URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [include/] [asm-s390/] [bitops.h] - Rev 1276
Go to most recent revision | Compare with Previous | Blame | View Log
#ifndef _S390_BITOPS_H #define _S390_BITOPS_H /* * include/asm-s390/bitops.h * * S390 version * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com) * * Derived from "include/asm-i386/bitops.h" * Copyright (C) 1992, Linus Torvalds * */ #include <linux/config.h> /* * bit 0 is the LSB of *addr; bit 31 is the MSB of *addr; * bit 32 is the LSB of *(addr+4). That combined with the * big endian byte order on S390 give the following bit * order in memory: * 1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10 \ * 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00 * after that follows the next long with bit numbers * 3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30 * 2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20 * The reason for this bit ordering is the fact that * in the architecture independent code bits operations * of the form "flags |= (1 << bitnr)" are used INTERMIXED * with operation of the form "set_bit(bitnr, flags)". */ /* set ALIGN_CS to 1 if the SMP safe bit operations should * align the address to 4 byte boundary. It seems to work * without the alignment. */ #ifdef __KERNEL__ #define ALIGN_CS 0 #else #define ALIGN_CS 1 #ifndef CONFIG_SMP #error "bitops won't work without CONFIG_SMP" #endif #endif /* bitmap tables from arch/S390/kernel/bitmap.S */ extern const char _oi_bitmap[]; extern const char _ni_bitmap[]; extern const char _zb_findmap[]; #ifdef CONFIG_SMP /* * SMP save set_bit routine based on compare and swap (CS) */ static __inline__ void set_bit_cs(int nr, volatile void * addr) { unsigned long bits, mask; __asm__ __volatile__( #if ALIGN_CS == 1 " lhi %2,3\n" /* CS must be aligned on 4 byte b. */ " nr %2,%1\n" /* isolate last 2 bits of address */ " xr %1,%2\n" /* make addr % 4 == 0 */ " sll %2,3\n" " ar %0,%2\n" /* add alignement to bitnr */ #endif " lhi %2,31\n" " nr %2,%0\n" /* make shift value */ " xr %0,%2\n" " srl %0,3\n" " lhi %3,1\n" " la %1,0(%0,%1)\n" /* calc. address for CS */ " sll %3,0(%2)\n" /* make OR mask */ " l %0,0(%1)\n" "0: lr %2,%0\n" /* CS loop starts here */ " or %2,%3\n" /* set bit */ " cs %0,%2,0(%1)\n" " jl 0b" : "+a" (nr), "+a" (addr), "=&a" (bits), "=&d" (mask) : : "cc", "memory" ); } /* * SMP save clear_bit routine based on compare and swap (CS) */ static __inline__ void clear_bit_cs(int nr, volatile void * addr) { static const int minusone = -1; unsigned long bits, mask; __asm__ __volatile__( #if ALIGN_CS == 1 " lhi %2,3\n" /* CS must be aligned on 4 byte b. */ " nr %2,%1\n" /* isolate last 2 bits of address */ " xr %1,%2\n" /* make addr % 4 == 0 */ " sll %2,3\n" " ar %0,%2\n" /* add alignement to bitnr */ #endif " lhi %2,31\n" " nr %2,%0\n" /* make shift value */ " xr %0,%2\n" " srl %0,3\n" " lhi %3,1\n" " la %1,0(%0,%1)\n" /* calc. address for CS */ " sll %3,0(%2)\n" " x %3,%4\n" /* make AND mask */ " l %0,0(%1)\n" "0: lr %2,%0\n" /* CS loop starts here */ " nr %2,%3\n" /* clear bit */ " cs %0,%2,0(%1)\n" " jl 0b" : "+a" (nr), "+a" (addr), "=&a" (bits), "=&d" (mask) : "m" (minusone) : "cc", "memory" ); } /* * SMP save change_bit routine