URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [or1ksim/] [cpu/] [common/] [abstract.c] - Rev 1452
Go to most recent revision | Compare with Previous | Blame | View Log
/* abstract.c -- Abstract entities Copyright (C) 1999 Damjan Lampret, lampret@opencores.org This file is part of OpenRISC 1000 Architectural Simulator. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Abstract memory and routines that go with this. I need to add all sorts of other abstract entities. Currently we have only memory. */ #include <stdlib.h> #include <stdio.h> #include <ctype.h> #include <string.h> #include "config.h" #ifdef HAVE_INTTYPES_H #include <inttypes.h> #endif #include "port.h" #include "arch.h" #include "parse.h" #include "abstract.h" #include "sim-config.h" #include "labels.h" #include "except.h" #include "debug_unit.h" #include "opcode/or32.h" #include "spr_defs.h" #include "execute.h" #include "sprs.h" #include "support/profile.h" #include "dmmu.h" #include "immu.h" #include "dcache_model.h" #include "icache_model.h" #include "debug.h" #include "stats.h" #if DYNAMIC_EXECUTION #include "dyn_rec.h" #endif extern char *disassembled; /* Pointer to memory area descriptions that are assigned to individual peripheral devices. */ struct dev_memarea *dev_list; /* Temporary variable to increase speed. */ struct dev_memarea *cur_area; /* Pointer to memory controller device descriptor. */ struct dev_memarea *mc_area = (struct dev_memarea *)0; /* These are set by mmu if cache inhibit bit is set for current acces. */ int data_ci, insn_ci; /* Virtual address of current access. */ oraddr_t cur_vadd; /* Calculates bit mask to fit the data */ unsigned int bit_mask (uint32_t data) { int i = 0; data--; while (data >> i) data |= 1 << i++; return data; } /* Register read and write function for a memory area. addr is inside the area, if addr & addr_mask == addr_compare (used also by peripheral devices like 16450 UART etc.) */ void register_memoryarea_mask(oraddr_t addr_mask, oraddr_t addr_compare, uint32_t size, unsigned granularity, unsigned mc_dev, uint32_t (readfunc)(oraddr_t, void *), void (writefunc)(oraddr_t, uint32_t, void *), void *dat) { struct dev_memarea **pptmp; unsigned int size_mask = bit_mask (size); int found_error = 0; addr_compare &= addr_mask; debug(5, "addr & %"PRIxADDR" == %"PRIxADDR" to %"PRIxADDR", size %08"PRIx32", gran %iB\n", addr_mask, addr_compare, addr_compare | bit_mask (size), size, granularity); /* Go to the end of the list. */ for(pptmp = &dev_list; *pptmp; pptmp = &(*pptmp)->next) if ((addr_compare >= (*pptmp)->addr_compare) && (addr_compare < (*pptmp)->addr_compare + (*pptmp)->size) || (addr_compare + size > (*pptmp)->addr_compare) && (addr_compare < (*pptmp)->addr_compare + (*pptmp)->size)) { if (!found_error) { fprintf (stderr, "ERROR: Overlapping memory area(s):\n"); fprintf (stderr, "\taddr & %"PRIxADDR" == %"PRIxADDR" to %"PRIxADDR ", size %08"PRIx32", gran %iB\n", addr_mask, addr_compare, addr_compare | bit_mask (size), size, granularity); } found_error = 1; fprintf (stderr, "and\taddr & %"PRIxADDR" == %"PRIxADDR" to %"PRIxADDR ", size %08"PRIx32", gran %iB\n", (*pptmp)->addr_mask, (*pptmp)->addr_compare, (*pptmp)->addr_compare | (*pptmp)->size_mask, (*pptmp)->size, (*pptmp)->granularity); } if (found_error) exit (-1); cur_area = *pptmp = (struct dev_memarea *)malloc(sizeof(struct dev_memarea)); if (mc_dev) mc_area = *pptmp; (*pptmp)->addr_mask = addr_mask; (*pptmp)->addr_compare = addr_compare; (*pptmp)->size = size; (*pptmp)->size_mask = size_mask; (*pptmp)->granularity = granularity; (*pptmp)->readfunc = readfunc; (*pptmp)->writefunc = writefunc; (*pptmp)->log = 0; (*pptmp)->delayr = 2; (*pptmp)->delayw = 2; (*pptmp)->priv_dat = dat; (*pptmp)->chip_select = -1; (*pptmp)->next = NULL; } /* Register read and write function for a memory area. Memory areas should be aligned. Memory area is rounded up to fit the nearest 2^n aligment. (used also by peripheral devices like 16450 UART etc.) If mc_dev is 1, this means that this device will be checked first for match and will be accessed in case of overlaping memory spaces. Only one device can have this set to 1 (used for memory controller) */ void register_memoryarea(oraddr_t addr, uint32_t size, unsigned granularity, unsigned mc_dev, uint32_t (readfunc)(oraddr_t, void *), void (writefunc)(oraddr_t, uint32_t, void *), void *dat) { unsigned int size_mask = bit_mask (size); unsigned int addr_mask = ~size_mask; register_memoryarea_mask (addr_mask, addr & addr_mask, size_mask + 1, granularity, mc_dev, readfunc, writefunc, dat); } /* Check if access is to registered area of memory. */ inline struct dev_memarea *verify_memoryarea(oraddr_t addr) { struct dev_memarea *ptmp; /* Check memory controller space first */ if (mc_area && (addr & mc_area->addr_mask) == (mc_area->addr_compare & mc_area->addr_mask)) return cur_area = mc_area; /* Check cached value */ if (cur_area && (addr & cur_area->addr_mask) == (cur_area->addr_compare & cur_area->addr_mask)) return cur_area; /* When mc is enabled, we must check valid also, otherwise we assume it is nonzero */ /* Check list of registered devices. */ for(ptmp = dev_list; ptmp; ptmp = ptmp->next) if ((addr & ptmp->addr_mask) == (ptmp->addr_compare & ptmp->addr_mask) && ptmp->valid) return cur_area = ptmp; return cur_area = NULL; } /* Finds the memory area for the address and adjust the read and write delays for it. */ void adjust_rw_delay(oraddr_t memaddr, unsigned int delayr, unsigned int delayw) { if (verify_memoryarea(memaddr)) { cur_area->delayr = delayr; cur_area->delayw = delayw; } } /* for cpu accesses * * STATISTICS: check cpu/common/parse.c */ inline uint32_t evalsim_mem32(oraddr_t memaddr) { return(evalsim_mem32_atomic(memaddr, 1)); } /* for simulator accesses, the ones that cpu wouldn't do */ inline uint32_t evalsim_mem32_void(oraddr_t memaddr) { return(evalsim_mem32_atomic(memaddr, 0)); } uint32_t evalsim_mem32_atomic(oraddr_t memaddr, int cpu_access) { uint32_t temp = 0; if (verify_memoryarea(memaddr)) { switch(cur_area->granularity) { case 4: temp = cur_area->readfunc(memaddr, cur_area->priv_dat); break; case 1: temp = cur_area->readfunc(memaddr, cur_area->priv_dat) << 24; temp |= cur_area->readfunc(memaddr + 1, cur_area->priv_dat) << 16; temp |= cur_area->readfunc(memaddr + 2, cur_area->priv_dat) << 8; temp |= cur_area->readfunc(memaddr + 3, cur_area->priv_dat); break; case 2: temp = cur_area->readfunc(memaddr, cur_area->priv_dat) << 16; temp |= cur_area->readfunc(memaddr + 2, cur_area->priv_dat); break; default: /* if you add new memory granularity be sure to check the formula * below for the read delay and fix it if necessery */ PRINTF("unknown/unhandled memory granularuty\n"); exit(-1); } if (cpu_access) runtime.sim.mem_cycles += cur_area->delayr * (4 / cur_area->granularity); } return temp; } /* for cpu accesses */ inline uint16_t evalsim_mem16(oraddr_t memaddr) { return(evalsim_mem16_atomic(memaddr, 1)); } /* for simulator accesses, the ones that cpu wouldn't do */ inline uint16_t evalsim_mem16_void(oraddr_t memaddr) { return(evalsim_mem16_atomic(memaddr, 0)); } uint16_t evalsim_mem16_atomic(oraddr_t memaddr, int cpu_access) { uint32_t temp = 0; if (verify_memoryarea(memaddr)) { switch(cur_area->granularity) { case 1: temp = cur_area->readfunc(memaddr, cur_area->priv_dat) << 8; temp |= cur_area->readfunc(memaddr + 1, cur_area->priv_dat); if (cpu_access) runtime.sim.mem_cycles += cur_area->delayr * 2; break; case 2: temp = cur_area->readfunc(memaddr, cur_area->priv_dat); if (cpu_access) runtime.sim.mem_cycles += cur_area->delayr; break; case 4: temp = evalsim_mem32_atomic (memaddr & ~UINT32_C(3), cpu_access); if (memaddr & 2) temp &= 0xffff; else temp >>= 16; break; default: /* if you add new memory granularity be sure to check the formula * below for the read delay and fix it if necessery */ PRINTF("unknown/unhandled memory granularuty\n"); exit(-1); } } return temp; } /* for cpu accesses */ inline uint8_t evalsim_mem8(oraddr_t memaddr) { return(evalsim_mem8_atomic(memaddr, 1)); } /* for simulator accesses, the ones that cpu wouldn't do */ inline uint8_t evalsim_mem8_void(oraddr_t memaddr) { return(evalsim_mem8_atomic(memaddr, 0)); } uint8_t evalsim_mem8_atomic(oraddr_t memaddr, int cpu_access) { uint32_t temp = 0; if (verify_memoryarea(memaddr)) { switch(cur_area->granularity) { case 1: temp = cur_area->readfunc(memaddr, cur_area->priv_dat); if (cpu_access) runtime.sim.mem_cycles += cur_area->delayr; break; case 2: temp = evalsim_mem16_atomic (memaddr & ~ADDR_C(1), cpu_access); if (memaddr & 1) temp &= 0xff; else temp >>= 8; break; case 4: temp = evalsim_mem32_atomic (memaddr & ~ADDR_C(3), cpu_access); temp >>= 8 * (3 - (memaddr & 3)); temp &= 0xff; break; default: /* if you add new memory granularity be sure to check the formula * below for the read delay and fix it if necessery */ PRINTF("unknown/unhandled memory granularuty\n"); exit(-1); } } return temp; } /* Returns 32-bit values from mem array. Big endian version. * * this function is only used in dumpmemory() below, so it's * safe to asume it's for simulator purposes access only, * hence the use of eval_mem32_void() * * STATISTICS OK. */ static uint32_t read_mem(oraddr_t memaddr, int* breakpoint) { uint32_t temp; cur_vadd = memaddr; if (config.debug.enabled) *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */ temp = evalsim_mem32_void(memaddr); if (!cur_area) { PRINTF("EXCEPTION: read out of memory (32-bit access to %"PRIxADDR")\n", memaddr); except_handle(EXCEPT_BUSERR, cur_vadd); temp = 0; } else if (cur_area->log) fprintf (cur_area->log, "[%"PRIxADDR"] -> read %08"PRIx32"\n", memaddr, temp); if (config.debug.enabled) *breakpoint += CheckDebugUnit(DebugLoadData,temp); /* MM170901 */ return temp; } /* Returns 32-bit values from mem array. Big endian version. * * STATISTICS OK (only used for cpu_access, that is architectural access) */ uint32_t eval_mem32(oraddr_t memaddr,int* breakpoint) { uint32_t temp; if (config.sim.mprofile) mprofile (memaddr, MPROF_32 | MPROF_READ); if (memaddr & 3) { except_handle (EXCEPT_ALIGN, memaddr); return 0; } if (config.debug.enabled) *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */ cur_vadd = memaddr; memaddr = dmmu_translate(memaddr, 0); if (except_pending) return 0; if (config.dc.enabled) temp = dc_simulate_read(memaddr, 4); else { temp = evalsim_mem32(memaddr); if (!cur_area) { PRINTF("EXCEPTION: read out of memory (32-bit access to %"PRIxADDR")\n", memaddr); except_handle(EXCEPT_BUSERR, cur_vadd); temp = 0; } } if (config.debug.enabled) *breakpoint += CheckDebugUnit(DebugLoadData,temp); /* MM170901 */ return temp; } /* for simulator accesses, the ones that cpu wouldn't do * * STATISTICS OK */ uint32_t eval_direct32(oraddr_t memaddr, int *breakpoint, int through_mmu, int through_dc) { uint32_t temp; if (memaddr & 3) { PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__); return 0; } cur_vadd = memaddr; if (through_mmu) memaddr = peek_into_dtlb(memaddr, 0, through_dc); if (through_dc) temp = dc_simulate_read(memaddr, 4); else { temp = evalsim_mem32_void(memaddr); if (!cur_area) { PRINTF("EXCEPTION: read out of memory (32-bit access to %"PRIxADDR ") in eval_direct32()\n", memaddr); except_handle(EXCEPT_BUSERR, cur_vadd); temp = 0; } } return temp; } /* Returns 32-bit values from mem array. Big endian version. * * STATISTICS OK (only used for cpu_access, that is architectural access) */ uint32_t eval_insn(oraddr_t memaddr, int* breakpoint) { uint32_t temp; if (config.sim.mprofile) mprofile (memaddr, MPROF_32 | MPROF_FETCH); // memaddr = simulate_ic_mmu_fetch(memaddr); cur_vadd = memaddr; #if !