URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [sim.cfg] - Rev 1765
Compare with Previous | Blame | View Log
/* sim.cfg -- Simulator configuration script file
Copyright (C) 2001, Marko Mlinar, markom@opencores.org
This file includes a lot of help about configurations and default one
This file is part of OpenRISC 1000 Architectural Simulator.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/* INTRODUCTION
The or1ksim have various parameters, which can be set in configuration
files. Multiple configurations may be used and switched between at
or1ksim startup.
By default, or1ksim loads condfiguration file from './sim.cfg' and if not
found it checks '~/.or1k/sim.cfg'. If even this file is not found or
all parameters are not defined, default configuration is used.
Users should not rely on default configuration, but rather redefine all
critical settings, since default configuration may differ in newer
versions of the or1ksim.
If multiple configurations are used, user can switch between them by
supplying -f <filename.cfg> option when starting simulator.
This file may contain (standard C) only comments - no // support.
Like normal configuration file, this file is divided in sections,
where each section is described in detail also.
*/
/* MEMORY SECTION
This section specifies how is initial memory generated and which blocks
it consist of.
type = random/unknown/pattern
specifies the initial memory values. 'random' parameter generate
random memory using seed 'random_seed' parameter. 'pattern' parameter
fills memory with 'pattern' parameter and 'unknown' does not specify
how memory should be generated - the fastest option.
random_seed = <value>
random seed for randomizer, used if type = random
pattern = <value>
pattern to fill memory, used if type = pattern
baseaddr = <hex_value>
memory start address
size = <hex_value>
memory size
name = "<string>"
memory block name
ce = <value>
chip enable index of the memory instance
delayr = <value>
cycles, required for read access, -1 if instance does not support reading
delayw = <value>
cycles, required for write access, -1 if instance does not support writing
16550 = 0/1
0, if this device is uart 16450 and 1, if it is 16550
log = "<filename>"
filename, where to log memory accesses to, no log, if log command is not specified
*/
section memory
/*random_seed = 12345
type = random*/
pattern = 0x00
type = unknown /* Fastest */
name = "FLASH"
ce = 0
baseaddr = 0xf0000000
size = 0x00800000
delayr = 1
delayw = -1
log = "flash.log"
end
section memory
name = "RAM"
ce = 1
baseaddr = 0x00000000
size = 0x02000000
/* size = 0x00800000 */
delayr = 1
delayw = 2
/* log = "ram.log"*/
end
section memory
name = "SRAM"
ce = 2
baseaddr = 0x08000000
size = 0x00400000
delayr = 1
delayw = 2
/* log = "ram.log"*/
end
/* IMMU SECTION
This section configures Instruction Memory Menangement Unit
enabled = 0/1
whether IMMU is enabled
(NOTE: UPR bit is set)
nsets = <value>
number of ITLB sets; must be power of two
nways = <value>
number of ITLB ways
pagesize = <value>
instruction page size; must be power of two
entrysize = <value>
instruction entry size in bytes
ustates = <value>
number of ITLB usage states (2, 3, 4 etc., max is 4)
*/
section immu
enabled = 1
nsets = 64
nways = 1
pagesize = 8192
end
/* DMMU SECTION
This section configures Data Memory Menangement Unit
enabled = 0/1
whether DMMU is enabled
(NOTE: UPR bit is set)
nsets = <value>
number of DTLB sets; must be power of two
nways = <value>
number of DTLB ways
pagesize = <value>
data page size; must be power of two
entrysize = <value>
data entry size in bytes
ustates = <value>
number of DTLB usage states (2, 3, 4 etc., max is 4)
*/
section dmmu
enabled = 1
nsets = 64
nways = 1
pagesize = 8192
end
/* IC SECTION
This section configures Instruction Cache
enabled = 0/1
whether IC is enabled
(NOTE: UPR bit is set)
nsets = <value>
number of IC sets; must be power of two
nways = <value>
number of IC ways
blocksize = <value>
IC block size in bytes; must be power of two
ustates = <value>
number of IC usage states (2, 3, 4 etc., max is 4)
*/
section ic
enabled = 1
nsets = 512
nways = 1
blocksize = 16
end
/* DC SECTION
This section configures Data Cache
enabled = 0/1
whether DC is enabled
(NOTE: UPR bit is set)
nsets = <value>
number of DC sets; must be power of two
nways = <value>
number of DC ways
blocksize = <value>
DC block size in bytes; must be power of two
ustates = <value>
number of DC usage states (2, 3, 4 etc., max is 4)
*/
section dc
enabled = 1
nsets = 512
nways = 1
blocksize = 16
end
/* SIM SECTION
This section specifies how should sim behave.
