OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [arch/] [alpha/] [kernel/] [bios32.c] - Rev 1765

Compare with Previous | Blame | View Log

/*
 * bios32.c - PCI BIOS functions for Alpha systems not using BIOS
 *	      emulation code.
 *
 * Written by Dave Rusling (david.rusling@reo.mts.dec.com)
 *
 * Adapted to 64-bit kernel and then rewritten by David Mosberger
 * (davidm@cs.arizona.edu)
 *
 * For more information, please consult
 *
 * PCI BIOS Specification Revision
 * PCI Local Bus Specification
 * PCI System Design Guide
 *
 * PCI Special Interest Group
 * M/S HF3-15A
 * 5200 N.E. Elam Young Parkway
 * Hillsboro, Oregon 97124-6497
 * +1 (503) 696-2000
 * +1 (800) 433-5177
 *
 * Manuals are $25 each or $50 for all three, plus $7 shipping
 * within the United States, $35 abroad.
 */
#include <linux/config.h>
#include <linux/kernel.h>
 
#if 0
# define DBG_DEVS(args)		printk args
#else
# define DBG_DEVS(args)
#endif
 
#ifndef CONFIG_PCI
 
int pcibios_present(void)
{
        return 0;
}
asmlinkage int sys_pciconfig_read()
{
        return 0;
}
asmlinkage int sys_pciconfig_write()
{
        return 0;
}
 
#else /* CONFIG_PCI */
 
#include <linux/bios32.h>
#include <linux/pci.h>
#include <linux/malloc.h>
#include <linux/mm.h>
 
#include <asm/hwrpb.h>
#include <asm/io.h>
#include <asm/segment.h>
#include <asm/dma.h>
 
#define KB		1024
#define MB		(1024*KB)
#define GB		(1024*MB)
 
#define MAJOR_REV	0
#define MINOR_REV	3
 
/*
 * Align VAL to ALIGN, which must be a power of two.
 */
#define ALIGN(val,align)	(((val) + ((align) - 1)) & ~((align) - 1))
 
 
/*
 * PCI_MODIFY
 *
 * Temporary internal macro.  If this 0, then do not write to any of
 * the PCI registers, merely read them (i.e., use configuration as
 * determined by SRM).  The SRM seem do be doing a less than perfect
 * job in configuring PCI devices, so for now we do it ourselves.
 * Reconfiguring PCI devices breaks console (RPB) callbacks, but
 * those don't work properly with 64 bit addresses anyways.
 *
 * The accepted convention seems to be that the console (POST
 * software) should fully configure boot devices and configure the
 * interrupt routing of *all* devices.  In particular, the base
 * addresses of non-boot devices need not be initialized.  For
 * example, on the AXPpci33 board, the base address a #9 GXE PCI
 * graphics card reads as zero (this may, however, be due to a bug in
 * the graphics card---there have been some rumor that the #9 BIOS
 * incorrectly resets that address to 0...).
 */
#ifdef CONFIG_ALPHA_SRM_SETUP
#define PCI_MODIFY		0
static struct pci_dev *irq_dev_to_reset[16];
static unsigned char irq_to_reset[16];
static int irq_reset_count = 0;
static struct pci_dev *io_dev_to_reset[16];
static unsigned char io_reg_to_reset[16];
static unsigned int io_to_reset[16];
static int io_reset_count = 0;
#else /* SRM_SETUP */
#define PCI_MODIFY		1
#endif /* SRM_SETUP */
 
extern struct hwrpb_struct *hwrpb;
 
#if PCI_MODIFY
 
/* NOTE: we can't just blindly use 64K for machines with EISA busses; they
   may also have PCI-PCI bridges present, and then we'd configure the bridge
   incorrectly */
/* NOTE also that we may need this stuff for SRM_SETUP also, since certain
   SRM consoles screw up and allocate I/O space addresses > 64K behind
   PCI-to_PCI bridges, which can't pass addresses larger than 64K... */
#if defined(CONFIG_ALPHA_EISA)
static unsigned int	io_base	 = 0x9000;	/* start above 8th slot */
#else
static unsigned int	io_base	 = 0x8000;
#endif
 
#if defined(CONFIG_ALPHA_XL)
/*
   An XL is AVANTI (APECS) family, *but* it has only 27 bits of ISA address
   that get passed through the PCI<->ISA bridge chip. Although this causes
   us to set the PCI->Mem window bases lower than normal, we still allocate
   PCI bus devices' memory addresses *below* the low DMA mapping window,
   and hope they fit below 64Mb (to avoid conflicts), and so that they can
   be accessed via SPARSE space.
 
   We accept the risk that a broken Myrinet card will be put into a true XL
   and thus can more easily run into the problem described below.
*/
static unsigned int	mem_base = 16*MB + 2*MB; /* 16M to 64M-1 is avail */
 
#elif defined(CONFIG_ALPHA_LCA) || defined(CONFIG_ALPHA_APECS)
/*
   We try to make this address *always* have more than 1 bit set.
   this is so that devices like the broken Myrinet card will always have
   a PCI memory address that will never match a IDSEL address in
   PCI Config space, which can cause problems with early rev cards.
 
   However, APECS and LCA have only 34 bits for physical addresses, thus
   limiting PCI bus memory addresses for SPARSE access to be less than 128Mb.
*/
static unsigned int	mem_base = 64*MB + 2*MB;
 
#else
/*
   We try to make this address *always* have more than 1 bit set.
   this is so that devices like the broken Myrinet card will always have
   a PCI memory address that will never match a IDSEL address in
   PCI Config space, which can cause problems with early rev cards.
 
   Because CIA and PYXIS and T2 have more bits for physical addresses,
   they support an expanded range of SPARSE memory addresses.
*/
static unsigned int	mem_base = 128*MB + 16*MB;
#endif /* CONFIG_ALPHA_XL */
 
/*
 * Disable PCI device DEV so that it does not respond to I/O or memory
 * accesses.
 */
static void disable_dev(struct pci_dev *dev)
{
	struct pci_bus *bus;
	unsigned short cmd;
 
#if defined(CONFIG_ALPHA_EISA)
	/*
	 * HACK: the PCI-to-EISA bridge does not seem to identify
	 *       itself as a bridge... :-(
	 */
        if (dev->vendor == 0x8086 && dev->device == 0x0482) {
          DBG_DEVS(("disable_dev: ignoring PCEB...\n"));
          return;
        }
#endif
 
	/*
	 * we don't have code that will init the CYPRESS bridge correctly
	 * so we do the next best thing, and depend on the previous
	 * console code to do the right thing, and ignore it here... :-\
	 */
	if ((dev->vendor == 0x1080) && (dev->device == 0xC693)) {
#if 0
	  printk("disable_dev: ignoring CYPRESS bridge...\n");
#endif
	  return;
	}
 
	bus = dev->bus;
	pcibios_read_config_word(bus->number, dev->devfn, PCI_COMMAND, &cmd);
 
	/* hack, turn it off first... */
	cmd &= (~PCI_COMMAND_IO & ~PCI_COMMAND_MEMORY & ~PCI_COMMAND_MASTER);
	pcibios_write_config_word(bus->number, dev->devfn, PCI_COMMAND, cmd);
}
 
 
/*
 * Layout memory and I/O for a device:
 */
#define MAX(val1, val2) ( ((val1) > (val2)) ? val1 : val2)
 
static void layout_dev(struct pci_dev *dev)
{
	struct pci_bus *bus;
	unsigned short cmd;
	unsigned int base, mask, size, reg;
	unsigned int alignto;
 
#if defined(CONFIG_ALPHA_EISA)
	/*
	 * HACK: the PCI-to-EISA bridge does not seem to identify
	 *       itself as a bridge... :-(
	 */
        if (dev->vendor == 0x8086 && dev->device == 0x0482) {
          DBG_DEVS(("layout_dev: ignoring PCEB...\n"));
          return;
        }
#endif
 
	/*
	 * we don't have code that will init the CYPRESS bridge correctly
	 * so we do the next best thing, and depend on the previous
	 * console code to do the right thing, and ignore it here... :-\
	 */
	if ((dev->vendor == 0x1080) && (dev->device == 0xC693)) {
#if 0
	  printk("layout_dev: ignoring CYPRESS bridge...\n");
#endif
	  return;
	}
 
	bus = dev->bus;
	pcibios_read_config_word(bus->number, dev->devfn, PCI_COMMAND, &cmd);
 
	for (reg = PCI_BASE_ADDRESS_0; reg <= PCI_BASE_ADDRESS_5; reg += 4) {
 
#ifdef NOT_NOW
	  if ((dev->vendor == 0x1080) && (dev->device == 0xC693) &&
	      ((PCI_FUNC(dev->devfn) == 1) || (PCI_FUNC(dev->devfn) == 2)))
	  { /* if primary or secondary IDE on the CYPRESS bridge */
	      if ((reg == PCI_BASE_ADDRESS_0) || (reg == PCI_BASE_ADDRESS_1)) {
#if 0
		  printk("layout_dev: ignoring CYPRESS IDE base reg 0/1\n");
#endif
		  continue; /* ignore first two registers */
	      }
	  }
#endif /* NOT_NOW */
 