based on compare and swap (CS) */ static __inline__ void change_bit_cs(int nr, volatile void * addr) { unsigned long bits, mask; __asm__ __volatile__( #if ALIGN_CS == 1 " lhi %2,3\n" /* CS must be aligned on 4 byte b. */ " nr %2,%1\n" /* isolate last 2 bits of address */ " xr %1,%2\n" /* make addr % 4 == 0 */ " sll %2,3\n" " ar %0,%2\n" /* add alignement to bitnr */ #endif " lhi %2,31\n" " nr %2,%0\n" /* make shift value */ " xr %0,%2\n" " srl %0,3\n" " lhi %3,1\n" " la %1,0(%0,%1)\n" /* calc. address for CS */ " sll %3,0(%2)\n" /* make XR mask */ " l %0,0(%1)\n" "0: lr %2,%0\n" /* CS loop starts here */ " xr %2,%3\n" /* change bit */ " cs %0,%2,0(%1)\n" " jl 0b" : "+a" (nr), "+a" (addr), "=&a" (bits), "=&d" (mask) : : "cc", "memory" ); } /* * SMP save test_and_set_bit routine based on compare and swap (CS) */ static __inline__ int test_and_set_bit_cs(int nr, volatile void * addr) { unsigned long bits, mask; __asm__ __volatile__( #if ALIGN_CS == 1 " lhi %2,3\n" /* CS must be aligned on 4 byte b. */ " nr %2,%1\n" /* isolate last 2 bits of address */ " xr %1,%2\n" /* make addr % 4 == 0 */ " sll %2,3\n" " ar %0,%2\n" /* add alignement to bitnr */ #endif " lhi %2,31\n" " nr %2,%0\n" /* make shift value */ " xr %0,%2\n" " srl %0,3\n" " lhi %3,1\n" " la %1,0(%0,%1)\n" /* calc. address for CS */ " sll %3,0(%2)\n" /* make OR mask */ " l %0,0(%1)\n" "0: lr %2,%0\n" /* CS loop starts here */ " or %2,%3\n" /* set bit */ " cs %0,%2,0(%1)\n" " jl 0b\n" " nr %0,%3\n" /* isolate old bit */ : "+a" (nr), "+a" (addr), "=&a" (bits), "=&d" (mask) : : "cc", "memory" ); return nr != 0; } /* * SMP save test_and_clear_bit routine based on compare and swap (CS) */ static __inline__ int test_and_clear_bit_cs(int nr, volatile void * addr) { static const int minusone = -1; unsigned long bits, mask; __asm__ __volatile__( #if ALIGN_CS == 1 " lhi %2,3\n" /* CS must be aligned on 4 byte b. */ " nr %2,%1\n" /* isolate last 2 bits of address */ " xr %1,%2\n" /* make addr % 4 == 0 */ " sll %2,3\n" " ar %0,%2\n" /* add alignement to bitnr */ #endif " lhi %2,31\n" " nr %2,%0\n" /* make shift value */ " xr %0,%2\n" " srl %0,3\n" " lhi %3,1\n" " la %1,0(%0,%1)\n" /* calc. address for CS */ " sll %3,0(%2)\n" " l %0,0(%1)\n" " x %3,%4\n" /* make AND mask */ "0: lr %2,%0\n" /* CS loop starts here */ " nr %2,%3\n" /* clear bit */ " cs %0,%2,0(%1)\n" " jl 0b\n" " x %3,%4\n" " nr %0,%3\n" /* isolate old bit */ : "+a" (nr), "+a" (addr), "=&a" (bits), "=&d" (mask) : "m" (minusone) : "cc", "memory" ); return nr; } /* * SMP save test_and_change_bit routine based on compare and swap (CS) */ static __inline__ int test_and_change_bit_cs(int nr, volatile void * addr) { unsigned long bits, mask; __asm__ __volatile__( #if ALIGN_CS == 1 " lhi %2,3\n" /* CS must be aligned on 4 byte b. */ " nr %2,%1\n" /* isolate last 2 bits of address */ " xr %1,%2\n" /* make addr % 4 == 0 */ " sll %2,3\n" " ar %0,%2\n" /* add alignement to bitnr */ #endif " lhi %2,31\n" " nr %2,%0\n" /* make shift value */ " xr %0,%2\n" " srl %0,3\n" " lhi %3,1\n" " la %1,0(%0,%1)\n" /* calc. address for CS */ " sll %3,0(%2)\n" /* make OR mask */ " l %0,0(%1)\n" "0: lr %2,%0\n" /* CS loop starts here */ " xr %2,%3\n" /* change bit */ " cs %0,%2,0(%1)\n" " jl 