verbose = 0/1
whether to print out extra messages
debug = 0-9
= 0 disabled debug messages
1-9 level of sim debug information, greater the number more verbose is
the output
profile = 0/1
whether to generate profiling file 'sim.profile'
prof_fn = "<filename>"
filename, where to generate profiling info, used
only if 'profile' is set
history = 0/1
whether instruction execution flow is tracked for
display by simulator hist command. Useful for
back-trace debugging.
iprompt = 0/1
whether we strart in interactive prompt
exe_log = 0/1
whether execution log should be generated
exe_log_fn = "<filename>"
where to put execution log in, used only if 'exe_log'
is set
clkcycle = <value>[ps|ns|us|ms]
specifies time measurement for one cycle
*/
section sim
verbose = 1
debug = 0
profile = 0
prof_fn = "sim.profile"
history = 1
/* iprompt = 0 */
exe_log = 1
exe_log_type = software
exe_log_start = 26000000
exe_log_end = 26800000
exe_log_marker = 50
exe_log_fn = "executed-1.log"
end
/* SECTION VAPI
This section configures Verification API, used for Advanced
Core Verification.
enabled = 0/1
whether to start VAPI server
server_port = <value>
TCP/IP port to start VAPI server on
log_enabled = 0/1
whether logging of VAPI requests is enabled
vapi_fn = <filename>
specifies filename where to log into, if log_enabled is selected
*/
section VAPI
enabled = 0
server_port = 9998
log_enabled = 0
vapi_log_fn = "vapi.log"
end
/* CPU SECTION
This section specifies various CPU parameters.
ver = <value>
rev = <value>
specifies version and revision of the CPU used
upr = <value>
changes the upr register
superscalar = 0/1
whether CPU is scalar or superscalar
(modify cpu/or32/execute.c to tune superscalar model)
hazards = 0/1
whether data hazards are tracked in superscalar CPU
and displayed by the simulator r command
dependstats = 0/1
whether inter-instruction dependencies are calculated
and displayed by simulator stats command.
parameters for CPU analysis
*/
section cpu
ver = 0x1200
rev = 0x0000
superscalar = 0
hazards = 0
dependstats = 0
end
/* DEBUG SECTION
This sections specifies how debug unit should behave.
enabled = 0/1
whether debug unit is enabled
gdb_enabled = 0/1
whether to start gdb server at 'server_port' port
server_port = <value>
TCP/IP port to start gdb server on, used only if gdb_enabled
is set
section debug
enabled = 0
gdb_enabled = 0
server_port = 9999
end
/* MC SECTION
This section configures the memory controller
enabled = 0/1
whether memory controller is enabled
baseaddr = <hex_value>
address of first MC register
POC = <hex_value>
Power On Configuration register
*/
section mc
enabled = 1
baseaddr = 0x93000000
POC = 0x00000008 /* Power on configuration register */
end
/* UART SECTION
This section configures UARTs
baseaddr = <hex_value>
address of first UART register for this device
rx_file = "<filename>"
filename, where to read data from
tx_file = "<filename>"
filename, where to write data to
irq = <value>
irq number for this device
16550 = 0/1
0, if this device is uart 16450 and 1, if it is 16550
jitter = <value>
in msecs... time to block, -1 to disable it
vapi_id = <hex_value>
VAPI id of this instance
*/
section uart
baseaddr = 0x90000000
irq = 2
channel = "file:uart0.rx,uart0.tx"
jitter = -1 /* async behaviour */
16550 = 1
end
/* DMA SECTION
This section configures DMAs
baseaddr = <hex_value>
address of first DMA register for this device
irq = <value>
irq number for this device
vapi_id = <hex_value>
VAPI id of this instance
*/
section dma
baseaddr = 0x9a000000
irq = 11
end
/* ETHERNET SECTION
This section configures ethernets
enabled = 0/1
whether ethernets are enabled
baseaddr = <hex_value>
address of first ethernet register for this device
dma = <value>
which controller is this ethernet "connected" to
rtx_type = 0 ETH_RTX_FILE
1 ETH_RTX_SOCK
rx_channel = <value>
DMA channel used for RX
tx_channel = <value>
DMA channel used for TX
rx_file = "<filename>"
filename, where to read data from
tx_file = "<filename>"
filename, where to write data to
vapi_id = <hex_value>
VAPI id of this instance
*/
section ethernet
baseaddr = 0x92000000
dma = 0
irq = 4
rtx_type = 1
tx_channel = 0
rx_channel = 1
rxfile = "eth0.rx"
txfile = "eth0.tx"
sockif = "eth0"
end
section fb
enabled = 1
baseaddr = 0x97000000
refresh_rate = 10000000
filename = "primary"
end
/* KBD SECTION
This section configures PS/2 compatible keyboard
enabled = 0/1
whether keyboard is enabled
baseaddr = <hex_value>
base address of the keyboard device
rxfile = "<filename>"
filename, where to read data from
*/
section kbd
enabled = 1
irq = 5
baseaddr = 0x94000000
rxfile = "kbd.rx"
end