URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [include/] [asm-x86_64/] [pgtable.h] - Rev 1765
Compare with Previous | Blame | View Log
#ifndef _X86_64_PGTABLE_H #define _X86_64_PGTABLE_H /* * This file contains the functions and defines necessary to modify and use * the x86-64 page table tree. * * x86-64 has a 4 level table setup. Generic linux MM only supports * three levels. The fourth level is currently a single static page that * is shared by everybody and just contains a pointer to the current * three level page setup on the beginning and some kernel mappings at * the end. For more details see Documentation/x86_64/mm.txt */ #ifndef __ASSEMBLY__ #include <asm/processor.h> #include <asm/fixmap.h> #include <asm/bitops.h> #include <asm/pda.h> #include <linux/threads.h> #include <linux/config.h> extern pgd_t level3_kernel_pgt[512]; extern pgd_t level3_physmem_pgt[512]; extern pgd_t level3_ident_pgt[512]; extern pmd_t level2_kernel_pgt[512]; extern pml4_t init_level4_pgt[]; extern pgd_t boot_vmalloc_pgt[]; extern void paging_init(void); #define swapper_pg_dir NULL /* Caches aren't brain-dead on the intel. */ #define flush_cache_all() do { } while (0) #define flush_cache_mm(mm) do { } while (0) #define flush_cache_range(mm, start, end) do { } while (0) #define flush_cache_page(vma, vmaddr) do { } while (0) #define flush_page_to_ram(page) do { } while (0) #define flush_dcache_page(page) do { } while (0) #define flush_icache_range(start, end) do { } while (0) #define flush_icache_page(vma,pg) do { } while (0) #define flush_icache_user_range(vma,pg,adr,len) do { } while (0) #define __flush_tlb() \ do { \ unsigned long tmpreg; \ \ __asm__ __volatile__( \ "movq %%cr3, %0; # flush TLB \n" \ "movq %0, %%cr3; \n" \ : "=r" (tmpreg) \ :: "memory"); \ } while (0) /* * Global pages have to be flushed a bit differently. Not a real * performance problem because this does not happen often. */ #define __flush_tlb_global() \ do { \ unsigned long tmpreg; \ \ __asm__ __volatile__( \ "movq %1, %%cr4; # turn off PGE \n" \ "movq %%cr3, %0; # flush TLB \n" \ "movq %0, %%cr3; \n" \ "movq %2, %%cr4; # turn PGE back on \n" \ : "=&r" (tmpreg) \ : "r" (mmu_cr4_features & ~(u64)X86_CR4_PGE), \ "r" (mmu_cr4_features) \ : "memory"); \ } while (0) #define __flush_tlb_all() __flush_tlb_global() #define __flush_tlb_one(addr) __asm__ __volatile__("invlpg %0": :"m" (*(char *) addr)) /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) #endif /* !__ASSEMBLY__ */ #define PML4_SHIFT 39 #define PTRS_PER_PML4 512 /* * PGDIR_SHIFT determines what a 3rd level page table entry can map */ #define PGDIR_SHIFT 30 #define PTRS_PER_PGD 512 /* * PMD_SHIFT determines the size of the area a middle-level * page table can map */ #define PMD_SHIFT 21 #define PTRS_PER_PMD 512 /* * entries per page directory level */ #define PTRS_PER_PTE 512 #define pte_ERROR(e) \ printk("%s:%d: bad pte %p(%016lx).\n", __FILE__, __LINE__, &(e), pte_val(e)) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %p(%016lx).\n", __FILE__, __LINE__, &(e), pmd_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %p(%016lx).\n", __FILE__, __LINE__, &(e), pgd_val(e)) #define pml4_none(x) (!pml4_val(x)) #define pgd_none(x) (!pgd_val(x)) extern inline int pgd_present(pgd_t pgd) { return !pgd_none(pgd); } static inline void set_pte(pte_t *dst, pte_t val) { pte_val(*dst) = pte_val(val); } static inline void set_pmd(pmd_t *dst, pmd_t val) { pmd_val(*dst) = pmd_val(val); } static inline void set_pgd(pgd_t *dst, pgd_t val) { pgd_val(*dst) = pgd_val(val); } static inline void set_pml4(pml4_t *dst, pml4_t val) { pml4_val(*dst) = pml4_val(val); } extern inline void __pgd_clear (pgd_t * pgd) { set_pgd(pgd, __pgd(0)); } extern inline void pgd_clear (pgd_t * pgd) { __pgd_clear(pgd); __flush_tlb(); } #define pgd_page(pgd) \ ((unsigned long) __va(pgd_val(pgd) & PHYSICAL_PAGE_MASK)) #define __mk_pgd(address,prot) ((pgd_t) { (address) | pgprot_val(prot) }) /* Find an entry in the second-level page table.. */ #define pmd_offset(dir, address) ((pmd_t *) pgd_page(*(dir)) + \ __pmd_offset(address)) #define __mk_pmd(address,prot) ((pmd_t) { ((address) | pgprot_val(prot)) & __supported_pte_mask}) #define ptep_get_and_clear(xp) __pte(xchg(&(xp)->pte, 0)) #define pte_same(a, b) ((a).pte == (b).pte) #define __mk_pte(page_nr,pgprot) \ __pte(((page_nr) << PAGE_SHIFT) | (pgprot_val(pgprot) & __supported_pte_mask)) #define PML4_SIZE (1UL << PML4_SHIFT) #define PML4_MASK (~(PML4_SIZE-1)) #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) #define FIRST_USER_PGD_NR 0 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) #define BOOT_USER_L4_PTRS 