0b\n" " nr %0,%3\n" /* isolate old bit */ : "+a" (nr), "+a" (addr), "=&a" (bits), "=&d" (mask) : : "cc", "memory" ); return nr != 0; } #endif /* CONFIG_SMP */ /* * fast, non-SMP set_bit routine */ static __inline__ void __set_bit(int nr, volatile void * addr) { unsigned long reg1, reg2; __asm__ __volatile__( " lhi %1,24\n" " lhi %0,7\n" " xr %1,%2\n" " nr %0,%2\n" " srl %1,3\n" " la %1,0(%1,%3)\n" " la %0,0(%0,%4)\n" " oc 0(1,%1),0(%0)" : "=&a" (reg1), "=&a" (reg2) : "r" (nr), "a" (addr), "a" (&_oi_bitmap) : "cc", "memory" ); } static __inline__ void __constant_set_bit(const int nr, volatile void * addr) { switch (nr&7) { case 0: __asm__ __volatile__ ("la 1,%0\n\t" "oi 0(1),0x01" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory"); break; case 1: __asm__ __volatile__ ("la 1,%0\n\t" "oi 0(1),0x02" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 2: __asm__ __volatile__ ("la 1,%0\n\t" "oi 0(1),0x04" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 3: __asm__ __volatile__ ("la 1,%0\n\t" "oi 0(1),0x08" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 4: __asm__ __volatile__ ("la 1,%0\n\t" "oi 0(1),0x10" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 5: __asm__ __volatile__ ("la 1,%0\n\t" "oi 0(1),0x20" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 6: __asm__ __volatile__ ("la 1,%0\n\t" "oi 0(1),0x40" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 7: __asm__ __volatile__ ("la 1,%0\n\t" "oi 0(1),0x80" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; } } #define set_bit_simple(nr,addr) \ (__builtin_constant_p((nr)) ? \ __constant_set_bit((nr),(addr)) : \ __set_bit((nr),(addr)) ) /* * fast, non-SMP clear_bit routine */ static __inline__ void __clear_bit(int nr, volatile void * addr) { unsigned long reg1, reg2; __asm__ __volatile__( " lhi %1,24\n" " lhi %0,7\n" " xr %1,%2\n" " nr %0,%2\n" " srl %1,3\n" " la %1,0(%1,%3)\n" " la %0,0(%0,%4)\n" " nc 0(1,%1),0(%0)" : "=&a" (reg1), "=&a" (reg2) : "r" (nr), "a" (addr), "a" (&_ni_bitmap) : "cc", "memory" ); } static __inline__ void __constant_clear_bit(const int nr, volatile void * addr) { switch (nr&7) { case 0: __asm__ __volatile__ ("la 1,%0\n\t" "ni 0(1),0xFE" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 1: __asm__ __volatile__ ("la 1,%0\n\t" "ni 0(1),0xFD" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 2: __asm__ __volatile__ ("la 1,%0\n\t" "ni 0(1),0xFB" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 3: __asm__ __volatile__ ("la 1,%0\n\t" "ni 0(1),0xF7" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 4: __asm__ __volatile__ ("la 1,%0\n\t" "ni 0(1),0xEF" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "cc", "memory" ); break; case 5: __asm__ __volatile__ ("la 1,%0\n\t" "ni 0(1),0xDF" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 6: __asm__ __volatile__ ("la 1,%0\n\t" "ni 0(1),0xBF" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 7: __asm__ __volatile__ ("la 1,%0\n\t" "ni 0(1),0x7F" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; } } #define clear_bit_simple(nr,addr) \ (__builtin_constant_p((nr)) ? \ __constant_clear_bit((nr),(addr)) : \ __clear_bit((nr),(addr)) ) /* * fast, non-SMP change_bit routine */ static __inline__ void __change_bit(int nr, volatile