		/*
		 * Figure out how much space and of what type this
		 * device wants.
		 */
		pcibios_write_config_dword(bus->number, dev->devfn, reg,
					   0xffffffff);
		pcibios_read_config_dword(bus->number, dev->devfn, reg, &base);
#if 0
printk("layout_dev: slot %d fn %d off 0x%x base 0x%x\n",
       PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), reg, base);
#endif
		if (!base) {
			/* this base-address register is unused */
			continue;
		}
 
		/*
		 * We've read the base address register back after
		 * writing all ones and so now we must decode it.
		 */
		if (base & PCI_BASE_ADDRESS_SPACE_IO) {
			/*
			 * I/O space base address register.
			 */
			cmd |= PCI_COMMAND_IO;
 
			base &= PCI_BASE_ADDRESS_IO_MASK;
			mask = (~base << 1) | 0x1;
			size = (mask & base) & 0xffffffff;
			/* align to multiple of size of minimum base */
#if 0
			alignto = MAX(0x400, size) ;
#else
			/*
			   If we align to 0x800 bounds, we probably avoid
			   having devices in any 0xzCzz range, which is
			   where the DE4X5 driver probes for EISA cards.
			   Adaptecs, especially, resent such intrusions. :-(
			*/
			alignto = MAX(0x800, size) ;
#endif
			base = ALIGN(io_base, alignto );
			io_base = base + size;
			pcibios_write_config_dword(bus->number, dev->devfn, 
						   reg, base | 0x1);
			DBG_DEVS(("layout_dev: dev 0x%x IO @ 0x%x (0x%x)\n",
				  dev->device, base, size));
		} else {
			unsigned int type;
			/*
			 * Memory space base address register.
			 */
			cmd |= PCI_COMMAND_MEMORY;
			type = base & PCI_BASE_ADDRESS_MEM_TYPE_MASK;
			base &= PCI_BASE_ADDRESS_MEM_MASK;
			mask = (~base << 1) | 0x1;
			size = (mask & base) & 0xffffffff;
			switch (type) {
			      case PCI_BASE_ADDRESS_MEM_TYPE_32:
				break;
 
			      case PCI_BASE_ADDRESS_MEM_TYPE_64:
				printk("bios32 WARNING: "
				       "ignoring 64-bit device in "
				       "slot %d, function %d: \n",
				       PCI_SLOT(dev->devfn),
				       PCI_FUNC(dev->devfn));
				reg += 4;	/* skip extra 4 bytes */
				continue;
 
			      case PCI_BASE_ADDRESS_MEM_TYPE_1M:
				/*
				 * Allocating memory below 1MB is *very*
				 * tricky, as there may be all kinds of
				 * ISA devices lurking that we don't know
				 * about.  For now, we just cross fingers
				 * and hope nobody tries to do this on an
				 * Alpha (or that the console has set it
				 * up properly).
				 */
				printk("bios32 WARNING: slot %d, function %d "
				       "requests memory below 1MB---don't "
				       "know how to do that.\n",
				       PCI_SLOT(dev->devfn),
				       PCI_FUNC(dev->devfn));
				continue;
			}
			/*
			 * The following holds at least for the Low Cost
			 * Alpha implementation of the PCI interface:
			 *
			 * In sparse memory address space, the first
			 * octant (16 MB) of every 128 MB segment is
			 * aliased to the very first 16 MB of the
			 * address space (i.e., it aliases the ISA
			 * memory address space).  Thus, we try to
			 * avoid allocating PCI devices in that range.
			 * Can be allocated in 2nd-7th octant only.
			 * Devices that need more than 112 MB of
			 * address space must be accessed through
			 * dense memory space only!
			 */
			/* align to multiple of size of minimum base */
			alignto = MAX(0x1000, size) ;
			base = ALIGN(mem_base, alignto);
			if (size > 7 * 16*MB) {
				printk("bios32 WARNING: slot %d, function %d "
				       "requests 0x%x bytes of contig address "
				       " space---don't use sparse memory "
				       " accesses on this device!!\n",
				       PCI_SLOT(dev->devfn),
				       PCI_FUNC(dev->devfn), size);
			} else {
				if (((base / (16*MB)) & 0x7) == 0) {
					base &= ~(128*MB - 1);
					base += 16*MB;
					base  = ALIGN(base, alignto);
				}
				if (base / (128*MB) != (base + size) / (128*MB))
				{
					base &= ~(128*MB - 1);
					base += (128 + 16)*MB;
					base  = ALIGN(base, alignto);
				}
			}
			mem_base = base + size;
			pcibios_write_config_dword(bus->number, dev->devfn,
						   reg, base);
			DBG_DEVS(("layout_dev: dev 0x%x MEM @ 0x%x (0x%x)\n",
				  dev->device, base, size));
		}
	} /* end for-loop */
	/* enable device: */
	if (dev->class >> 8 == PCI_CLASS_NOT_DEFINED ||
	    dev->class >> 8 == PCI_CLASS_NOT_DEFINED_VGA ||
	    dev->class >>  8 == PCI_CLASS_STORAGE_IDE ||
	    dev->class >> 16 == PCI_BASE_CLASS_DISPLAY)
	{
		/*
		 * All of these (may) have I/O scattered all around
		 * and may not use i/o-base address registers at all.
		 * So we just have to always enable I/O to these
		 * devices.
		 */
		cmd |= PCI_COMMAND_IO;
	}
 
	pcibios_write_config_word(bus->number, dev->devfn, PCI_COMMAND,
				  cmd | PCI_COMMAND_MASTER);
 
	DBG_DEVS(("layout_dev: bus %d slot %d VID 0x%x DID 0x%x class 0x%x cmd 0x%x\n",
		  bus->number, PCI_SLOT(dev->devfn), dev->vendor, dev->device,
		  dev->class, cmd|PCI_COMMAND_MASTER));
}
 
 
static int layout_bus(struct pci_bus *bus)
{
	unsigned int l, tio, bio, tmem, bmem;
	struct pci_bus *child;
	struct pci_dev *dev;
	int found_vga = 0;
 
	DBG_DEVS(("layout_bus: starting bus %d\n", bus->number));
 
	if (!bus->devices && !bus->children)
	  return 0;
 
	/*
	 * Align the current bases on appropriate boundaries (4K for
	 * IO and 1MB for memory).
	 */
	bio = io_base = ALIGN(io_base, 4*KB);
	bmem = mem_base = ALIGN(mem_base, 1*MB);
 
	/*
	 * There are times when the PCI devices have already been
	 * setup (e.g., by MILO or SRM).  In these cases there is a
	 * window during which two devices may have an overlapping
	 * address range.  To avoid this causing trouble, we first
	 * turn off the I/O and memory address decoders for all PCI
	 * devices.  They'll be re-enabled only once all address
	 * decoders are programmed consistently.
	 */
	for (dev = bus->devices; dev; dev = dev->sibling) {
		if ((dev->class >> 16 != PCI_BASE_CLASS_BRIDGE)
#ifdef CONFIG_ALPHA_BOOK1
                    || (dev->class >> 8 == PCI_CLASS_BRIDGE_PCMCIA)
#endif /* CONFIG_ALPHA_BOOK1 */
		    ) {
		        disable_dev(dev) ;
		}
	}
 
	/*
	 * Allocate space to each device:
	 */
	DBG_DEVS(("layout_bus: starting bus %d devices\n", bus->number));
 
	for (dev = bus->devices; dev; dev = dev->sibling) {
		if ((dev->class >> 16 != PCI_BASE_CLASS_BRIDGE)
#ifdef CONFIG_ALPHA_BOOK1
		    || (dev->class >> 8 == PCI_CLASS_BRIDGE_PCMCIA)
#endif /* CONFIG_ALPHA_BOOK1 */
		    ) {
			layout_dev(dev);
		}
		if ((dev->class >> 8) == PCI_CLASS_DISPLAY_VGA)
			found_vga = 1;
	}
	/*
	 * Recursively allocate space for all of the sub-buses:
	 */
	DBG_DEVS(("layout_bus: starting bus %d children\n", bus->number));
 
    	for (child = bus->children; child; child = child->next) {
		found_vga += layout_bus(child);
        }
	/*
	 * Align the current bases on 4K and 1MB boundaries:
	 */
	tio = io_base = ALIGN(io_base, 4*KB);
	tmem = mem_base = ALIGN(mem_base, 1*MB);
 
	if (bus->self) {
		struct pci_dev *bridge = bus->self;
		/*
		 * Set up the top and bottom of the PCI I/O segment
		 * for this bus.
		 */
		pcibios_read_config_dword(bridge->bus->number, bridge->devfn,
					  0x1c, &l);
		l = (l & 0xffff0000) | ((bio >> 8) & 0x00f0) | 
		    ((tio - 1) & 0xf000);
		pcibios_write_config_dword(bridge->bus->number, bridge->devfn,
					   0x1c, l);
		/*
		 * Set up the top and bottom of the  PCI Memory segment
		 * for this bus.
		 */
		l = ((bmem & 0xfff00000) >> 16) | ((tmem - 1) & 0xfff00000);
		pcibios_write_config_dword(bridge->bus->number, bridge->devfn,
					   0x20, l);
		/*
		 * Turn off downstream PF memory address range:
		 */
		pcibios_write_config_dword(bridge->bus->number, bridge->devfn,
					   0x24, 0x0000ffff);
		/*
		 * Tell bridge that there is an ISA bus in the system,
		 * and (possibly) a VGA as well.
		 */
		l = 0x00040000; /* ISA present */
		if (found_vga) l |= 0x00080000; /* VGA present */
		pcibios_write_config_dword(bridge->bus->number, bridge->devfn,
					   0x3c, l);
		/*
		 * Clear status bits, enable I/O (for downstream I/O),
		 * turn on master enable (for upstream I/O), turn on
		 * memory enable (for downstream memory), turn on
		 * master enable (for upstream memory and I/O).
		 */
		pcibios_write_config_dword(bridge->bus->number, bridge->devfn,
					   0x4, 0xffff0007);
	}
	return found_vga;
}
 