1 #define BOOT_KERNEL_L4_PTRS 511 /* But we will do it in 4rd level */ #ifndef __ASSEMBLY__ /* IO mappings are the 509th slot in the PML4. We map them high up to make sure they never appear in the node hash table in DISCONTIG configs. */ #define IOMAP_START 0xfffffe8000000000 /* vmalloc space occupies the 510th slot in the PML4. You can have upto 512GB of vmalloc/ioremap space. */ #define VMALLOC_START 0xffffff0000000000 #define VMALLOC_END 0xffffff7fffffffff #define VMALLOC_VMADDR(x) ((unsigned long)(x)) #define MODULES_VADDR 0xffffffffa0000000 #define MODULES_END 0xffffffffafffffff #define MODULES_LEN (MODULES_END - MODULES_VADDR) #define _PAGE_BIT_PRESENT 0 #define _PAGE_BIT_RW 1 #define _PAGE_BIT_USER 2 #define _PAGE_BIT_PWT 3 /* Write Through */ #define _PAGE_BIT_PCD 4 /* Cache disable */ #define _PAGE_BIT_ACCESSED 5 #define _PAGE_BIT_DIRTY 6 #define _PAGE_BIT_PSE 7 /* 2MB page */ #define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */ #define _PAGE_BIT_NX 63 /* No execute: only valid after cpuid check */ #define _PAGE_PRESENT 0x001 #define _PAGE_RW 0x002 #define _PAGE_USER 0x004 #define _PAGE_PWT 0x008 #define _PAGE_PCD 0x010 #define _PAGE_ACCESSED 0x020 #define _PAGE_DIRTY 0x040 #define _PAGE_PSE 0x080 /* 2MB page */ #define _PAGE_GLOBAL 0x100 /* Global TLB entry */ #define _PAGE_PGE _PAGE_GLOBAL #define _PAGE_NX (1UL<<_PAGE_BIT_NX) #define _PAGE_PROTNONE 0x080 /* If not present */ #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY) #define KERNPG_TABLE __pgprot(_KERNPG_TABLE) #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_SHARED_NOEXEC __pgprot(_PAGE_NX | _PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_COPY_NOEXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX) #define PAGE_COPY PAGE_COPY_NOEXEC #define PAGE_COPY_EXEC \ __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX) #define PAGE_READONLY_EXEC \ __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_EXECONLY PAGE_READONLY_EXEC #define PAGE_LARGE (_PAGE_PSE|_PAGE_PRESENT) #define __PAGE_KERNEL \ (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX) #define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD) #define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW) #define __PAGE_KERNEL_VSYSCALL (_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) #define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE) #define __PAGE_KERNEL_LARGE_NOCACHE (__PAGE_KERNEL_LARGE | _PAGE_PCD) #define __PAGE_KERNEL_EXECUTABLE (__PAGE_KERNEL & ~_PAGE_NX) #define __PAGE_USER_NOCACHE_RO \ (_PAGE_PRESENT | _PAGE_USER | _PAGE_DIRTY | _PAGE_ACCESSED) extern unsigned long __supported_pte_mask; #define __PTE_SUPP(x) __pgprot((x) & __supported_pte_mask) /* _NX is masked away in mk_pmd/pte */ #define PAGE_KERNEL __PTE_SUPP(__PAGE_KERNEL|_PAGE_GLOBAL) #define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO|_PAGE_GLOBAL) #define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE|_PAGE_GLOBAL) #define PAGE_KERNEL_VSYSCALL __pgprot(__PAGE_KERNEL_VSYSCALL|_PAGE_GLOBAL) #define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE|_PAGE_GLOBAL) #define PAGE_KERNEL_LARGE_NOCACHE __pgprot(__PAGE_KERNEL_LARGE_NOCACHE|_PAGE_GLOBAL) #define PAGE_USER_NOCACHE_RO __pgprot(__PAGE_USER_NOCACHE_RO|_PAGE_GLOBAL) #define PAGE_KERNEL_EXECUTABLE __pgprot(__PAGE_KERNEL_EXECUTABLE|_PAGE_GLOBAL) /* xwr */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_EXECONLY #define __P101 PAGE_READONLY_EXEC #define __P110 PAGE_COPY_EXEC #define __P111 PAGE_COPY_EXEC /* xwr */ #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED_NOEXEC #define __S011 PAGE_SHARED_NOEXEC #define __S100 PAGE_EXECONLY #define __S101 PAGE_READONLY_EXEC #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED static inline unsigned long pgd_bad(pgd_t pgd) { unsigned long val = pgd_val(pgd); val &= ~PAGE_MASK; val &= ~(_PAGE_USER | _PAGE_DIRTY); return val & ~(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED); } /* * Handling allocation failures during page table setup. */ extern void __handle_bad_pmd(pmd_t * pmd); extern void __handle_bad_pmd_kernel(pmd_t * pmd); #define pte_none(x) (!pte_val(x)) #define pte_present(x) (pte_val(x) & (_PAGE_PRESENT | _PAGE_PROTNONE)) #define pte_clear(xp) do { set_pte(xp, __pte(0)); } while (0) #define pmd_none(x) (!pmd_val(x)) #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) #define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0) #define pmd_bad(x) \ ((pmd_val(x) & (~PAGE_MASK & (~_PAGE_USER))) != _KERNPG_TABLE ) #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) #ifndef CONFIG_DISCONTIGMEM #define