URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [include/] [asm-s390x/] [pgtable.h] - Rev 1275
Go to most recent revision | Compare with Previous | Blame | View Log
/* * include/asm-s390/pgtable.h * * S390 64bit version * Copyright (C) 2000 IBM Deutschland Entwicklung GmbH, IBM Corporation * Author(s): Hartmut Penner (hp@de.ibm.com) * Ulrich Weigand (weigand@de.ibm.com) * Martin Schwidefsky (schwidefsky@de.ibm.com) * * Derived from "include/asm-i386/pgtable.h" */ #ifndef _ASM_S390_PGTABLE_H #define _ASM_S390_PGTABLE_H /* * The Linux memory management assumes a three-level page table setup. On * the S390, we use that, but "fold" the mid level into the top-level page * table, so that we physically have the same two-level page table as the * S390 mmu expects. * * This file contains the functions and defines necessary to modify and use * the S390 page table tree. */ #ifndef __ASSEMBLY__ #include <asm/processor.h> #include <linux/threads.h> extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096))); extern void paging_init(void); /* Caches aren't brain-dead on S390. */ #define flush_cache_all() do { } while (0) #define flush_cache_mm(mm) do { } while (0) #define flush_cache_range(mm, start, end) do { } while (0) #define flush_cache_page(vma, vmaddr) do { } while (0) #define flush_page_to_ram(page) do { } while (0) #define flush_dcache_page(page) do { } while (0) #define flush_icache_range(start, end) do { } while (0) #define flush_icache_page(vma,pg) do { } while (0) #define flush_icache_user_range(vma,pg,adr,len) do { } while (0) /* * The S390 doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ #define update_mmu_cache(vma, address, pte) do { } while (0) /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern char empty_zero_page[PAGE_SIZE]; #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) #endif /* !__ASSEMBLY__ */ /* * PMD_SHIFT determines the size of the area a second-level page * table can map */ #define PMD_SHIFT 21 #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT 30 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * entries per page directory level: the S390 is two to five-level, * currently we use a 3 level lookup */ #define PTRS_PER_PTE 512 #define PTRS_PER_PMD 512 #define PTRS_PER_PGD 2048 /* * pgd entries used up by user/kernel: */ #define USER_PTRS_PER_PGD 2048 #define USER_PGD_PTRS 2048 #define KERNEL_PGD_PTRS 2048 #define FIRST_USER_PGD_NR 0 #define pte_ERROR(e) \ printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) #ifndef __ASSEMBLY__ /* * Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */ #define VMALLOC_OFFSET (8*1024*1024) #define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) \ & ~(VMALLOC_OFFSET-1)) #define VMALLOC_VMADDR(x) ((unsigned long)(x)) #define VMALLOC_END (0x20000000000L) /* * A pagetable entry of S390 has following format: * | PFRA |0IP0| OS | * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * I Page-Invalid Bit: Page is not available for address-translation * P Page-Protection Bit: Store access not possible for page * * A segmenttable entry of S390 has following format: * | P-table origin | TT * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * I Segment-Invalid Bit: Segment is not available for address-translation * C Common-Segment Bit: Segment is not private (PoP 3-30) * P Page-Protection Bit: Store access not possible for page * TT Type 00 * * A region table entry of S390 has following format: * | S-table origin | TF TTTL * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * I Segment-Invalid Bit: Segment is not available for address-translation * TT Type 01 * TF * TL Table lenght * * The regiontable origin of S390 has following format: * | region table origon | DTTL * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * X Space-Switch event: * G Segment-Invalid Bit: * P Private-Space Bit: * S Storage-Alteration: * R Real space * TL Table-Length: * * A storage key has the following format: * | ACC |F|R|C|0| * 0 3 4 5 6 7 * ACC: access key * F : fetch protection bit * R : referenced bit * C : changed bit */ /* Bits in the page table entry */ #define _PAGE_PRESENT 0x001 /* Software */ #define _PAGE_ISCLEAN 0x004 /* Software */ #define _PAGE_RO 0x200 /* HW read-only */ #define _PAGE_INVALID 0x400 /* HW invalid */ /* Bits in the segment table entry */ #define _PMD_ENTRY_INV 0x20 /* invalid segment table entry */ #define _PMD_ENTRY 0x00 /* Bits in the region third table entry */ #define _PGD_ENTRY_INV 0x20 /* region table entry invalid bit */ #define _PGD_ENTRY_MASK 0x04 /* region third table entry mask */ #define _PGD_ENTRY_LEN(x) ((x)&3) /* region table length bits */ #define _PGD_ENTRY_OFF(x) (((x)&3)<<6) /* region table offset bits */ /* * User and kernel page directory */ #define _REGION_THIRD 0x4 #define _REGION_THIRD_LEN 0x1 #define _REGION_TABLE (_REGION_THIRD|_REGION_THIRD_LEN|0x40|0x100) #define _KERN_REGION_TABLE (_REGION_THIRD|_REGION_THIRD_LEN) /* Bits in the storage key */ #define _PAGE_CHANGED 0x02 /* HW changed bit */ #define _PAGE_REFERENCED 0x04 /* HW referenced bit */ /* * No mapping available */ #define PAGE_INVALID __pgprot(_PAGE_INVALID) #define PAGE_NONE_SHARED __pgprot(_PAGE_PRESENT|_PAGE_INVALID) #define PAGE_NONE_PRIVATE __pgprot(_PAGE_PRESENT|_PAGE_INVALID|_PAGE_ISCLEAN) #define PAGE_RO_SHARED __pgprot(_PAGE_PRESENT|_PAGE_RO) #define PAGE_RO_PRIVATE __pgprot(_PAGE_PRESENT|_PAGE_RO|_PAGE_ISCLEAN) #define PAGE_COPY __pgprot(_PAGE_PRESENT|_PAGE_RO|_PAGE_ISCLEAN) #define PAGE_SHARED __pgprot(_PAGE_PRESENT) #define PAGE_KERNEL __pgprot(_PAGE_PRESENT) /* * The S390 can't do page protection for execute, and considers that the * same are read. Also, write permissions imply read permissions. This is * the closest we can get.. */ #define __P000 PAGE_NONE_PRIVATE #define __P001 PAGE_RO_PRIVATE #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_RO_PRIVATE #define __P101 PAGE_RO_PRIVATE #define __P110 PAGE_COPY #define __P111 PAGE_COPY #define __S000 PAGE_NONE_SHARED #define __S001 PAGE_RO_SHARED #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_RO_SHARED #define __S101 PAGE_RO_SHARED #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED /* * Certain architectures need to do special things when PTEs * within a page table are directly modified. Thus, the following * hook is made available. */ extern inline void set_pte(pte_t *pteptr, pte_t pteval) { *pteptr = pteval; } #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) /* * pgd/pmd/pte query functions */ extern inline int __pgd_present(pgd_t *pgd) { unsigned long addr = (unsigned long) pgd; unsigned long *pgd_slot = (unsigned long *) (addr & -8); unsigned long offset = (addr & 4) >> 1; if (*pgd_slot & _PGD_ENTRY_INV) return 0; if ((*pgd_slot & _PGD_ENTRY_OFF(3)) > _PGD_ENTRY_OFF(offset)) return 0; if ((*pgd_slot & _PGD_ENTRY_LEN(3)) < _PGD_ENTRY_LEN(offset)) return 0; return 1; } #define pgd_present(pgd) __pgd_present(&(pgd)) extern inline int __pgd_none(pgd_t *pgd) { return !