URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [include/] [asm-x86_64/] [bitops.h] - Rev 1774
Go to most recent revision | Compare with Previous | Blame | View Log
#ifndef _X86_64_BITOPS_H #define _X86_64_BITOPS_H /* * Copyright 1992, Linus Torvalds. */ #include <linux/config.h> /* * These have to be done with inline assembly: that way the bit-setting * is guaranteed to be atomic. All bit operations return 0 if the bit * was cleared before the operation and != 0 if it was not. * * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). */ #ifdef CONFIG_SMP #define LOCK_PREFIX "lock ; " #else #define LOCK_PREFIX "" #endif #define ADDR (*(volatile long *) addr) /** * set_bit - Atomically set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * This function is atomic and may not be reordered. See __set_bit() * if you do not require the atomic guarantees. * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static __inline__ void set_bit(long nr, volatile void * addr) { __asm__ __volatile__( LOCK_PREFIX "btsq %1,%0" :"=m" (ADDR) :"dIr" (nr)); } /** * __set_bit - Set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * Unlike set_bit(), this function is non-atomic and may be reordered. * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */ static __inline__ void __set_bit(long nr, volatile void * addr) { __asm__( "btsq %1,%0" :"=m" (ADDR) :"dIr" (nr)); } /** * clear_bit - Clears a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * clear_bit() is atomic and may not be reordered. However, it does * not contain a memory barrier, so if it is used for locking purposes, * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() * in order to ensure changes are visible on other processors. */ static __inline__ void clear_bit(long nr, volatile void * addr) { __asm__ __volatile__( LOCK_PREFIX "btrq %1,%0" :"=m" (ADDR) :"dIr" (nr)); } #define smp_mb__before_clear_bit() barrier() #define smp_mb__after_clear_bit() barrier() /** * __change_bit - Toggle a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * Unlike change_bit(), this function is non-atomic and may be reordered. * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */ static __inline__ void __change_bit(long nr, volatile void * addr) { __asm__ __volatile__( "btcq %1,%0" :"=m" (ADDR) :"dIr" (nr)); } /** * change_bit - Toggle a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * change_bit() is atomic and may not be reordered. * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static __inline__ void change_bit(long nr, volatile void * addr) { __asm__ __volatile__( LOCK_PREFIX "btcq %1,%0" :"=m" (ADDR) :"dIr" (nr)); } /** * test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static __inline__ int test_and_set_bit(long nr, volatile void * addr) { long oldbit; __asm__ __volatile__( LOCK_PREFIX "btsq %2,%1\n\tsbbq %0,%0" :"=r" (oldbit),"=m" (ADDR) :"dIr" (nr) : "memory"); return oldbit; } /** * __test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is non-atomic and can be reordered. * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ static __inline__ int __test_and_set_bit(long nr, volatile void * addr) { long oldbit; __asm__( "btsq %2,%1\n\tsbbq %0,%0" :"=r" (oldbit),"=m" (ADDR) :"dIr" (nr)); return oldbit; } /** * test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static __inline__ int test_and_clear_bit(long nr, volatile void * addr) { long oldbit; __asm__ __volatile__( LOCK_PREFIX "btrq %2,%1\n\tsbbq %0,%0" :"=r" (oldbit),"=m" (ADDR) :"dIr" (nr) : "memory"); return oldbit; } /** * __test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is non-atomic and can be reordered. * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ static __inline__ int __test_and_clear_bit(long nr, volatile void * addr) { long oldbit; __asm__( "btrq %2,%1\n\tsbbq %0,%0" :"=r" (oldbit),"=m" (ADDR) :"dIr" (nr)); return oldbit; } /* WARNING: non atomic and it can be reordered! */ static __inline__ int __test_and_change_bit(long nr, volatile void * addr) { long oldbit; __asm__ __volatile__( "btcq %2,%1\n\tsbbq %0,%0" :"=r" (oldbit),"=m" (ADDR) :"dIr" (nr) : "memory"); return oldbit; } /** * test_and_change_bit - Change a bit and return its new value * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static __inline__ int test_and_change_bit(long nr, volatile void * addr) { long oldbit; __asm__ __volatile__( LOCK_PREFIX "btcq %2,%1\n\tsbbq %0,%0" :"=r" (oldbit),"=m" (ADDR) :"dIr" (nr) : "memory"); return oldbit; } #if 0 /* Fool kernel-doc since it doesn't do macros yet */ /** * test_bit - Determine whether a bit is set * @nr: bit number to test * @addr: Address to start counting from */ static int test_bit(int nr, const volatile void * addr); #endif static __inline__ int constant_test_bit(long nr, const volatile void * addr) { return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0; } static __inline__ int variable_test_bit(long nr, volatile void * addr) { long oldbit; __asm__ __volatile__( "btq %2,%1\n\tsbbq %0,%0" :"=r" (oldbit) :"m" (ADDR),"dIr" (nr)); return oldbit; } #define test_bit(nr,addr) \ (__builtin_constant_p(nr) ? \ constant_test_bit((nr),(addr)) : \ variable_test_bit((nr),(addr))) /** * find_first_zero_bit - find the first zero bit in a memory region * @addr: The address to start the search at * @size: The maximum bitnumber to search * * Returns the bit-number of the first zero bit, not the number of the byte * containing a bit. -1 when none found. */ static __inline__ int find_first_zero_bit(void * addr, unsigned size) { int d0, d1, d2; int res; if (!size) return 0; __asm__ __volatile__( "movl $-1,%%eax\n\t" "xorl %%edx,%%edx\n\t" "repe; scasl\n\t" "je 1f\n\t" "xorl -4(%%rdi),%%eax\n\t" "subq $4,%%rdi\n\t" "bsfl %%eax,%%edx\n" "1:\tsubq %%rbx,%%rdi\n\t" "shlq $3,%%rdi\n\t" "addq %%rdi,%%rdx" :"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2) :"1" ((size + 31) >> 5), "2" (addr), "b" (addr) : "memory"); return res; } /** * find_next_zero_bit - find the first zero bit in a memory region * @addr: The address to base the search on * @offset: The bitnumber to start searching at * @size: The maximum size to search */ static __inline__ int find_next_zero_bit (void * addr, int size, int offset) { unsigned int * p = ((unsigned int *) addr) + (offset >> 5); int set = 0, bit = offset & 31, res; if (bit) { /* * Look for zero in first byte */ __asm__("bsfl %1,%0\n\t" "jne 1f\n\t" "movl $32, %0\n" "1:" : "=r" (set) : "r" (~(*p >> bit))); if (set < (32 - bit)) return set + offset; set = 32 - bit; p++; } /* * No zero yet, search remaining full bytes for a zero */ res = find_first_zero_bit (p, size - 32 * (p - (unsigned int *) addr)); return (offset + set + res); } /* * Find string of zero bits in a bitmap. -1 when not found. */ extern unsigned long find_next_zero_string(unsigned long *bitmap, long start, long nbits, int len); static inline void set_bit_string(unsigned long *bitmap, unsigned long i, int len) { unsigned long end = i + len; while (i < end) { __set_bit(i, bitmap); i++; } } static inline void clear_bit_string(unsigned long *bitmap, unsigned long i, int len) { unsigned long end = i + len; while (i < end) { clear_bit(i, bitmap); i++; } } /** * ffz - find first zero in word. * @word: The word to search * * Undefined if no zero exists, so code should check against ~0UL first. */ static __inline__ unsigned long ffz(unsigned long word) { __asm__("bsfq %1,%0" :"=r" (word) :"r" (~word)); return word; } #ifdef __KERNEL__ /** * ffs - find first bit set * @x: the word to search * * This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */ static __inline__ int ffs(int x) { int r; __asm__("bsfl %1,%0\n\t" "jnz 1f\n\t" "movl $-1,%0\n" "1:" : "=r" (r) : "g" (x)); return r+1; } /** * hweightN - returns the hamming weight of a N-bit word * @x: the word to weigh * * The Hamming Weight of a number is the total number of bits set in it. */ #define hweight32(x) generic_hweight32(x) #define hweight16(x) generic_hweight16(x) #define hweight8(x) generic_hweight8(x) #endif /* __KERNEL__ */ #ifdef __KERNEL__ #define ext2_set_bit __test_and_set_bit #define ext2_clear_bit __test_and_clear_bit #define ext2_test_bit test_bit #define ext2_find_first_zero_bit find_first_zero_bit #define ext2_find_next_zero_bit find_next_zero_bit /* Bitmap functions for the minix filesystem. */ #define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr) #define minix_set_bit(nr,addr) __set_bit(nr,addr) #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr) #define minix_test_bit(nr,addr) test_bit(nr,addr) #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) #endif /* __KERNEL__ */ #endif /* _X86_64_BITOPS_H */
Go to most recent revision | Compare with Previous | Blame | View Log