#endif /* !PCI_MODIFY */
 
 
/*
 * Given the vendor and device ids, find the n'th instance of that device
 * in the system.  
 */
int pcibios_find_device (unsigned short vendor, unsigned short device_id,
			 unsigned short index, unsigned char *bus,
			 unsigned char *devfn)
{
        unsigned int curr = 0;
	struct pci_dev *dev;
 
	for (dev = pci_devices; dev; dev = dev->next) {
		if (dev->vendor == vendor && dev->device == device_id) {
			if (curr == index) {
				*devfn = dev->devfn;
				*bus = dev->bus->number;
				return PCIBIOS_SUCCESSFUL;
			}
			++curr;
		}
	}
	return PCIBIOS_DEVICE_NOT_FOUND;
}
 
 
/*
 * Given the class, find the n'th instance of that device
 * in the system.
 */
int pcibios_find_class (unsigned int class_code, unsigned short index,
			unsigned char *bus, unsigned char *devfn)
{
        unsigned int curr = 0;
	struct pci_dev *dev;
 
	for (dev = pci_devices; dev; dev = dev->next) {
		if (dev->class == class_code) {
			if (curr == index) {
				*devfn = dev->devfn;
				*bus = dev->bus->number;
				return PCIBIOS_SUCCESSFUL;
			}
			++curr;
		}
	}
	return PCIBIOS_DEVICE_NOT_FOUND;
}
 
 
int pcibios_present(void)
{
        return 1;
}
 
 
unsigned long pcibios_init(unsigned long mem_start,
			   unsigned long mem_end)
{
	printk("Alpha PCI BIOS32 revision %x.%02x\n", MAJOR_REV, MINOR_REV);
 
#if !PCI_MODIFY
	printk("...NOT modifying existing (SRM) PCI configuration\n");
#endif
	return mem_start;
}
 
/*
 * The SRM console *disables* the IDE interface, this code ensures it's
 * enabled.
 *
 * This code bangs on a control register of the 87312 Super I/O chip
 * that implements parallel port/serial ports/IDE/FDI.  Depending on
 * the motherboard, the Super I/O chip can be configured through a
 * pair of registers that are located either at I/O ports 0x26e/0x26f
 * or 0x398/0x399.  Unfortunately, autodetecting which base address is
 * in use works only once (right after a reset).  The Super I/O chip
 * has the additional quirk that configuration register data must be
 * written twice (I believe this is a safety feature to prevent
 * accidental modification---fun, isn't it?).
 */
static inline void enable_ide(long ide_base)
{
	int data;
 
	outb(0, ide_base);		/* set the index register for reg #0 */
	data = inb(ide_base+1);		/* read the current contents */
	outb(0, ide_base);		/* set the index register for reg #0 */
	outb(data | 0x40, ide_base+1);	/* turn on IDE */
	outb(data | 0x40, ide_base+1);	/* turn on IDE, really! */
}
 
/* 
 * A small note about bridges and interrupts. The DC 21050 (and later chips)
 * adheres to the PCI-PCI bridge specification. This says that the interrupts
 * on the other side of a bridge are swizzled in the following manner:
 *
 * Dev    Interrupt   Interrupt 
 *        Pin on      Pin on 
 *        Device      Connector
 *
 *   4    A           A
 *        B           B
 *        C           C
 *        D           D
 * 
 *   5    A           B
 *        B           C
 *        C           D
 *        D           A
 *
 *   6    A           C
 *        B           D
 *        C           A
 *        D           B
 *
 *   7    A           D
 *        B           A
 *        C           B
 *        D           C
 *
 *   Where A = pin 1, B = pin 2 and so on and pin=0 = default = A.
 *   Thus, each swizzle is ((pin-1) + (device#-4)) % 4
 *
 *   The following code is somewhat simplistic as it assumes only one bridge.
 *   I will fix it later (david.rusling@reo.mts.dec.com).
 */
static inline unsigned char bridge_swizzle(unsigned char pin, unsigned int slot) 
{
        /* swizzle */
        return (((pin-1) + slot) % 4) + 1 ;
}
 
#ifdef CONFIG_ALPHA_SRM_SETUP
/* look for mis-configured devices' IO space addresses behind bridges */
static void check_behind_io(struct pci_dev *dev)
{
	struct pci_bus *bus = dev->bus;
	unsigned int reg, orig_base, new_base, found_one = 0;
 
	for (reg = PCI_BASE_ADDRESS_0; reg <= PCI_BASE_ADDRESS_5; reg += 4) {
		/* read the current setting, check for I/O space and >= 64K */
		pcibios_read_config_dword(bus->number, dev->devfn, reg, &orig_base);
		if (!orig_base || !(orig_base & PCI_BASE_ADDRESS_SPACE_IO))
			continue; /* unused or non-IO */
		if (orig_base < 64*1024) {
#if 1
printk("check_behind_io: ALREADY OK! bus %d slot %d base 0x%x\n",
       bus->number, PCI_SLOT(dev->devfn), orig_base);
#endif
			if (orig_base & ~1)
			  continue; /* OK! */
			orig_base = 0x12001; /* HACK! FIXME!! */
		}
 
		/* HACK ALERT! for now, just subtract 32K from the
		   original address, which should give us addresses
		   in the range 0x8000 and up */
		new_base = orig_base - 0x8000;
#if 1
printk("check_behind_io: ALERT! bus %d slot %d old 0x%x new 0x%x\n",
       bus->number, PCI_SLOT(dev->devfn), orig_base, new_base);
#endif
		pcibios_write_config_dword(bus->number, dev->devfn,
					   reg, new_base);
 
		io_dev_to_reset[io_reset_count] = dev;
		io_reg_to_reset[io_reset_count] = reg;
		io_to_reset[io_reset_count] = orig_base;
		io_reset_count++;
		found_one++;
	} /* end for-loop */
 
	/* if any were modified, gotta hack the bridge IO limits too... */
	if (found_one) {
	    if (bus->self) {
		struct pci_dev *bridge = bus->self;
		unsigned int l;
		/*
		 * Set up the top and bottom of the PCI I/O segment
		 * for this bus.
		 */
		pcibios_read_config_dword(bridge->bus->number,
					  bridge->devfn, 0x1c, &l);
#if 1
printk("check_behind_io: ALERT! bus %d slot %d oldLIM 0x%x\n",
       bus->number, PCI_SLOT(bridge->devfn), l);
#endif
		l = (l & 0xffff0000U) | 0xf080U; /* give it ALL */
		pcibios_write_config_dword(bridge->bus->number,
					   bridge->devfn, 0x1c, l);
		pcibios_write_config_dword(bridge->bus->number,
					   bridge->devfn,
					   0x3c, 0x00040000);
		pcibios_write_config_dword(bridge->bus->number,
					   bridge->devfn,
					   0x4, 0xffff0007);
	    } else
	        printk("check_behind_io: WARNING! bus->self NULL\n");
	}
}
#endif /* CONFIG_ALPHA_SRM_SETUP */
 
/*
 * Most evaluation boards share most of the fixup code, which is isolated here.
 * This function is declared "inline" as only one platform will ever be selected
 * in any given kernel.  If that platform doesn't need this code, we don't want
 * it around as dead code.
 */
static inline void common_fixup(
	long min_idsel,
	long max_idsel,
	long irqs_per_slot,
				char irq_tab[max_idsel - min_idsel + 1][irqs_per_slot],
				long ide_base)
{
	struct pci_dev *dev;
	unsigned char pin;
	unsigned char slot ;
 