(DYNAMIC_EXECUTION) memaddr = immu_translate(memaddr); if (except_pending) return 0; #endif if (config.debug.enabled) *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); if (config.ic.enabled) temp = ic_simulate_fetch(memaddr); else { temp = evalsim_mem32(memaddr); if (!cur_area) { PRINTF("EXCEPTION: read out of memory (32-bit access to %"PRIxADDR")\n", memaddr); except_handle(EXCEPT_BUSERR, cur_vadd); temp = 0; } } if (config.debug.enabled) *breakpoint += CheckDebugUnit(DebugLoadData,temp); return temp; } /* Returns 32-bit values from mem array. Big endian version. * * STATISTICS OK */ uint32_t eval_insn_direct(oraddr_t memaddr, int* breakpoint, int through_mmu) { uint32_t temp; int brk; cur_vadd = memaddr; if(through_mmu) memaddr = peek_into_itlb(memaddr); if (config.debug.enabled) *breakpoint += CheckDebugUnit(DebugLoadAddress, memaddr); temp = eval_direct32(memaddr, &brk, 0, 0); if (config.debug.enabled) *breakpoint += CheckDebugUnit(DebugLoadData, temp); return temp; } /* Returns 16-bit values from mem array. Big endian version. * * STATISTICS OK (only used for cpu_access, that is architectural access) */ uint16_t eval_mem16(oraddr_t memaddr,int* breakpoint) { uint16_t temp; if (config.sim.mprofile) mprofile (memaddr, MPROF_16 | MPROF_READ); if (memaddr & 1) { except_handle (EXCEPT_ALIGN, memaddr); return 0; } if (config.debug.enabled) *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */ cur_vadd = memaddr; memaddr = dmmu_translate(memaddr, 0); if (except_pending) return 0; if (config.dc.enabled) temp = (uint16_t)dc_simulate_read(memaddr, 2); else { temp = evalsim_mem16(memaddr); if (!cur_area) { PRINTF("EXCEPTION: read out of memory (16-bit access to %"PRIxADDR")\n", memaddr); except_handle(EXCEPT_BUSERR, cur_vadd); temp = 0; } } if (config.debug.enabled) *breakpoint += CheckDebugUnit(DebugLoadData,temp); /* MM170901 */ return temp; } /* for simulator accesses, the ones that cpu wouldn't do * * STATISTICS OK. */ uint16_t eval_direct16(oraddr_t memaddr, int *breakpoint, int through_mmu, int through_dc) { uint32_t temp; if (memaddr & 1) { PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__); return 0; } cur_vadd = memaddr; if (through_mmu) memaddr = peek_into_dtlb(memaddr, 0, through_dc); if (through_dc) temp = dc_simulate_read(memaddr, 2); else { temp = evalsim_mem16_void(memaddr); if (!cur_area) { PRINTF("EXCEPTION: read out of memory (16-bit access to %"PRIxADDR ") in eval_direct16()\n", memaddr); except_handle(EXCEPT_BUSERR, cur_vadd); temp = 0; } } return temp; } /* Returns 8-bit values from mem array. * * STATISTICS OK (only used for cpu_access, that is architectural access) */ uint8_t eval_mem8(oraddr_t memaddr,int* breakpoint) { uint8_t temp; if (config.sim.mprofile) mprofile (memaddr, MPROF_8 | MPROF_READ); if (config.debug.enabled) *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */ cur_vadd = memaddr; memaddr = dmmu_translate(memaddr, 0); if (except_pending) return 0; if (config.dc.enabled) temp = (uint8_t)dc_simulate_read(memaddr, 1); else { temp = evalsim_mem8(memaddr); if (!cur_area) { PRINTF("EXCEPTION: read out of memory (8-bit access to %"PRIxADDR")\n", memaddr); except_handle(EXCEPT_BUSERR, cur_vadd); temp = 0; } } if (config.debug.enabled) *breakpoint += CheckDebugUnit(DebugLoadData,temp); /* MM170901 */ return temp; } /* for simulator accesses, the ones that cpu wouldn't do * * STATISTICS OK. */ uint8_t