void * addr) { unsigned long reg1, reg2; __asm__ __volatile__( " lhi %1,24\n" " lhi %0,7\n" " xr %1,%2\n" " nr %0,%2\n" " srl %1,3\n" " la %1,0(%1,%3)\n" " la %0,0(%0,%4)\n" " xc 0(1,%1),0(%0)" : "=&a" (reg1), "=&a" (reg2) : "r" (nr), "a" (addr), "a" (&_oi_bitmap) : "cc", "memory" ); } static __inline__ void __constant_change_bit(const int nr, volatile void * addr) { switch (nr&7) { case 0: __asm__ __volatile__ ("la 1,%0\n\t" "xi 0(1),0x01" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "cc", "memory" ); break; case 1: __asm__ __volatile__ ("la 1,%0\n\t" "xi 0(1),0x02" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "cc", "memory" ); break; case 2: __asm__ __volatile__ ("la 1,%0\n\t" "xi 0(1),0x04" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "cc", "memory" ); break; case 3: __asm__ __volatile__ ("la 1,%0\n\t" "xi 0(1),0x08" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "cc", "memory" ); break; case 4: __asm__ __volatile__ ("la 1,%0\n\t" "xi 0(1),0x10" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "cc", "memory" ); break; case 5: __asm__ __volatile__ ("la 1,%0\n\t" "xi 0(1),0x20" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 6: __asm__ __volatile__ ("la 1,%0\n\t" "xi 0(1),0x40" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; case 7: __asm__ __volatile__ ("la 1,%0\n\t" "xi 0(1),0x80" : "=m" (*((volatile char *) addr + ((nr>>3)^3))) : : "1", "cc", "memory" ); break; } } #define change_bit_simple(nr,addr) \ (__builtin_constant_p((nr)) ? \ __constant_change_bit((nr),(addr)) : \ __change_bit((nr),(addr)) ) /* * fast, non-SMP test_and_set_bit routine */ static __inline__ int test_and_set_bit_simple(int nr, volatile void * addr) { unsigned long reg1, reg2; int oldbit; __asm__ __volatile__( " lhi %1,24\n" " lhi %2,7\n" " xr %1,%3\n" " nr %2,%3\n" " srl %1,3\n" " la %1,0(%1,%4)\n" " ic %0,0(%1)\n" " srl %0,0(%2)\n" " la %2,0(%2,%5)\n" " oc 0(1,%1),0(%2)" : "=d&" (oldbit), "=&a" (reg1), "=&a" (reg2) : "r" (nr), "a" (addr), "a" (&_oi_bitmap) : "cc", "memory" ); return oldbit & 1; } #define __test_and_set_bit(X,Y) test_and_set_bit_simple(X,Y) /* * fast, non-SMP test_and_clear_bit routine */ static __inline__ int test_and_clear_bit_simple(int nr, volatile void * addr) { unsigned long reg1, reg2; int oldbit; __asm__ __volatile__( " lhi %1,24\n" " lhi %2,7\n" " xr %1,%3\n" " nr %2,%3\n" " srl %1,3\n" " la %1,0(%1,%4)\n" " ic %0,0(%1)\n" " srl %0,0(%2)\n" " la %2,0(%2,%5)\n" " nc 0(1,%1),0(%2)" : "=d&" (oldbit), "=&a" (reg1), "=&a" (reg2) : "r" (nr), "a" (addr), "a" (&_ni_bitmap) : "cc", "memory" ); return oldbit & 1; } #define __test_and_clear_bit(X,Y) test_and_clear_bit_simple(X,Y) /* * fast, non-SMP test_and_change_bit routine */ static __inline__ int test_and_change_bit_simple(int nr, volatile void * addr) { unsigned long reg1, reg2; int oldbit; __asm__ __volatile__( " lhi %1,24\n" " lhi %2,7\n" " xr %1,%3\n" " nr %2,%1\n" " srl %1,3\n" " la %1,0(%1,%4)\n" " ic %0,0(%1)\n" " srl %0,0(%2)\n" " la %2,0(%2,%5)\n" " xc 0(1,%1),0(%2)" : "=d&" (oldbit), "=&a" (reg1), "=&a" (reg2) : "r" (nr), "a" (addr), "a" (&_oi_bitmap) : "cc", "memory" ); return oldbit & 1; } #define __test_and_change_bit(X,Y) test_and_change_bit_simple(X,Y) #ifdef CONFIG_SMP #define set_bit set_bit_cs #define clear_bit clear_bit_cs #define change_bit change_bit_cs #define test_and_set_bit test_and_set_bit_cs #define test_and_clear_bit test_and_clear_bit_cs #define test_and_change_bit test_and_change_bit_cs #else #define set_bit set_bit_simple #define clear_bit clear_bit_simple #define change_bit change_bit_simple #define test_and_set_bit test_and_set_bit_simple #define test_and_clear_bit test_and_clear_bit_simple #define test_and_change_bit test_and_change_bit_simple #endif /* * This routine doesn't need to be atomic. */ static __inline__ int __test_bit(int nr, volatile void * addr) { unsigned long reg1, reg2; int oldbit; __asm__ __volatile__( " lhi %2,24\n" " lhi %1,7\n" " xr %2,%3\n" " nr %1,%3\n" " srl %2,3\n" " ic %0,0(%2,%4)\n" " srl %0,0(%1)" : "=d&" (oldbit), "=&a" (reg1), "=&a" (reg2) : "r" (nr), "a" (addr) : "cc" ); return oldbit & 1; } static __inline__ int __constant_test_bit(int nr, volatile void * addr) { return (((volatile char *) addr)[(nr>>3)^3] & (1<<(nr&7))) != 0; } #define test_bit(nr,addr) \ (__builtin_constant_p((nr)) ? \ __constant_test_bit((nr),(addr)) : \ __test_bit((nr),(addr)) ) /* * Find-bit routines.. */ static __inline__ int find_first_zero_bit(void * addr, unsigned size) { unsigned long cmp, count; int res; if (!size) return 0; __asm__(" lhi %1,-1\n" " lr %2,%3\n" " slr %0,%0\n" " ahi %2,31\n" " srl %2,5\n" "0: c %1,0(%0,%4)\n" " jne 1f\n" " ahi %0,4\n" " brct %2,0b\n" " lr %0,%3\n" " j 4f\n" "1: l %2,0(%0,%4)\n" " sll %0,3\n" " lhi %1,0xff\n" " tml %2,0xffff\n" " jno 2f\n" " ahi %0,16\n" " srl %2,16\n" "2: tml %2,0x00ff\n" " jno 3f\n" " ahi %0,8\n" " srl %2,8\n" "3: nr %2,%1\n" " ic %2,0(%2,%5)\n" " alr %0,%2\n" "4:" : "=&a" (res), "=&d" (cmp), "=&a" (count) : "a" (size), "a" (addr), "a" (&_zb_findmap) : "cc" ); return (res < size) ? res : size; } static __inline__ int find_next_zero_bit (void * addr, int size, int offset) { unsigned long * p = ((unsigned long *) addr) + (offset >> 5); unsigned long bitvec, reg; int set, bit = offset & 31, res; if (bit) { /* * Look for zero in first word */ bitvec = (*p) >> bit; __asm__(" slr %0,%0\n" " lhi %2,0xff\n" " tml %1,0xffff\n" " jno 0f\n" " ahi %0,16\n" " srl %1,16\n" "0: tml %1,0x00ff\n" " jno 1f\n" " ahi %0,8\n" " srl %1,8\n" "1: nr %1,%2\n" " ic %1,0(%1,%3)\n" " alr %0,%1" : "=&d" (set), "+a" (bitvec), "=&d" (reg) : "a" (&_zb_findmap) : "cc" ); if (set < (32 - bit)) return set + offset; offset += 32 - bit; p++; } /* * No zero yet, search remaining full words for a zero */ res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr)); return (offset + res); } /* * ffz = Find First Zero in word. Undefined if no zero exists, * so code should check against ~0UL first.. */ static __inline__ unsigned long ffz(unsigned long word) { unsigned long reg; int result; __asm__(" slr %0,%0\n" " lhi %2,0xff\n" " tml %1,0xffff\n" " jno 0f\n" " ahi %0,16\n" " srl %1,16\n" "0: tml %1,0x00ff\n" " jno 1f\n" " ahi %0,8\n" " srl %1,8\n" "1: nr %1,%2\n" " ic %1,0(%1,%3)\n" " alr %0,%1" : "=&d" (result), "+a" (word), "=&d" (reg) : "a" (&_zb_findmap) : "cc" ); return result; } /* * ffs: find first bit set. This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */ extern int __inline__ ffs (int