__pgd_present(pgd); } #define pgd_none(pgd) __pgd_none(&(pgd)) extern inline int __pgd_bad(pgd_t *pgd) { unsigned long addr = (unsigned long) pgd; unsigned long *pgd_slot = (unsigned long *) (addr & -8); return (*pgd_slot & (~PAGE_MASK & ~_PGD_ENTRY_INV & ~_PGD_ENTRY_MASK & ~_PGD_ENTRY_LEN(3) & ~_PGD_ENTRY_OFF(3))) != 0; } #define pgd_bad(pgd) __pgd_bad(&(pgd)) extern inline int pmd_present(pmd_t pmd) { return (pmd_val(pmd) & ~PAGE_MASK) == _PMD_ENTRY; } extern inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) & _PMD_ENTRY_INV; } extern inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & (~PAGE_MASK & ~_PMD_ENTRY_INV)) != _PMD_ENTRY; } extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; } extern inline int pte_none(pte_t pte) { return ((pte_val(pte) & (_PAGE_INVALID | _PAGE_RO | _PAGE_PRESENT)) == _PAGE_INVALID); } #define pte_same(a,b) (pte_val(a) == pte_val(b)) /* * query functions pte_write/pte_dirty/pte_young only work if * pte_present() is true. Undefined behaviour if not.. */ extern inline int pte_write(pte_t pte) { return (pte_val(pte) & _PAGE_RO) == 0; } extern inline int pte_dirty(pte_t pte) { int skey; if (pte_val(pte) & _PAGE_ISCLEAN) return 0; asm volatile ("iske %0,%1" : "=d" (skey) : "a" (pte_val(pte))); return skey & _PAGE_CHANGED; } extern inline int pte_young(pte_t pte) { int skey; asm volatile ("iske %0,%1" : "=d" (skey) : "a" (pte_val(pte))); return skey & _PAGE_REFERENCED; } /* * pgd/pmd/pte modification functions */ extern inline void pgd_clear(pgd_t * pgdp) { unsigned long addr = (unsigned long) pgdp; unsigned long *pgd_slot = (unsigned long *) (addr & -8); unsigned long offset = addr & 4; if (*pgd_slot & _PGD_ENTRY_INV) { *pgd_slot = _PGD_ENTRY_INV; return; } if (offset == 0 && (*pgd_slot & _PGD_ENTRY_LEN(2)) != 0) { /* Clear lower pmd, upper pmd still used. */ *pgd_slot = (*pgd_slot & PAGE_MASK) | _PGD_ENTRY_MASK | _PGD_ENTRY_OFF(2) | _PGD_ENTRY_LEN(3); return; } if (offset == 4 && (*pgd_slot & _PGD_ENTRY_OFF(2)) == 0) { /* Clear upped pmd, lower pmd still used. */ *pgd_slot = (*pgd_slot & PAGE_MASK) | _PGD_ENTRY_MASK | _PGD_ENTRY_OFF(0) | _PGD_ENTRY_LEN(1); return; } *pgd_slot = _PGD_ENTRY_INV; } extern inline void pmd_clear(pmd_t * pmdp) { pmd_val(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY; pmd_val1(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY; } extern inline void pte_clear(pte_t *ptep) { pte_val(*ptep) = _PAGE_INVALID; } #define PTE_INIT(x) pte_clear(x) /* * The following pte_modification functions only work if * pte_present() is true. Undefined behaviour if not.. */ extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) &= PAGE_MASK | _PAGE_ISCLEAN; pte_val(pte) |= pgprot_val(newprot) & ~_PAGE_ISCLEAN; return pte; } extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) |= _PAGE_RO; return pte; } extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) &= ~(_PAGE_RO | _PAGE_ISCLEAN); return pte; } extern inline pte_t pte_mkclean(pte_t pte) { /* The only user of pte_mkclean is the fork() code. We must *not* clear the *physical* page dirty bit just because fork() wants to clear the dirty bit in *one* of the page's mappings. So we just do nothing. */ return pte; } extern inline pte_t pte_mkdirty(pte_t pte) { /* We do not explicitly set the dirty bit because the * sske instruction is slow. It is faster to let the * next instruction set the dirty bit. */ pte_val(pte) &= ~_PAGE_ISCLEAN; return pte; } extern inline pte_t pte_mkold(pte_t pte) { asm volatile ("rrbe 0,%0" : : "a" (pte_val(pte)) : "cc" ); return pte; } extern inline pte_t pte_mkyoung(pte_t pte) { /* To set the referenced bit we read the first word from the real * page with a special instruction: load using real address (lura). * Isn't S/390 a nice architecture ?! */ asm volatile ("lura 0,%0" : : "a" (pte_val(pte) & PAGE_MASK) : "0" ); return pte; } static inline int ptep_test_and_clear_young(pte_t *ptep) { int ccode; asm volatile ("rrbe 0,%1\n\t" "ipm %0\n\t" "srl %0,28\n\t" : "=d" (ccode) : "a" (pte_val(*ptep)) : "cc" ); return ccode & 2; } static inline int ptep_test_and_clear_dirty(pte_t *ptep) { int skey; if (pte_val(*ptep) & _PAGE_ISCLEAN) return 0; asm volatile ("iske %0,%1" : "=d" (skey) : "a" (*ptep)); if ((skey & _PAGE_CHANGED) == 0) return 0; /* We can't clear the changed bit atomically. For now we * clear (!) the page referenced bit. */ asm volatile ("sske %0,%1" : : "d" (0), "a" (*ptep)); return 1; } static inline pte_t ptep_get_and_clear(pte_t *ptep) { pte_t pte = *ptep; pte_clear(ptep); return pte; } static inline void ptep_set_wrprotect(pte_t *ptep) { pte_t old_pte = *ptep; set_pte(ptep, pte_wrprotect(old_pte)); } static inline void ptep_mkdirty(pte_t *ptep) { pte_mkdirty(*ptep); } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ extern inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) { pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); return __pte; } #define mk_pte(pg, pgprot) \ ({ \ struct page *__page = (pg); \ pgprot_t __pgprot = (pgprot); \ unsigned long __physpage = __pa((__page-mem_map) << PAGE_SHIFT); \ pte_t __pte = mk_pte_phys(__physpage, __pgprot); \ __pte; \ }) #define arch_set_page_uptodate(__page) \ do { \ asm volatile ("sske %0,%1" : : "d" (0), \ "a" (__pa((__page-mem_map) << PAGE_SHIFT)));\ } while (0) #define pte_page(x) (mem_map+(unsigned long)((pte_val(x) >> PAGE_SHIFT))) #define pmd_page(pmd) \ ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) /* to find an entry in a page-table-directory */ #define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) #define pgd_page(pgd) \ ((unsigned long) __va(__pgd_val(pgd) & PAGE_MASK)) /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) /* Find an entry in the second-level page table.. */ #define pmd_offset(dir,addr) \ ((pmd_t *) pgd_page(dir) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) /* Find an entry in the third-level page table.. */ #define pte_offset(dir,addr) \ ((pte_t *) pmd_page(*(dir)) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))) /* * A page-table entry has some bits we have to treat in a special way. * Bits 52 and bit 55 have to be zero, otherwise an specification * exception will occur instead of a page translation exception. The * specifiation exception has the bad habit not to store necessary * information in the lowcore. * Bit 53 and bit 54 are the page invalid bit and the page protection * bit. We set both to indicate a swapped page. * Bit 63 is used as the software page present bit. If a page is * swapped this obviously has to be zero. * This leaves the bits 0-51 and bits 56-62 to store type and offset. * We use the 7 bits from 56-62 for the type and the 52 bits from 0-51 * for the offset. * | offset |0110|type |0 * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 */ extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) { pte_t pte; pte_val(pte) = (type << 1) | (offset << 12) | _PAGE_INVALID | _PAGE_RO; pte_val(pte) &= 0xfffffffffffff6fe; /* better to be paranoid */ return pte; } #define SWP_TYPE(entry) (((entry).val >> 1) & 0x3f) #define SWP_OFFSET(entry) ((entry).val >> 12) #define SWP_ENTRY(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) }) #define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define swp_entry_to_pte(x) ((pte_t) { (x).val }) #endif /* !__ASSEMBLY__ */ /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ #define PageSkip(page) (0) #define kern_addr_valid(addr) (1) /* * No page table caches to initialise */ #define pgtable_cache_init() do { } while (0) #endif /* _S390_PAGE_H */
Go to most recent revision | Compare with Previous | Blame | View Log