eval_direct8(oraddr_t memaddr, int *breakpoint, int through_mmu, int through_dc) { uint8_t temp; cur_vadd = memaddr; if (through_mmu) memaddr = peek_into_dtlb(memaddr, 0, through_dc); if (through_dc) temp = (unsigned char)dc_simulate_read(memaddr, 1); else { temp = evalsim_mem8_void(memaddr); if (!cur_area) { PRINTF("EXCEPTION: read out of memory (8-bit access to %"PRIxADDR ") in eval_direct8()\n", memaddr); except_handle(EXCEPT_BUSERR, cur_vadd); temp = 0; } } return temp; } /* for cpu accesses */ inline void setsim_mem32(oraddr_t memaddr, uint32_t value) { return(setsim_mem32_atomic(memaddr, value, 1)); } /* for simulator accesses, the ones that cpu wouldn't do */ inline void setsim_mem32_void(oraddr_t memaddr, uint32_t value) { return(setsim_mem32_atomic(memaddr, value, 0)); } void setsim_mem32_atomic(oraddr_t memaddr, uint32_t value, int cpu_access) { if (verify_memoryarea(memaddr)) { switch(cur_area->granularity) { case 4: cur_area->writefunc(memaddr, value, cur_area->priv_dat); if (cpu_access) runtime.sim.mem_cycles += cur_area->delayw; break; case 1: cur_area->writefunc(memaddr , (value >> 24) & 0xFF, cur_area->priv_dat); cur_area->writefunc(memaddr + 1, (value >> 16) & 0xFF, cur_area->priv_dat); cur_area->writefunc(memaddr + 2, (value >> 8) & 0xFF, cur_area->priv_dat); cur_area->writefunc(memaddr + 3, (value ) & 0xFF, cur_area->priv_dat); if (cpu_access) runtime.sim.mem_cycles += cur_area->delayw * 4; break; case 2: cur_area->writefunc(memaddr, (value >> 16) & 0xFFFF, cur_area->priv_dat); cur_area->writefunc(memaddr + 2, value & 0xFFFF, cur_area->priv_dat); if (cpu_access) runtime.sim.mem_cycles += cur_area->delayw * 2; break; default: /* if you add new memory granularity be sure to check the formula * below for the read delay and fix it if necessery */ PRINTF("unknown/unhandled memory granularuty\n"); exit(-1); } #if DYNAMIC_EXECUTION /* FIXME: Do this with mprotect() */ struct dyn_page *dp; /* Since the locations 0x0-0xff are nearly always written to in an exception * handler, ignore any writes to these locations. If code ends up jumping * out there, we'll recompile when the jump actually happens. */ if((memaddr > 0x100) && (dp = find_dynd_page(memaddr)) && !dp->dirty) dirtyfy_page(dp); #endif } else { PRINTF("EXCEPTION: write out of memory (32-bit access to %"PRIxADDR")\n", memaddr); except_handle(EXCEPT_BUSERR, cur_vadd); } } /* for cpu accesses */ inline void setsim_mem16(oraddr_t memaddr, uint16_t value) { return(setsim_mem16_atomic(memaddr, value, 1)); } /* for simulator accesses, the ones that cpu wouldn't do */ inline void setsim_mem16_void(oraddr_t memaddr, uint16_t value) { return(setsim_mem16_atomic(memaddr, value, 0)); } void setsim_mem16_atomic(oraddr_t memaddr, uint16_t value, int cpu_access) { uint32_t temp; if (verify_memoryarea(memaddr)) { switch(cur_area->granularity) { case 1: cur_area->writefunc(memaddr, (value >> 8) & 0xFF, cur_area->priv_dat); cur_area->writefunc(memaddr + 1, value & 0xFF, cur_area->priv_dat); if (cpu_access) runtime.sim.mem_cycles += cur_area->delayw * 2; break; case 2: cur_area->writefunc(memaddr, value & 0xFFFF, cur_area->priv_dat); if (cpu_access) runtime.sim.mem_cycles += cur_area->delayw; break; case 4: temp = evalsim_mem32_void(memaddr & ~ADDR_C(3)); temp &= 0xffff << ((memaddr & 2) ? 16 : 0); temp |= (unsigned long)(value & 0xffff) << ((memaddr & 2) ? 