	/*
	 * Go through all devices, fixing up irqs as we see fit:
	 */
	for (dev = pci_devices; dev; dev = dev->next) {
		if ((dev->class >> 16 != PCI_BASE_CLASS_BRIDGE)
#if defined(CONFIG_ALPHA_EISA)
		    /* PCEB (PCI to EISA bridge) does not identify
		       itself as a bridge... :-( */
		    && !((dev->vendor==0x8086) && (dev->device==0x482))
#endif
#ifdef CONFIG_ALPHA_BOOK1
                    || (dev->class >> 8 == PCI_CLASS_BRIDGE_PCMCIA)
#endif /* CONFIG_ALPHA_BOOK1 */
		    ) {
		        dev->irq = 0;
			/*
			 * This device is not on the primary bus,
			 * we need to figure out which
			 * interrupt pin it will come in on.
			 * We know which slot it will come
			 * in on 'cuz that slot is where the bridge is.
			 * Each time the interrupt
			 * line passes through a PCI-PCI bridge
			 * we must apply the swizzle function
			 * (see the inline static routine above).
			 */
			if (dev->bus->number != 0) {
				/* read the pin and do the PCI-PCI bridge
				   interrupt pin swizzle */
				pcibios_read_config_byte(dev->bus->number,
							 dev->devfn,
							 PCI_INTERRUPT_PIN,
							 &pin);
				/* cope with 0 */
				if (pin == 0) pin = 1 ;
				/* follow the chain of bridges,
				   swizzling as we go */
#if defined(CONFIG_ALPHA_MIATA)
				/* check first for the built-in bridge */
				if ((PCI_SLOT(dev->bus->self->devfn) == 8) ||
				    (PCI_SLOT(dev->bus->self->devfn) == 20)) {
				  slot = PCI_SLOT(dev->devfn) + 9;
#if 0
				  printk("MIATA: bus 1 slot %d pin %d irq %d "
					 "min_idsel %d\n",
					 PCI_SLOT(dev->devfn), pin,
					 irq_tab[slot - min_idsel][pin],
					 min_idsel);
#endif
				}
				else /* must be a card-based bridge */
				{
				  struct pci_dev *curr = dev ;
				do {
				  if ((PCI_SLOT(curr->bus->self->devfn) == 8) ||
				      (PCI_SLOT(curr->bus->self->devfn) == 20))
				    {
				      slot = PCI_SLOT(curr->devfn) + 5;
				      break;
				    }
				        /* swizzle */
				    pin = bridge_swizzle(
						  pin, PCI_SLOT(curr->devfn)) ;
				    /* move up the chain of bridges */
				    curr = curr->bus->self ;
				    /* slot of the next bridge. */
				    slot = PCI_SLOT(curr->devfn);
				  } while (curr->bus->self) ;
				}
#elif defined(CONFIG_ALPHA_NORITAKE)
				/* check first for the built-in bridge */
				if (PCI_SLOT(dev->bus->self->devfn) == 8) {
				  slot = PCI_SLOT(dev->devfn) + 15; /* WAG! */
#if 0
				  printk("NORITAKE: bus 1 slot %d pin %d "
					 "irq %d min_idsel %d\n",
					 PCI_SLOT(dev->devfn), pin,
					 irq_tab[slot - min_idsel][pin],
					 min_idsel);
#endif
				}
				else /* must be a card-based bridge */
				{
				  struct pci_dev *curr = dev ;
				  do {
				    if (PCI_SLOT(curr->bus->self->devfn) == 8) {
				      slot = PCI_SLOT(curr->devfn) + 15;
				      break;
				    }
				    /* swizzle */
				    pin = bridge_swizzle(
						pin, PCI_SLOT(curr->devfn)) ;
				    /* move up the chain of bridges */
				    curr = curr->bus->self ;
				    /* slot of the next bridge. */
				    slot = PCI_SLOT(curr->devfn);
				  } while (curr->bus->self) ;
				}
#else /* not MIATA or NORITAKE */
				{
				  struct pci_dev *curr = dev ;
				  do {
					/* swizzle */
					pin = bridge_swizzle(
						  pin, PCI_SLOT(curr->devfn)) ;
					/* move up the chain of bridges */
					curr = curr->bus->self ;
				} while (curr->bus->self) ;
				/* The slot is the slot of the last bridge. */
				slot = PCI_SLOT(curr->devfn) ;
				}
#endif /* not MIATA or NORITAKE */
#ifdef CONFIG_ALPHA_SRM_SETUP
				/*
				  must make sure that SRM didn't screw up
				  and allocate an address > 64K for I/O
				  space behind a PCI-PCI bridge
				*/
				check_behind_io(dev);
#endif /* CONFIG_ALPHA_SRM_SETUP */
			} else {
			        /* work out the slot */
		                slot = PCI_SLOT(dev->devfn) ;
				/* read the pin */
				pcibios_read_config_byte(dev->bus->number,
							 dev->devfn,
							 PCI_INTERRUPT_PIN,
							 &pin);
			}
			if (irq_tab[slot - min_idsel][pin] != -1)
			        dev->irq = irq_tab[slot - min_idsel][pin];
 
#ifdef CONFIG_ALPHA_SRM
			{
			  unsigned char irq_orig;
			  /* read the original SRM-set IRQ and tell */
			  pcibios_read_config_byte(dev->bus->number,
						    dev->devfn,
						    PCI_INTERRUPT_LINE,
						    &irq_orig);
			  if (irq_orig != dev->irq) {
			    printk("common_fixup: bus %d slot 0x%x "
				   "SRM IRQ 0x%x changed to 0x%x\n",
				   dev->bus->number,PCI_SLOT(dev->devfn),
				   irq_orig, dev->irq);
#ifdef CONFIG_ALPHA_SRM_SETUP
			    irq_dev_to_reset[irq_reset_count] = dev;
			    irq_to_reset[irq_reset_count] = irq_orig;
			    irq_reset_count++;
#endif /* CONFIG_ALPHA_SRM_SETUP */
			  }
			}
#endif /* SRM */
 
			/* always tell the device, so the driver knows */
			pcibios_write_config_byte(dev->bus->number, dev->devfn,
						  PCI_INTERRUPT_LINE, dev->irq);
 
	DBG_DEVS(("common_fixup: bus %d  slot 0x%x  VID 0x%x  DID 0x%x\n"
		  "              int_slot 0x%x  pin 0x%x  irq 0x%x\n",
		  dev->bus->number, PCI_SLOT(dev->devfn), dev->vendor,
		  dev->device, slot, pin, dev->irq));
 
			/*
			 * if it's a VGA, enable its BIOS ROM at C0000
			 */
			if ((dev->class >> 8) == PCI_CLASS_DISPLAY_VGA) {
			  /* but if its a Cirrus 543x/544x DISABLE it, */
			  /* since enabling ROM disables the memory... */
			  if ((dev->vendor == PCI_VENDOR_ID_CIRRUS) &&
			      (dev->device >= 0x00a0) &&
			      (dev->device <= 0x00ac)) {
				  pcibios_write_config_dword(
					dev->bus->number,
					dev->devfn,
					PCI_ROM_ADDRESS,
					0x00000000);
			  } else {
				  pcibios_write_config_dword(
					dev->bus->number,
						     dev->devfn,
						     PCI_ROM_ADDRESS,
						     0x000c0000 | PCI_ROM_ADDRESS_ENABLE);
			}
		}
			/*
			 * if it's a SCSI, disable its BIOS ROM
			 */
			if ((dev->class >> 8) == PCI_CLASS_STORAGE_SCSI) {
			  pcibios_write_config_dword(dev->bus->number,
						     dev->devfn,
						     PCI_ROM_ADDRESS,
						     0x0000000);
			}
#ifdef NOT_NOW
			if ((dev->vendor == 0x1080) && (dev->device == 0xC693)
			 && (PCI_FUNC(dev->devfn) == 1))
			{
#if 0
{
int i; unsigned char b; unsigned short w; unsigned int d;
 pcibios_read_config_word(dev->bus->number, dev->devfn, 4, &w);
 printk("common_fixup: CYPRESS fn 1: PCI CMD reg = 0x%x\n", w);
 pcibios_read_config_word(dev->bus->number, dev->devfn, 6, &w);
 printk("common_fixup: CYPRESS fn 1: PCI STS reg = 0x%x\n", w);
 for (i = 0x10; i <= 0x14; i+=4) {
   pcibios_read_config_dword(dev->bus->number, dev->devfn, i, &d);
   printk("common_fixup: CYPRESS fn 1: PCI register offset 0x%x = 0x%x\n",i,d);
 }
 pcibios_read_config_dword(dev->bus->number, dev->devfn, 0x20, &d);
 printk("common_fixup: CYPRESS fn 1: PCI register offset 0x20 = 0x%x\n", d);
 for (i = 0x3c; i <= 0x3d; i++) {
   pcibios_read_config_byte(dev->bus->number, dev->devfn, i, &b);
   printk("common_fixup: CYPRESS fn 1: PCI register offset 0x%x = 0x%x\n",i,b);
 }
 pcibios_read_config_dword(dev->bus->number, dev->devfn, 0x40, &d);
 printk("common_fixup: CYPRESS fn 1: PCI register offset 0x40 = 0x%x\n",d);
}
#endif
			}
			if ((dev->vendor == 0x1080) && (dev->device == 0xC693)
			 && (PCI_FUNC(dev->devfn) == 2))
			{
#if 0
{
int i; unsigned char b; unsigned short w; unsigned int d;
 pcibios_read_config_word(dev->bus->number, dev->devfn, 4, &w);
 printk("common_fixup: CYPRESS fn 2: PCI CMD reg = 0x%x\n", w);
 pcibios_read_config_word(dev->bus->number, dev->devfn, 6, &w);
 printk("common_fixup: CYPRESS fn 2: PCI STS reg = 0x%x\n", w);
 for (i = 0x10; i <= 0x14; i+=4) {
   pcibios_read_config_dword(dev->bus->number, dev->devfn, i, &d);
   printk("common_fixup: CYPRESS fn 2: PCI register offset 0x%x = 0x%x\n",i,d);
 }
 pcibios_read_config_dword(dev->bus->number, dev->devfn, 0x20, &d);
 printk("common_fixup: CYPRESS fn 2: PCI register offset 0x20 = 0x%x\n", d);
 for (i = 0x3c; i <= 0x3d; i++) {
   pcibios_read_config_byte(dev->bus->number, dev->devfn, i, &b);
   printk("common_fixup: CYPRESS fn 2: PCI register offset 0x%x = 0x%x\n",i,b);
 }
 pcibios_read_config_dword(dev->bus->number, dev->devfn, 0x40, &d);
 printk("common_fixup: CYPRESS fn 2: PCI register offset 0x40 = 0x%x\n",d);
}
#endif
			}
#endif /* NOT_NOW */
		} else { /* it *is* a bridge... */
#ifdef NOT_NOW
			/*
			 * if it's CYPRESS PCI-ISA bridge, disable IDE
			 *  interrupt routing through PCI (ie do through PIC)
			 */
			if ((dev->vendor == 0x1080) && (dev->device == 0xC693)
			 && (PCI_FUNC(dev->devfn) == 0))
			{
#if 0
{
int i; unsigned char d; unsigned short w;
 pcibios_read_config_word(dev->bus->number, dev->devfn, 4, &w);
 printk("common_fixup: CYPRESS fn 0: PCI CMD reg = 0x%x\n", w);
 for (i = 0x40; i < 0x50; i++) {
   pcibios_read_config_byte(dev->bus->number, dev->devfn, i, &d);
   printk("common_fixup: CYPRESS fn 0: PCI register offset 0x%x = 0x%x\n",
	  i, d);
 }
 for (i=1; i <= 5; i++) {
   outb(i, 0x22);
   printk("CY control reg %d: 0x%02x\n", i, inb(0x23));
 }
}
#endif
#if 0
			  pcibios_write_config_word(dev->bus->number,
						    dev->devfn, 0x04, 0x0007);
 