x) { int r; if (x == 0) return 0; __asm__(" slr %0,%0\n" " tml %1,0xffff\n" " jnz 0f\n" " ahi %0,16\n" " srl %1,16\n" "0: tml %1,0x00ff\n" " jnz 1f\n" " ahi %0,8\n" " srl %1,8\n" "1: tml %1,0x000f\n" " jnz 2f\n" " ahi %0,4\n" " srl %1,4\n" "2: tml %1,0x0003\n" " jnz 3f\n" " ahi %0,2\n" " srl %1,2\n" "3: tml %1,0x0001\n" " jnz 4f\n" " ahi %0,1\n" "4:" : "=&d" (r), "+d" (x) : : "cc" ); return r+1; } /* * hweightN: returns the hamming weight (i.e. the number * of bits set) of a N-bit word */ #define hweight32(x) generic_hweight32(x) #define hweight16(x) generic_hweight16(x) #define hweight8(x) generic_hweight8(x) #ifdef __KERNEL__ /* * ATTENTION: intel byte ordering convention for ext2 and minix !! * bit 0 is the LSB of addr; bit 31 is the MSB of addr; * bit 32 is the LSB of (addr+4). * That combined with the little endian byte order of Intel gives the * following bit order in memory: * 07 06 05 04 03 02 01 00 15 14 13 12 11 10 09 08 \ * 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24 */ #define ext2_set_bit(nr, addr) test_and_set_bit((nr)^24, addr) #define ext2_clear_bit(nr, addr) test_and_clear_bit((nr)^24, addr) #define ext2_test_bit(nr, addr) test_bit((nr)^24, addr) static __inline__ int ext2_find_first_zero_bit(void *vaddr, unsigned size) { unsigned long cmp, count; int res; if (!size) return 0; __asm__(" lhi %1,-1\n" " lr %2,%3\n" " ahi %2,31\n" " srl %2,5\n" " slr %0,%0\n" "0: cl %1,0(%0,%4)\n" " jne 1f\n" " ahi %0,4\n" " brct %2,0b\n" " lr %0,%3\n" " j 4f\n" "1: l %2,0(%0,%4)\n" " sll %0,3\n" " ahi %0,24\n" " lhi %1,0xff\n" " tmh %2,0xffff\n" " jo 2f\n" " ahi %0,-16\n" " srl %2,16\n" "2: tml %2,0xff00\n" " jo 3f\n" " ahi %0,-8\n" " srl %2,8\n" "3: nr %2,%1\n" " ic %2,0(%2,%5)\n" " alr %0,%2\n" "4:" : "=&a" (res), "=&d" (cmp), "=&a" (count) : "a" (size), "a" (vaddr), "a" (&_zb_findmap) : "cc" ); return (res < size) ? res : size; } static __inline__ int ext2_find_next_zero_bit(void *vaddr, unsigned size, unsigned offset) { unsigned long *addr = vaddr; unsigned long *p = addr + (offset >> 5); unsigned long word, reg; int bit = offset & 31UL, res; if (offset >= size) return size; if (bit) { __asm__(" ic %0,0(%1)\n" " icm %0,2,1(%1)\n" " icm %0,4,2(%1)\n" " icm %0,8,3(%1)" : "=&a" (word) : "a" (p) : "cc" ); word >>= bit; res = bit; /* Look for zero in first longword */ __asm__(" lhi %2,0xff\n" " tml %1,0xffff\n" " jno 0f\n" " ahi %0,16\n" " srl %1,16\n" "0: tml %1,0x00ff\n" " jno 1f\n" " ahi %0,8\n" " srl %1,8\n" "1: nr %1,%2\n" " ic %1,0(%1,%3)\n" " alr %0,%1" : "+&d" (res), "+&a" (word), "=&d" (reg) : "a" (&_zb_findmap) : "cc" ); if (res < 32) return (p - addr)*32 + res; p++; } /* No zero yet, search remaining full bytes for a zero */ res = ext2_find_first_zero_bit (p, size - 32 * (p - addr)); return (p - addr) * 32 + res; } /* Bitmap functions for the minix filesystem. */ /* FIXME !!! */ #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) #define minix_set_bit(nr,addr) set_bit(nr,addr) #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) #define minix_test_bit(nr,addr) test_bit(nr,addr) #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) #endif /* __KERNEL__ */ #endif /* _S390_BITOPS_H */
Go to most recent revision | Compare with Previous | Blame | View Log