0 : 16); setsim_mem32_atomic(memaddr & ~ADDR_C(3), temp, cpu_access); break; default: /* if you add new memory granularity be sure to check the formula * below for the read delay and fix it if necessery */ PRINTF("unknown/unhandled memory granularuty\n"); exit(-1); } #if DYNAMIC_EXECUTION /* FIXME: Do this with mprotect() */ struct dyn_page *dp; /* Since the locations 0x0-0xff are nearly always written to in an exception * handler, ignore any writes to these locations. If code ends up jumping * out there, we'll recompile when the jump actually happens. */ if((memaddr > 0x100) && (dp = find_dynd_page(memaddr)) && !dp->dirty) dirtyfy_page(dp); #endif } else { PRINTF("EXCEPTION: write out of memory (16-bit access to %"PRIxADDR")\n", memaddr); except_handle(EXCEPT_BUSERR, cur_vadd); } } /* for cpu accesses */ inline void setsim_mem8(oraddr_t memaddr, uint8_t value) { return(setsim_mem8_atomic(memaddr, value, 1)); } /* for simulator accesses, the ones that cpu wouldn't do */ inline void setsim_mem8_void(oraddr_t memaddr, uint8_t value) { return(setsim_mem8_atomic(memaddr, value, 0)); } void setsim_mem8_atomic(oraddr_t memaddr, uint8_t value, int cpu_access) { uint32_t temp; if (verify_memoryarea(memaddr)) { switch (cur_area->granularity) { case 1: cur_area->writefunc(memaddr, value, cur_area->priv_dat); if (cpu_access) runtime.sim.mem_cycles += cur_area->delayw; break; case 2: temp = evalsim_mem16_void (memaddr & ~ADDR_C(1)); temp &= 0xff << ((memaddr & 1) ? 8 : 0); temp |= (unsigned short)(value & 0xff) << ((memaddr & 1) ? 0 : 8); setsim_mem16_atomic (memaddr & ~ADDR_C(1), temp, cpu_access); break; case 4: temp = evalsim_mem32_void (memaddr & ~ADDR_C(3)); temp &= ~(0xff << (8 * (3 - (memaddr & 3)))); temp |= (unsigned long)(value & 0xff) << (8 * (3 - (memaddr & 3))); setsim_mem32_atomic (memaddr & ~ADDR_C(3), temp, cpu_access); break; } #if DYNAMIC_EXECUTION /* FIXME: Do this with mprotect() */ struct dyn_page *dp; /* Since the locations 0x0-0xff are nearly always written to in an exception * handler, ignore any writes to these locations. If code ends up jumping * out there, we'll recompile when the jump actually happens. */ if((memaddr > 0x100) && (dp = find_dynd_page(memaddr)) && !dp->dirty) dirtyfy_page(dp); #endif } else { PRINTF("EXCEPTION: write out of memory (8-bit access to %"PRIxADDR")\n", memaddr); except_handle(EXCEPT_BUSERR, cur_vadd); } } /* Set mem, 32-bit. Big endian version. * * STATISTICS OK. (the only suspicious usage is in sim-cmd.c, * where this instruction is used for patching memory, * wether this is cpu or architectual access is yet to * be decided) */ void set_mem32(oraddr_t memaddr, uint32_t value, int* breakpoint) { if (config.sim.mprofile) mprofile (memaddr, MPROF_32 | MPROF_WRITE); if (memaddr & 3) { except_handle (EXCEPT_ALIGN, memaddr); return; } cur_vadd = memaddr; memaddr = dmmu_translate(memaddr, 1);; /* If we produced exception don't set anything */ if (except_pending) return; if (config.debug.enabled) { *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr); /* 28/05/01 CZ */ *breakpoint += CheckDebugUnit(DebugStoreData,value); } dc_simulate_write(memaddr, value, 4); if (cur_area && cur_area->log) fprintf (cur_area->log, "[%"PRIxADDR"] -> write %08"PRIx32"\n", memaddr, value); } /* * STATISTICS NOT OK. */ void set_direct32(oraddr_t memaddr, uint32_t value,int* breakpoint, int through_mmu, int through_dc) { if (memaddr & 3) { PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__); return; } cur_vadd = memaddr; if (through_mmu) { /* 0 - no write access, we do not want a DPF exception do we ;) */ memaddr = peek_into_dtlb(memaddr, 1, through_dc); } /* __PHX__ fixme: we'll get cache hit/miss delay added to cycles count, * and possibly also memory access times. */ if (!through_dc) PRINTF("WARNING: statistics might not be OK\n"); dc_simulate_write(memaddr, value, 4); if (cur_area && cur_area->log) fprintf (cur_area->log, "[%"PRIxADDR"] -> DIRECT write %08"PRIx32"\n", memaddr, value); } /* Set mem, 16-bit. Big endian version. */ void set_mem16(oraddr_t memaddr, uint16_t value, int* breakpoint) { if (config.sim.mprofile) mprofile (memaddr, MPROF_16 | MPROF_WRITE); if (memaddr & 1) { except_handle (EXCEPT_ALIGN, memaddr); return; } cur_vadd = memaddr; memaddr = dmmu_translate(memaddr, 1);; /* If we produced exception don't set anything */ if (except_pending) return; if (config.debug.enabled) { *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr); /* 28/05/01 CZ */ *breakpoint += CheckDebugUnit(DebugStoreData,value); } dc_simulate_write(memaddr, value, 2); if (cur_area && cur_area->log) fprintf (cur_area->log, "[%"PRIxADDR"] -> write %04"PRIx16"\n", memaddr, value); } /* * STATISTICS NOT OK. */ void set_direct16(oraddr_t memaddr, uint16_t value, int* breakpoint, int through_mmu, int through_dc) { if (memaddr & 1) { PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__); return; } cur_vadd = memaddr; if (through_mmu) { /* 0 - no write access, we do not want a DPF exception do we ;) */ memaddr = peek_into_dtlb(memaddr, 0, through_dc); } /* __PHX__ fixme: we'll get cache hit/miss delay added to cycles count, * and possibly also memory access times. */ if (!through_dc) PRINTF("WARNING: statistics might not be OK\n"); dc_simulate_write(memaddr, value, 2); if (cur_area && cur_area->log) fprintf (cur_area->log, "[%"PRIxADDR"] -> DIRECT write %04"PRIx16"\n", memaddr, value); } /* Set mem, 8-bit. */ void set_mem8(oraddr_t memaddr, uint8_t value, int* breakpoint) { if (config.sim.mprofile) mprofile (memaddr, MPROF_8 | MPROF_WRITE); cur_vadd = memaddr; memaddr = dmmu_translate(memaddr, 1);; /* If we produced exception don't set anything */ if (except_pending) return; if (config.debug.enabled) { *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr); /* 28/05/01 CZ */ *breakpoint += CheckDebugUnit(DebugStoreData,value); } dc_simulate_write(memaddr, value, 1); if (cur_area && cur_area->log) fprintf (cur_area->log, "[%"PRIxADDR"] -> write %02"PRIx8"\n", memaddr, value); } /* * STATISTICS NOT OK. */ void set_direct8(oraddr_t memaddr, uint8_t value, int* breakpoint, int through_mmu, int through_dc) { cur_vadd = memaddr; if (through_mmu) { /* 0 - no write access, we do not want a DPF exception do we ;) */ memaddr = peek_into_dtlb(memaddr, 0, through_dc); } /* __PHX__ fixme: we'll get cache hit/miss delay added to cycles count, * and possibly also memory access times. */ if (!through_dc) PRINTF("WARNING: statistics might not be OK\n"); dc_simulate_write(memaddr, value, 1); if (cur_area && cur_area->log) fprintf (cur_area->log, "[%"PRIxADDR"] -> DIRECT write %02"PRIx8"\n", memaddr, value); } void dumpmemory(oraddr_t from, oraddr_t to, int disasm, int nl) { oraddr_t i, j; struct label_entry *tmp; int ilen = disasm ? 4 : 16; for(i = from; i < to; i += ilen) { PRINTF("%"PRIxADDR": ", i); for (j = 0; j < ilen;) { if (!disasm) { tmp = NULL; if (verify_memoryarea(i + j)) { struct label_entry *entry; entry = get_label(i + j); if (entry) PRINTF("(%s)", entry->name); PRINTF("%02"PRIx8" ", evalsim_mem8(i + j)); } else PRINTF("XX "); j++; } else { int breakpoint; uint32_t _insn = read_mem(i, &breakpoint); int index = insn_decode (_insn); int len = insn_len (index); tmp = NULL; if (verify_memoryarea(i + j)) { struct label_entry *entry; entry = get_label(i + j); if (entry) PRINTF("(%s)", entry->name); PRINTF(": %08"PRIx32" ", _insn); if (index >= 0) { disassemble_insn (_insn); PRINTF(" %s", disassembled); } else PRINTF("<invalid>"); } else PRINTF("XXXXXXXX"); j += len; } } if (nl) PRINTF ("\n"); } } uint32_t simmem_read_word(oraddr_t addr, void *priv_dat) { return *(uint32_t *)(priv_dat + (addr & cur_area->size_mask)); } void simmem_write_word(oraddr_t addr, uint32_t value, void *priv_dat) { *(uint32_t *)(priv_dat + (addr & cur_area->size_mask)) = value; } uint32_t simmem_read_zero(oraddr_t addr, void *dat) { if (config.sim.verbose) fprintf (stderr, "WARNING: memory read from non-read memory area 0x%" PRIxADDR".