			  pcibios_write_config_byte(dev->bus->number,
						    dev->devfn, 0x40, 0x80);
			  pcibios_write_config_byte(dev->bus->number,
						    dev->devfn, 0x41, 0x80);
			  pcibios_write_config_byte(dev->bus->number,
						    dev->devfn, 0x42, 0x80);
			  pcibios_write_config_byte(dev->bus->number,
						    dev->devfn, 0x43, 0x80);
			  pcibios_write_config_byte(dev->bus->number,
						    dev->devfn, 0x44, 0x27);
			  pcibios_write_config_byte(dev->bus->number,
						    dev->devfn, 0x45, 0xe0);
			  pcibios_write_config_byte(dev->bus->number,
						    dev->devfn, 0x48, 0xf0);
			  pcibios_write_config_byte(dev->bus->number,
						    dev->devfn, 0x49, 0x40);
			  pcibios_write_config_byte(dev->bus->number,
						    dev->devfn, 0x4a, 0x00);
			  pcibios_write_config_byte(dev->bus->number,
						    dev->devfn, 0x4b, 0x80);
			  pcibios_write_config_byte(dev->bus->number,
						    dev->devfn, 0x4c, 0x80);
			  pcibios_write_config_byte(dev->bus->number,
						    dev->devfn, 0x4d, 0x70);
#endif
			  outb(0, DMA1_RESET_REG);
			  outb(0, DMA2_RESET_REG);
			  outb(DMA_MODE_CASCADE, DMA2_MODE_REG);
			  outb(0, DMA2_MASK_REG);
#if 0
			  outb(0, DMA1_CLR_MASK_REG);
			  outb(0, DMA2_CLR_MASK_REG);
#endif
			}
#endif /* NOT_NOW */
		}
	}
	if (ide_base) {
		enable_ide(ide_base);
	}
}
 
 
/*
 * The EB66+ is very similar to the EB66 except that it does not have
 * the on-board NCR and Tulip chips.  In the code below, I have used
 * slot number to refer to the id select line and *not* the slot
 * number used in the EB66+ documentation.  However, in the table,
 * I've given the slot number, the id select line and the Jxx number
 * that's printed on the board.  The interrupt pins from the PCI slots
 * are wired into 3 interrupt summary registers at 0x804, 0x805 and
 * 0x806 ISA.
 *
 * In the table, -1 means don't assign an IRQ number.  This is usually
 * because it is the Saturn IO (SIO) PCI/ISA Bridge Chip.
 */
static inline void eb66p_fixup(void)
{
	char irq_tab[5][5] = {
          /*INT  INTA  INTB  INTC   INTD */
		{16+0, 16+0, 16+5,  16+9, 16+13},	/* IdSel 6,  slot 0, J25 */
		{16+1, 16+1, 16+6, 16+10, 16+14},	/* IdSel 7,  slot 1, J26 */
		{  -1,   -1,   -1,    -1,    -1},	/* IdSel 8,  SIO         */
		{16+2, 16+2, 16+7, 16+11, 16+15},	/* IdSel 9,  slot 2, J27 */
		{16+3, 16+3, 16+8, 16+12,  16+6}	/* IdSel 10, slot 3, J28 */
	};
	common_fixup(6, 10, 5, irq_tab, 0x398);
}
 
 
/*
 * The PC164/LX164 have 19 PCI interrupts, four from each of the four PCI
 * slots, the SIO, PCI/IDE, and USB.
 * 
 * Each of the interrupts can be individually masked. This is
 * accomplished by setting the appropriate bit in the mask register.
 * A bit is set by writing a "1" to the desired position in the mask
 * register and cleared by writing a "0". There are 3 mask registers
 * located at ISA address 804h, 805h and 806h.
 * 
 * An I/O read at ISA address 804h, 805h, 806h will return the
 * state of the 11 PCI interrupts and not the state of the MASKED
 * interrupts.
 * 
 * Note: A write to I/O 804h, 805h, and 806h the mask register will be
 * updated.
 * 
 * 
 * 				ISA DATA<7:0>
 * ISA     +--------------------------------------------------------------+
 * ADDRESS |   7   |   6   |   5   |   4   |   3   |   2  |   1   |   0   |
 *         +==============================================================+
 * 0x804   | INTB0 |  USB  |  IDE  |  SIO  | INTA3 |INTA2 | INTA1 | INTA0 |
 *         +--------------------------------------------------------------+
 * 0x805   | INTD0 | INTC3 | INTC2 | INTC1 | INTC0 |INTB3 | INTB2 | INTB1 |
 *         +--------------------------------------------------------------+
 * 0x806   | Rsrv  | Rsrv  | Rsrv  | Rsrv  | Rsrv  |INTD3 | INTD2 | INTD1 |
 *         +--------------------------------------------------------------+
 *         * Rsrv = reserved bits
 *         Note: The mask register is write-only.
 * 
 * IdSel	
 *   5	 32 bit PCI option slot 2
 *   6	 64 bit PCI option slot 0
 *   7	 64 bit PCI option slot 1
 *   8	 Saturn I/O
 *   9	 32 bit PCI option slot 3
 *  10	 USB
 *  11	 IDE
 * 
 */
 
static inline void alphapc164_fixup(void)
{
	extern void SMC93X_Init(void);
	char irq_tab[7][5] = {
          /*INT   INTA  INTB   INTC   INTD */
		{ 16+2, 16+2, 16+9,  16+13, 16+17},	/* IdSel  5,  slot 2, J20 */
		{ 16+0, 16+0, 16+7,  16+11, 16+15},	/* IdSel  6,  slot 0, J29 */
		{ 16+1, 16+1, 16+8,  16+12, 16+16},	/* IdSel  7,  slot 1, J26 */
		{   -1,   -1,   -1,    -1,    -1},	/* IdSel  8,  SIO         */
		{ 16+3, 16+3, 16+10, 16+14, 16+18},	/* IdSel  9,  slot 3, J19 */
		{ 16+6, 16+6, 16+6,  16+6,  16+6},	/* IdSel 10,  USB */
		{ 16+5, 16+5, 16+5,  16+5,  16+5}	/* IdSel 11,  IDE */
	};
 
	common_fixup(5, 11, 5, irq_tab, 0);
 