pte_page(x) (pfn_to_page((pte_val(x) & PHYSICAL_PAGE_MASK) >> PAGE_SHIFT)) #endif /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; } extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_USER; } extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } extern inline pte_t pte_rdprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_USER)); return pte; } extern inline pte_t pte_exprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_USER)); return pte; } extern inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; } extern inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; } extern inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_RW)); return pte; } extern inline pte_t pte_mkread(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_USER)); return pte; } extern inline pte_t pte_mkexec(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_USER)); return pte; } extern inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; } extern inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; } extern inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_RW)); return pte; } static inline int ptep_test_and_clear_dirty(pte_t *ptep) { return test_and_clear_bit(_PAGE_BIT_DIRTY, ptep); } static inline int ptep_test_and_clear_young(pte_t *ptep) { return test_and_clear_bit(_PAGE_BIT_ACCESSED, ptep); } static inline void ptep_set_wrprotect(pte_t *ptep) { clear_bit(_PAGE_BIT_RW, ptep); } static inline void ptep_mkdirty(pte_t *ptep) { set_bit(_PAGE_BIT_DIRTY, ptep); } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ #define mk_pte(page,pgprot) \ ({ \ pte_t __pte; \ unsigned long __val = page_to_phys(page); \ __val |= pgprot_val(pgprot); \ __val &= __supported_pte_mask; \ set_pte(&__pte, __pte(__val)); \ __pte; \ }) /* This takes a physical page address that is used by the remapping functions */ static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) { pte_t __pte; set_pte(&__pte, __pte(physpage + (pgprot_val(pgprot) & __supported_pte_mask))); return __pte; } extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { set_pte(&pte, __pte(((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)) & __supported_pte_mask)); return pte; } #define page_pte(page) page_pte_prot(page, __pgprot(0)) #define __pmd_page(pmd) (__va(pmd_val(pmd) & PHYSICAL_PAGE_MASK)) /* to find an entry in a page-table-directory. */ #define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) #define __pgd_offset_k(pgd, address) ((pgd) + pgd_index(address)) #define current_pgd_offset_k(address) \ __pgd_offset_k((pgd_t *)read_pda(level4_pgt), address) /* This accesses the reference page table of the boot cpu. Other CPUs get synced lazily via the page fault handler. */ #define pgd_offset_k(address) \ __pgd_offset_k( \ (pgd_t *)__va(pml4_val(init_level4_pgt[pml4_index(address)]) & PHYSICAL_PAGE_MASK), address) #define __pmd_offset(address) \ (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) /* Find an entry in the third-level page table.. */ #define __pte_offset(address) \ ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) #define pte_offset(dir, address) ((pte_t *) __pmd_page(*(dir)) + \ __pte_offset(address)) /* never use these in the common code */ #define pml4_page(level4) ((unsigned long) __va(pml4_val(level4) & PHYSICAL_PAGE_MASK)) #define pml4_index(address) (((address) >> PML4_SHIFT) & (PTRS_PER_PML4-1)) #define pml4_offset_k(address) ((pml4_t *)read_pda(level4_pgt) + pml4_index(address)) #define level3_offset_k(dir, address) ((pgd_t *) pml4_page(*(dir)) + pgd_index(address)) #define mk_kernel_pml4(address,prot) ((pml4_t){(address) | pgprot_val(prot)}) #define pml4_present(pml4) (pml4_val(pml4) & _PAGE_PRESENT) /* * x86 doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ #define update_mmu_cache(vma,address,pte) do { } while (0) /* Encode and de-code a swap entry */ #define SWP_TYPE(x) (((x).val >> 1) & 0x3f) #define SWP_OFFSET(x) ((x).val >> 8) #define SWP_ENTRY(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) }) #define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define swp_entry_to_pte(x) ((pte_t) { (x).val }) struct page; /* * Change attributes of an kernel page. */ struct page; extern int change_page_attr(struct page *page, int numpages, pgprot_t prot); extern void clear_kernel_mapping(unsigned long addr, unsigned long size); #endif /* !__ASSEMBLY__ */ /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ #define PageSkip(page) (0) #define kern_addr_valid(kaddr) ((kaddr)>>PAGE_SHIFT < max_mapnr) #define io_remap_page_range remap_page_range #define HAVE_ARCH_UNMAPPED_AREA #define pgtable_cache_init() do { } while (0) #endif /* _X86_64_PGTABLE_H */