\n", addr); return 0; } void simmem_write_null(oraddr_t addr, uint32_t value, void *dat) { if (config.sim.verbose) fprintf (stderr, "WARNING: memory write to 0x%"PRIxADDR", non-write memory area (value 0x%08"PRIx32").\n", addr, value); } /* Initialize memory table from a config struct */ void init_memory_table () { /* If nothing was defined, use default memory block */ if (config.memory.nmemories) { int i; for (i = 0; i < config.memory.nmemories; i++) { oraddr_t start = config.memory.table[i].baseaddr; uint32_t length = config.memory.table[i].size; char *type = config.memory.table[i].name; int rd = config.memory.table[i].delayr; int wd = config.memory.table[i].delayw; int ce = config.memory.table[i].ce; void *mem = malloc (length); if (config.sim.verbose) debug (1, "%"PRIxADDR" %08"PRIx32" (%"PRIi32" KB): %s (activated by CE%i; read delay = %icyc, write delay = %icyc)\n", start, length, length >> 10, type, ce, rd, wd); if (!mem) { fprintf (stderr, "Failed to allocate sim memory. Aborting\n"); exit (-1); } register_memoryarea(start, length, 4, 0, &simmem_read_word, &simmem_write_word, mem); cur_area->chip_select = ce; cur_area->valid = 1; cur_area->delayw = wd; cur_area->delayr = rd; if (config.memory.table[i].log[0] != '\0') { if ((cur_area->log = fopen (config.memory.table[i].log, "wt+")) == NULL) fprintf (stderr, "WARNING: Cannot open '%s'.\n", config.memory.table[i].log); } else cur_area->log = NULL; } PRINTF ("\n"); } else { void *mem = malloc (DEFAULT_MEMORY_LEN); if (config.sim.verbose) fprintf (stderr, "WARNING: Memory not defined, assuming standard configuration.\n"); if (!mem) { fprintf (stderr, "Failed to allocate sim memory. Aborting\n"); exit (-1); } register_memoryarea(DEFAULT_MEMORY_START, DEFAULT_MEMORY_LEN, 4, 0, &simmem_read_word, &simmem_write_word, mem); cur_area->chip_select = 0; cur_area->valid = 1; cur_area->delayw = 1; cur_area->delayr = 1; cur_area->log = NULL; } } /* Changes read/write memory in read/write only */ void lock_memory_table () { struct dev_memarea *ptmp; /* Check list of registered devices. */ for(ptmp = dev_list; ptmp; ptmp = ptmp->next) { if (ptmp->delayr < 0 && ptmp->readfunc == &simmem_read_word) ptmp->readfunc = &simmem_read_zero; if (ptmp->delayw < 0 && ptmp->writefunc == &simmem_write_word) ptmp->writefunc = &simmem_write_null; /* If this mem area is not for memory chip under MC control then this area is valid all the time */ if (ptmp->readfunc != &simmem_read_word) { ptmp->valid = 1; ptmp->chip_select = -1; } } } /* Closes files, etc. */ void done_memory_table () { struct dev_memarea *ptmp; /* Check list of registered devices. */ for(ptmp = dev_list; ptmp; ptmp = ptmp->next) { if (ptmp->log) fclose (ptmp->log); } } /* Displays current memory configuration */ void memory_table_status () { struct dev_memarea *ptmp; /* Check list of registered devices. */ for(ptmp = dev_list; ptmp; ptmp = ptmp->next) { PRINTF ("addr & %"PRIxADDR" == %"PRIxADDR" to %"PRIxADDR", size %"PRIx32 ", gran %iB\n", ptmp->addr_mask, ptmp->addr_compare, ptmp->addr_compare | bit_mask (ptmp->size), ptmp->size, ptmp->granularity); PRINTF ("\t"); if (ptmp->delayr >= 0) PRINTF ("read delay = %i cycles, ", ptmp->delayr); else PRINTF ("reads not possible, "); if (ptmp->delayw >= 0) PRINTF ("write delay = %i cycles", ptmp->delayw); else PRINTF ("writes not possible"); if (ptmp->log) PRINTF (", (logged)\n"); else PRINTF ("\n"); } } /* Outputs time in pretty form to dest string */ char *generate_time_pretty (char *dest, long time_ps) { int exp3 = 0; if (time_ps) { while ((time_ps % 1000) == 0) { time_ps /= 1000; exp3++; } } sprintf (dest, "%li%cs", time_ps, "pnum"[exp3]); return dest; }
Go to most recent revision | Compare with Previous | Blame | View Log