	SMC93X_Init();
}
 
/*
 * The AlphaPC64 is very similar to the EB66+ except that its slots
 * are numbered differently.  In the code below, I have used slot
 * number to refer to the id select line and *not* the slot number
 * used in the AlphaPC64 documentation.  However, in the table, I've
 * given the slot number, the id select line and the Jxx number that's
 * printed on the board.  The interrupt pins from the PCI slots are
 * wired into 3 interrupt summary registers at 0x804, 0x805 and 0x806
 * ISA.
 *
 * In the table, -1 means don't assign an IRQ number.  This is usually
 * because it is the Saturn IO (SIO) PCI/ISA Bridge Chip.
 */
static inline void cabriolet_fixup(void)
{
	char irq_tab[5][5] = {
          /*INT   INTA  INTB  INTC   INTD */
		{ 16+2, 16+2, 16+7, 16+11, 16+15},      /* IdSel 5,  slot 2, J21 */
		{ 16+0, 16+0, 16+5,  16+9, 16+13},      /* IdSel 6,  slot 0, J19 */
		{ 16+1, 16+1, 16+6, 16+10, 16+14},      /* IdSel 7,  slot 1, J20 */
		{   -1,   -1,   -1,    -1,    -1},	/* IdSel 8,  SIO         */
		{ 16+3, 16+3, 16+8, 16+12, 16+16}       /* IdSel 9,  slot 3, J22 */
	};
 
	common_fixup(5, 9, 5, irq_tab, 0x398);
}
 
 
/*
 * Fixup configuration for EB66/EB64+ boards.
 *
 * Both these boards use the same interrupt summary scheme.  There are
 * two 8 bit external summary registers as follows:
 *
 * Summary @ 0x26:
 * Bit      Meaning
 * 0        Interrupt Line A from slot 0
 * 1        Interrupt Line A from slot 1
 * 2        Interrupt Line B from slot 0
 * 3        Interrupt Line B from slot 1
 * 4        Interrupt Line C from slot 0
 * 5        Interrupt line from the two ISA PICs
 * 6        Tulip (slot 
 * 7        NCR SCSI
 *
 * Summary @ 0x27
 * Bit      Meaning
 * 0        Interrupt Line C from slot 1
 * 1        Interrupt Line D from slot 0
 * 2        Interrupt Line D from slot 1
 * 3        RAZ
 * 4        RAZ
 * 5        RAZ
 * 6        RAZ
 * 7        RAZ
 *
 * The device to slot mapping looks like:
 *
 * Slot     Device
 *  5       NCR SCSI controller
 *  6       PCI on board slot 0
 *  7       PCI on board slot 1
 *  8       Intel SIO PCI-ISA bridge chip
 *  9       Tulip - DECchip 21040 ethernet controller
 *   
 *
 * This two layered interrupt approach means that we allocate IRQ 16 and 
 * above for PCI interrupts.  The IRQ relates to which bit the interrupt
 * comes in on.  This makes interrupt processing much easier.
 */
static inline void eb66_and_eb64p_fixup(void)
{
	char irq_tab[5][5] = {
          /*INT  INTA  INTB  INTC   INTD */
		{16+7, 16+7, 16+7, 16+7,  16+7},	/* IdSel 5,  slot ?, ?? */
		{16+0, 16+0, 16+2, 16+4,  16+9},	/* IdSel 6,  slot ?, ?? */
		{16+1, 16+1, 16+3, 16+8, 16+10},	/* IdSel 7,  slot ?, ?? */
		{  -1,   -1,   -1,   -1,    -1},	/* IdSel 8,  SIO */
		{16+6, 16+6, 16+6, 16+6,  16+6},	/* IdSel 9,  TULIP */
	};
	common_fixup(5, 9, 5, irq_tab, 0);
}
 
 
/*
 * Fixup configuration for MIKASA
 *
 * Summary @ 0x536:
 * Bit      Meaning
 * 0        Interrupt Line A from slot 0
 * 1        Interrupt Line B from slot 0
 * 2        Interrupt Line C from slot 0
 * 3        Interrupt Line D from slot 0
 * 4        Interrupt Line A from slot 1
 * 5        Interrupt line B from slot 1
 * 6        Interrupt Line C from slot 1
 * 7        Interrupt Line D from slot 1
 * 8        Interrupt Line A from slot 2
 * 9        Interrupt Line B from slot 2
 *10        Interrupt Line C from slot 2
 *11        Interrupt Line D from slot 2
 *12        NCR 810 SCSI
 *13        Power Supply Fail
 *14        Temperature Warn
 *15        Reserved
 *
 * The device to slot mapping looks like:
 *
 * Slot     Device
 *  6       NCR SCSI controller
 *  7       Intel PCI-EISA bridge chip
 * 11       PCI on board slot 0
 * 12       PCI on board slot 1
 * 13       PCI on board slot 2
 *   
 *
 * This two layered interrupt approach means that we allocate IRQ 16 and 
 * above for PCI interrupts.  The IRQ relates to which bit the interrupt
 * comes in on.  This makes interrupt processing much easier.
 */
static inline void mikasa_fixup(void)
{
	char irq_tab[8][5] = {
	  /*INT    INTA   INTB   INTC   INTD */
	  {16+12, 16+12, 16+12, 16+12, 16+12},	/* IdSel 17,  SCSI */
	  {   -1,    -1,    -1,    -1,    -1},	/* IdSel 18,  PCEB */
	  {   -1,    -1,    -1,    -1,    -1},	/* IdSel 19,  ???? */
	  {   -1,    -1,    -1,    -1,    -1},	/* IdSel 20,  ???? */
	  {   -1,    -1,    -1,    -1,    -1},	/* IdSel 21,  ???? */
	  { 16+0,  16+0,  16+1,  16+2,  16+3},	/* IdSel 22,  slot 0 */
	  { 16+4,  16+4,  16+5,  16+6,  16+7},	/* IdSel 23,  slot 1 */
	  { 16+8,  16+8,  16+9, 16+10, 16+11},	/* IdSel 24,  slot 2 */
	};
	common_fixup(6, 13, 5, irq_tab, 0);
}
 
/*
 * Fixup configuration for NORITAKE
 *
 * Summary @ 0x542, summary register #1:
 * Bit      Meaning
 * 0        All valid ints from summary regs 2 & 3
 * 1        QLOGIC ISP1020A SCSI
 * 2        Interrupt Line A from slot 0
 * 3        Interrupt Line B from slot 0
 * 4        Interrupt Line A from slot 1
 * 5        Interrupt line B from slot 1
 * 6        Interrupt Line A from slot 2
 * 7        Interrupt Line B from slot 2
 * 8        Interrupt Line A from slot 3
 * 9        Interrupt Line B from slot 3
 *10        Interrupt Line A from slot 4
 *11        Interrupt Line B from slot 4
 *12        Interrupt Line A from slot 5
 *13        Interrupt Line B from slot 5
 *14        Interrupt Line A from slot 6
 *15        Interrupt Line B from slot 6
 *
 * Summary @ 0x544, summary register #2:
 * Bit      Meaning
 * 0        OR of all unmasked ints in SR #2
 * 1        OR of secondary bus ints
 * 2        Interrupt Line C from slot 0
 * 3        Interrupt Line D from slot 0
 * 4        Interrupt Line C from slot 1
 * 5        Interrupt line D from slot 1
 * 6        Interrupt Line C from slot 2
 * 7        Interrupt Line D from slot 2
 * 8        Interrupt Line C from slot 3
 * 9        Interrupt Line D from slot 3
 *10        Interrupt Line C from slot 4
 *11        Interrupt Line D from slot 4
 *12        Interrupt Line C from slot 5
 *13        Interrupt Line D from slot 5
 *14        Interrupt Line C from slot 6
 *15        Interrupt Line D from slot 6
 *
 * The device to slot mapping looks like:
 *
 * Slot     Device
 *  7       Intel PCI-EISA bridge chip
 *  8       DEC PCI-PCI bridge chip
 * 11       PCI on board slot 0
 * 12       PCI on board slot 1
 * 13       PCI on board slot 2
 *   
 *
 * This two layered interrupt approach means that we allocate IRQ 16 and 
 * above for PCI interrupts.  The IRQ relates to which bit the interrupt
 * comes in on.  This makes interrupt processing much easier.
 */
static inline void noritake_fixup(void)
{
	char irq_tab[15][5] = {
	  /*INT    INTA   INTB   INTC   INTD */
	  /* note: IDSELs 16, 17, and 25 are CORELLE only */
          { 16+1,  16+1,  16+1,  16+1,  16+1},  /* IdSel 16,  QLOGIC */
	  {   -1,    -1,    -1,    -1,    -1},	/* IdSel 17,  S3 Trio64 */
	  {   -1,    -1,    -1,    -1,    -1},	/* IdSel 18,  PCEB */
	  {   -1,    -1,    -1,    -1,    -1},	/* IdSel 19,  PPB  */
	  {   -1,    -1,    -1,    -1,    -1},	/* IdSel 20,  ???? */
	  {   -1,    -1,    -1,    -1,    -1},	/* IdSel 21,  ???? */
	  { 16+2,  16+2,  16+3,  32+2,  32+3},	/* IdSel 22,  slot 0 */
	  { 16+4,  16+4,  16+5,  32+4,  32+5},	/* IdSel 23,  slot 1 */
	  { 16+6,  16+6,  16+7,  32+6,  32+7},	/* IdSel 24,  slot 2 */
	  { 16+8,  16+8,  16+9,  32+8,  32+9},	/* IdSel 25,  slot 3 */
	  /* the following 5 are actually on PCI bus 1, across the bridge */
          { 16+1,  16+1,  16+1,  16+1,  16+1},  /* IdSel 16,  QLOGIC */
          { 16+8,  16+8,  16+9,  32+8,  32+9},  /* IdSel 17,  slot 3 */
          {16+10, 16+10, 16+11, 32+10, 32+11},  /* IdSel 18,  slot 4 */
          {16+12, 16+12, 16+13, 32+12, 32+13},  /* IdSel 19,  slot 5 */
          {16+14, 16+14, 16+15, 32+14, 32+15},  /* IdSel 20,  slot 6 */
	};
	common_fixup(5, 19, 5, irq_tab, 0);
}
 
