) (pgd_val(pgd) != 0UL) #define pgd_clear(pgdp) (pgd_val(*(pgdp)) = 0UL) #define pgd_page(pgd) (__bpn_to_ba(pgd_val(pgd))) /* * Find an entry in a page-table-directory. We combine the address region * (the high order N bits) and the pgd portion of the address. */ #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD -1)) #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) /* Find an entry in the second-level page table.. */ #define pmd_offset(dir,addr) \ ((pmd_t *) pgd_page(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) /* Find an entry in the third-level page table.. */ #define pte_offset(dir,addr) \ ((pte_t *) pmd_page(*(dir)) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))) /* to find an entry in a kernel page-table-directory */ /* This now only contains the vmalloc pages */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) /* to find an entry in the ioremap page-table-directory */ #define pgd_offset_i(address) (ioremap_pgd + pgd_index(address)) #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;} static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;} static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;} static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;} static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;} static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } static inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; } static inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_EXEC; return pte; } static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_RW); return pte; } static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(_PAGE_DIRTY); return pte; } static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } static inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; } static inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; } static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } /* Atomic PTE updates */ static inline unsigned long pte_update( pte_t *p, unsigned long clr, unsigned long set ) { unsigned long old, tmp; __asm__ __volatile__("\n\ 1: ldarx %0,0,%3 \n\ andc %1,%0,%4 \n\ or %1,%1,%5 \n\ stdcx. %1,0,%3 \n\ bne- 1b" : "=&r" (old), "=&r" (tmp), "=m" (*p) : "r" (p), "r" (clr), "r" (set), "m" (*p) : "cc" ); return old; } static inline int ptep_test_and_clear_young(pte_t *ptep) { return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0; } static inline int ptep_test_and_clear_dirty(pte_t *ptep) { return (pte_update(ptep, _PAGE_DIRTY, 0) & _PAGE_DIRTY) != 0; } static inline pte_t ptep_get_and_clear(pte_t *ptep) { return __pte(pte_update(ptep, ~_PAGE_HPTEFLAGS, 0)); } static inline void ptep_set_wrprotect(pte_t *ptep) { pte_update(ptep, _PAGE_RW, 0); } static inline void ptep_mkdirty(pte_t *ptep) { pte_update(ptep, 0, _PAGE_DIRTY); } #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0) /* * set_pte stores a linux PTE into the linux page table. * On machines which use an MMU hash table we avoid changing the * _PAGE_HASHPTE bit. */ static inline void set_pte(pte_t *ptep, pte_t pte) { pte_update(ptep, ~_PAGE_HPTEFLAGS, pte_val(pte) & ~_PAGE_HPTEFLAGS); } static inline void pte_clear(pte_t * ptep) { pte_update(ptep, ~_PAGE_HPTEFLAGS, 0); } struct mm_struct; struct vm_area_struct; extern void local_flush_tlb_all(void); extern void local_flush_tlb_mm(struct mm_struct *mm); extern void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr); extern void local_flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end); #define flush_tlb_all local_flush_tlb_all #define flush_tlb_mm local_flush_tlb_mm #define flush_tlb_page local_flush_tlb_page #define flush_tlb_range local_flush_tlb_range static inline void flush_tlb_pgtables(struct mm_struct *mm, unsigned long start, unsigned long end) { /* PPC has hw page tables. */ } /* * No cache flushing is required when address mappings are * changed, because the caches on PowerPCs are physically * addressed. */ #define flush_cache_all() do { } while (0) #define flush_cache_mm(mm) do { } while (0) #define flush_cache_range(mm, a, b) do { } while (0) #define flush_cache_page(vma, p) do { } while (0) #define flush_page_to_ram(page) do { } while (0) extern void flush_icache_user_range(struct vm_area_struct *vma, struct page *page, unsigned long addr, int len); extern void flush_icache_range(unsigned long, unsigned long); extern void __flush_dcache_icache(void *page_va); extern void flush_dcache_page(struct page *page); extern void flush_icache_page(struct vm_area_struct *vma, struct page *page); extern unsigned long va_to_phys(unsigned long address); extern pte_t *va_to_pte(unsigned long address); extern unsigned long ioremap_bot, ioremap_base; #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) #define pte_ERROR(e) \ printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %08x.\n", __FILE__, __LINE__, pmd_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %08x.\n", __FILE__, __LINE__, pgd_val(e)) extern pgd_t swapper_pg_dir[1024]; extern pgd_t ioremap_dir[1024]; extern void paging_init(void); /* * Page tables may have changed. We don't need to do anything here * as entries are faulted into the hash table by the low-level * data/instruction access exception handlers. */ /* * We won't be able to use update_mmu_cache to update the * hardware page table because we need to update the pte * as well, but we don't get the address of the pte, only * its value. */ #define update_mmu_cache(vma, addr, pte) do { } while (0) extern void flush_hash_segments(unsigned low_vsid, unsigned high_vsid); extern void flush_hash_page(unsigned long context, unsigned long ea, pte_t *ptep); extern void build_valid_hpte(unsigned long vsid, unsigned long ea, unsigned long pa, pte_t * ptep, unsigned hpteflags, unsigned bolted ); /* Encode and de-code a swap entry */ #define SWP_TYPE(entry) (((entry).val >> 1) & 0x3f) #define SWP_OFFSET(entry) ((entry).val >> 8) #define SWP_ENTRY(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) }) #define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> PTE_SHIFT }) #define swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_SHIFT }) /* * kern_addr_valid is intended to indicate whether an address is a valid * kernel address. Most 32-bit archs define it as always true (like this) * but most 64-bit archs actually perform a test. What should we do here? * The only use is in fs/ncpfs/dir.c */ #define kern_addr_valid(addr) (1) #ifdef CONFIG_PPC_ISERIES #define io_remap_page_range remap_page_range #else extern int io_remap_page_range(unsigned long from, unsigned long to, unsigned long size, pgprot_t prot); #endif /* * No page table caches to initialise */ #define pgtable_cache_init() do { } while (0) extern void updateBoltedHptePP(unsigned long newpp, unsigned long ea); extern void hpte_init_pSeries(void); extern void hpte_init_iSeries(void); extern void make_pte(HPTE * htab, unsigned long va, unsigned long pa, int mode, unsigned long hash_mask, int large); #endif /* __ASSEMBLY__ */ #endif /* _PPC64_PGTABLE_H */
Go to most recent revision | Compare with Previous | Blame | View Log