/*
 * Fixup configuration for ALCOR
 *
 * Summary @ GRU_INT_REQ:
 * Bit      Meaning
 * 0        Interrupt Line A from slot 2
 * 1        Interrupt Line B from slot 2
 * 2        Interrupt Line C from slot 2
 * 3        Interrupt Line D from slot 2
 * 4        Interrupt Line A from slot 1
 * 5        Interrupt line B from slot 1
 * 6        Interrupt Line C from slot 1
 * 7        Interrupt Line D from slot 1
 * 8        Interrupt Line A from slot 0
 * 9        Interrupt Line B from slot 0
 *10        Interrupt Line C from slot 0
 *11        Interrupt Line D from slot 0
 *12        Interrupt Line A from slot 4
 *13        Interrupt Line B from slot 4
 *14        Interrupt Line C from slot 4
 *15        Interrupt Line D from slot 4
 *16        Interrupt Line D from slot 3
 *17        Interrupt Line D from slot 3
 *18        Interrupt Line D from slot 3
 *19        Interrupt Line D from slot 3
 *20-30     Reserved
 *31        EISA interrupt
 *
 * The device to slot mapping looks like:
 *
 * Slot     Device
 *  7       PCI on board slot 0
 *  8       PCI on board slot 3
 *  9       PCI on board slot 4
 * 10       PCEB (PCI-EISA bridge)
 * 11       PCI on board slot 2
 * 12       PCI on board slot 1
 *   
 *
 * This two layered interrupt approach means that we allocate IRQ 16 and 
 * above for PCI interrupts.  The IRQ relates to which bit the interrupt
 * comes in on.  This makes interrupt processing much easier.
 */
static inline void alcor_fixup(void)
{
	char irq_tab[7][5] = {
	  /*INT    INTA   INTB   INTC   INTD */
	  /* note: IDSEL 17 is XLT only */
	  {16+13, 16+13, 16+13, 16+13, 16+13},	/* IdSel 17,  TULIP  */
	  { 16+8,  16+8,  16+9, 16+10, 16+11},	/* IdSel 18,  slot 0 */
	  {16+16, 16+16, 16+17, 16+18, 16+19},	/* IdSel 19,  slot 3 */
	  {16+12, 16+12, 16+13, 16+14, 16+15},	/* IdSel 20,  slot 4 */
	  {   -1,    -1,    -1,    -1,    -1},	/* IdSel 21,  PCEB   */
	  { 16+0,  16+0,  16+1,  16+2,  16+3},	/* IdSel 22,  slot 2 */
	  { 16+4,  16+4,  16+5,  16+6,  16+7},	/* IdSel 23,  slot 1 */
	};
	common_fixup(6, 12, 5, irq_tab, 0);
}
 
#if 0
/*
 * Fixup configuration for ALPHA XLT (EV5/EV56)
 *
 * Summary @ GRU_INT_REQ:
 * Bit      Meaning
 * 0        Interrupt Line A from slot 2
 * 1        Interrupt Line B from slot 2
 * 2        Interrupt Line C from slot 2
 * 3        Interrupt Line D from slot 2
 * 4        Interrupt Line A from slot 1
 * 5        Interrupt line B from slot 1
 * 6        Interrupt Line C from slot 1
 * 7        Interrupt Line D from slot 1
 * 8        Interrupt Line A from slot 0
 * 9        Interrupt Line B from slot 0
 *10        Interrupt Line C from slot 0
 *11        Interrupt Line D from slot 0
 *12        NCR810 SCSI in slot 9
 *13        DC-21040 (TULIP) in slot 6
 *14-19     Reserved
 *20-23     Jumpers (interrupt)
 *24-27     Module revision
 *28-30     Reserved
 *31        EISA interrupt
 *
 * The device to slot mapping looks like:
 *
 * Slot     Device
 *  6       TULIP
 *  7       PCI on board slot 0
 *  8       none
 *  9       SCSI
 * 10       PCI-ISA bridge
 * 11       PCI on board slot 2
 * 12       PCI on board slot 1
 *   
 *
 * This two layered interrupt approach means that we allocate IRQ 16 and 
 * above for PCI interrupts.  The IRQ relates to which bit the interrupt
 * comes in on.  This makes interrupt processing much easier.
 */
static inline void xlt_fixup(void)
{
	char irq_tab[7][5] = {
	  /*INT    INTA   INTB   INTC   INTD */
	  {16+13, 16+13, 16+13, 16+13, 16+13},	/* IdSel 17,  TULIP  */
	  { 16+8,  16+8,  16+9, 16+10, 16+11},	/* IdSel 18,  slot 0 */
	  {   -1,    -1,    -1,    -1,    -1},	/* IdSel 19,  none   */
	  {16+12, 16+12, 16+12, 16+12, 16+12},	/* IdSel 20,  SCSI   */
	  {   -1,    -1,    -1,    -1,    -1},	/* IdSel 21,  SIO    */
	  { 16+0,  16+0,  16+1,  16+2,  16+3},	/* IdSel 22,  slot 2 */
	  { 16+4,  16+4,  16+5,  16+6,  16+7},	/* IdSel 23,  slot 1 */
	};
	common_fixup(6, 12, 5, irq_tab, 0);
}
#endif /* 0 */
 
/*
 * Fixup configuration for ALPHA SABLE (2100) - 2100A is different ??
 *
 * Summary Registers (536/53a/53c):
 * Bit      Meaning
 *-----------------
 * 0        PCI slot 0
 * 1        NCR810 (builtin)
 * 2        TULIP (builtin)
 * 3        mouse
 * 4        PCI slot 1
 * 5        PCI slot 2
 * 6        keyboard
 * 7        floppy
 * 8        COM2
 * 9        parallel port
 *10        EISA irq 3
 *11        EISA irq 4
 *12        EISA irq 5
 *13        EISA irq 6
 *14        EISA irq 7
 *15        COM1
 *16        EISA irq 9
 *17        EISA irq 10
 *18        EISA irq 11
 *19        EISA irq 12
 *20        EISA irq 13
 *21        EISA irq 14
 *22        NC
 *23        IIC
 *
 * The device to slot mapping looks like:
 *
 * Slot     Device
 *  0       TULIP
 *  1       SCSI
 *  2       PCI-EISA bridge
 *  3       none
 *  4       none
 *  5       none
 *  6       PCI on board slot 0
 *  7       PCI on board slot 1
 *  8       PCI on board slot 2
 *   
 *
 * This two layered interrupt approach means that we allocate IRQ 16 and 
 * above for PCI interrupts.  The IRQ relates to which bit the interrupt
 * comes in on.  This makes interrupt processing much easier.
 */
/* NOTE: the IRQ assignments below are arbitrary, but need to be consistent
   with the values in the sable_irq_to_mask[] and sable_mask_to_irq[] tables
   in irq.c
 */
static inline void sable_fixup(void)
{
        char irq_tab[9][5] = {
          /*INT    INTA   INTB   INTC   INTD */
          { 32+0,  32+0,  32+0,  32+0,  32+0},  /* IdSel 0,  TULIP  */
          { 32+1,  32+1,  32+1,  32+1,  32+1},  /* IdSel 1,  SCSI   */
          {   -1,    -1,    -1,    -1,    -1},  /* IdSel 2,  SIO   */
          {   -1,    -1,    -1,    -1,    -1},  /* IdSel 3,  none   */
          {   -1,    -1,    -1,    -1,    -1},  /* IdSel 4,  none   */
          {   -1,    -1,    -1,    -1,    -1},  /* IdSel 5,  none   */
          { 32+2,  32+2,  32+2,  32+2,  32+2},  /* IdSel 6,  slot 0 */
          { 32+3,  32+3,  32+3,  32+3,  32+3},  /* IdSel 7,  slot 1 */
          { 32+4,  32+4,  32+4,  32+4,  32+4},  /* IdSel 8,  slot 2 */
        };
        common_fixup(0, 8, 5, irq_tab, 0);
}
 
/*
 * Fixup configuration for MIATA (EV56+PYXIS)
 *
 * Summary @ PYXIS_INT_REQ:
 * Bit      Meaning
 * 0        Fan Fault
 * 1        NMI
 * 2        Halt/Reset switch
 * 3        none
 * 4        CID0 (Riser ID)
 * 5        CID1 (Riser ID)
 * 6        Interval timer
 * 7        PCI-ISA Bridge
 * 8        Ethernet
 * 9        EIDE (deprecated, ISA 14/15 used)
 *10        none
 *11        USB
 *12        Interrupt Line A from slot 4
 *13        Interrupt Line B from slot 4
 *14        Interrupt Line C from slot 4
 *15        Interrupt Line D from slot 4
 *16        Interrupt Line A from slot 5
 *17        Interrupt line B from slot 5
 *18        Interrupt Line C from slot 5
 *19        Interrupt Line D from slot 5
 *20        Interrupt Line A from slot 1
 *21        Interrupt Line B from slot 1
 *22        Interrupt Line C from slot 1
 *23        Interrupt Line D from slot 1
 *24        Interrupt Line A from slot 2
 *25        Interrupt Line B from slot 2
 *26        Interrupt Line C from slot 2
 *27        Interrupt Line D from slot 2
 *27        Interrupt Line A from slot 3
 *29        Interrupt Line B from slot 3
 *30        Interrupt Line C from slot 3
 *31        Interrupt Line D from slot 3
 *
 * The device to slot mapping looks like:
 *
 * Slot     Device
 *  3       DC21142 Ethernet
 *  4       EIDE CMD646
 *  5       none
 *  6       USB
 *  7       PCI-ISA bridge
 *  8       PCI-PCI Bridge      (SBU Riser)
 *  9       none
 * 10       none
 * 11       PCI on board slot 4 (SBU Riser)
 * 12       PCI on board slot 5 (SBU Riser)
 *
 *  These are behind the bridge, so I'm not sure what to do...
 *
 * 13       PCI on board slot 1 (SBU Riser)
 * 14       PCI on board slot 2 (SBU Riser)
 * 15       PCI on board slot 3 (SBU Riser)
 *   
 *
 * This two layered interrupt approach means that we allocate IRQ 16 and 
 * above for PCI interrupts.  The IRQ relates to which bit the interrupt
 * comes in on.  This makes interrupt processing much easier.
 */
static inline void miata_fixup(void)
{
	extern int es1888_init(void);
	extern void SMC669_Init(void); /* might be a MiataGL */
        char irq_tab[18][5] = {
          /*INT    INTA   INTB   INTC   INTD */
          {16+ 8, 16+ 8, 16+ 8, 16+ 8, 16+ 8},  /* IdSel 14,  DC21142/3 */
          {   -1,    -1,    -1,    -1,    -1},  /* IdSel 15,  EIDE   */
          {   -1,    -1,    -1,    -1,    -1},  /* IdSel 16,  none   */
          {   -1,    -1,    -1,    -1,    -1},  /* IdSel 17,  none   */
          {   -1,    -1,    -1,    -1,    -1},  /* IdSel 18,  PCI-ISA */
          {   -1,    -1,    -1,    -1,    -1},  /* IdSel 19,  PCI-PCI old */
          {   -1,    -1,    -1,    -1,    -1},  /* IdSel 20,  none    */
          {   -1,    -1,    -1,    -1,    -1},  /* IdSel 21,  none    */
          {16+12, 16+12, 16+13, 16+14, 16+15},  /* IdSel 22,  slot 4 */
          {16+16, 16+16, 16+17, 16+18, 16+19},  /* IdSel 23,  slot 5 */
	  /* the following 7 are actually on PCI bus 1, across the bridge */
	  {16+11, 16+11, 16+11, 16+11, 16+11},  /* IdSel 24,  QLISP on GL  */
          {   -1,    -1,    -1,    -1,    -1},  /* IdSel 25,  none    */
          {   -1,    -1,    -1,    -1,    -1},  /* IdSel 26,  none    */
          {   -1,    -1,    -1,    -1,    -1},  /* IdSel 27,  none    */
          {16+20, 16+20, 16+21, 16+22, 16+23},  /* IdSel 28,  slot 1 */
          {16+24, 16+24, 16+25, 16+26, 16+27},  /* IdSel 29,  slot 2 */
          {16+28, 16+28, 16+29, 16+30, 16+31},  /* IdSel 30,  slot 3 */
	  /* this bridge is on the main bus of the later original MIATA */
          {   -1,    -1,    -1,    -1,    -1},  /* IdSel 31,  PCI-PCI new */
        };
	common_fixup(3, 20, 5, irq_tab, 0);
	SMC669_Init(); /* might be a MiataGL, so try to find one of these */
	es1888_init();
}
 
/*
 * Fixup configuration for SX164 (PCA56+PYXIS)
 *
 * Summary @ PYXIS_INT_REQ:
 * Bit      Meaning
 * 0        RSVD
 * 1        NMI
 * 2        Halt/Reset switch
 * 3        MBZ
 * 4        RAZ
 * 5        RAZ
 * 6        Interval timer (RTC)
 * 7        PCI-ISA Bridge
 * 8        Interrupt Line A from slot 3
 * 9        Interrupt Line A from slot 2
 *10        Interrupt Line A from slot 1
 *11        Interrupt Line A from slot 0
 *12        Interrupt Line B from slot 3
 *13        Interrupt Line B from slot 2
 *14        Interrupt Line B from slot 1
 *15        Interrupt line B from slot 0
 *16        Interrupt Line C from slot 3
 *17        Interrupt Line C from slot 2
 *18        Interrupt Line C from slot 1
 *19        Interrupt Line C from slot 0
 *20        Interrupt Line D from slot 3
 *21        Interrupt Line D from slot 2
 *22        Interrupt Line D from slot 1
 *23        Interrupt Line D from slot 0
 *
 * IdSel	
 *   5	 32 bit PCI option slot 2
 *   6	 64 bit PCI option slot 0
 *   7	 64 bit PCI option slot 1
 *   8	 Cypress I/O
 *   9	 32 bit PCI option slot 3
 * 
 */
 
static inline void sx164_fixup(void)
{
	extern void SMC669_Init(void);
	char irq_tab[5][5] = {
          /*INT    INTA   INTB   INTC   INTD */
	  { 16+ 9, 16+ 9, 16+13, 16+17, 16+21},	/* IdSel 5 slot 2 J17 */
	  { 16+11, 16+11, 16+15, 16+19, 16+23},	/* IdSel 6 slot 0 J19 */
	  { 16+10, 16+10, 16+14, 16+18, 16+22},	/* IdSel 7 slot 1 J18 */
	  {    -1,    -1,    -1,    -1,    -1},	/* IdSel 8 SIO        */
	  { 16+ 8, 16+ 8, 16+12, 16+16, 16+20}	/* IdSel 9 slot 3 J15 */
	};
 
	common_fixup(5, 9, 5, irq_tab, 0);
 
	SMC669_Init();
}
 
static inline void ruffian_fixup(void)
{
	struct pci_dev *dev;
 
	/*
	 * Go through all devices
	 */
	for (dev = pci_devices; dev; dev = dev->next) {
		if (dev->class >> 16 != PCI_BASE_CLASS_BRIDGE) {
			/*
			 * if it's a VGA, enable its BIOS ROM at C0000
			 */
			if ((dev->class >> 8) == PCI_CLASS_DISPLAY_VGA) {
			  /* but if its a Cirrus 543x/544x DISABLE it, */
			  /* since enabling ROM disables the memory... */
			   if ((dev->vendor == PCI_VENDOR_ID_CIRRUS) &&
			       (dev->device >= 0x00a0) &&
			       (dev->device <= 0x00ac)) {
				  pcibios_write_config_dword(
					dev->bus->number,
					dev->devfn,
					PCI_ROM_ADDRESS,
					0x00000000);
			  } else {
				  pcibios_write_config_dword(
					dev->bus->number,
					dev->devfn,
					PCI_ROM_ADDRESS,
					0x000c0000 | PCI_ROM_ADDRESS_ENABLE);
			  }
			}
			/*
			 * if it's a SCSI, disable its BIOS ROM
			 */
			if ((dev->class >> 8) == PCI_CLASS_STORAGE_SCSI) {
			  pcibios_write_config_dword(dev->bus->number,
						     dev->devfn,
						     PCI_ROM_ADDRESS,
						     0x0000000);
			}
		}
	}
}
 
/*
 * The Takara has PCI devices 1, 2, and 3 configured to slots 20,
 * 19, and 18 respectively, in the default configuration. They can
 * also be jumpered to slots 8, 7, and 6 respectively, which is fun
 * because the SIO ISA bridge can also be slot 7. However, the SIO
 * doesn't explicitly generate PCI-type interrupts, so we can
 * assign it whatever the hell IRQ we like and it doesn't matter.
 */
static inline void takara_fixup(void)
{
	char irq_tab[15][5] = {
	    { 16+3, 16+3, 16+3, 16+3, 16+3},   /* slot  6 == device 3 */
	    { 16+2, 16+2, 16+2, 16+2, 16+2},   /* slot  7 == device 2 */
	    { 16+1, 16+1, 16+1, 16+1, 16+1},   /* slot  8 == device 1 */
	    {   -1,   -1,   -1,   -1,   -1},   /* slot  9 == nothing */
	    {   -1,   -1,   -1,   -1,   -1},   /* slot 10 == nothing */
	    {   -1,   -1,   -1,   -1,   -1},   /* slot 11 == nothing */
	    {   -1,   -1,   -1,   -1,   -1},   /* slot 12 == nothing */
	    {   -1,   -1,   -1,   -1,   -1},   /* slot 13 == nothing */
	    {   -1,   -1,   -1,   -1,   -1},   /* slot 14 == nothing */
	    {   -1,   -1,   -1,   -1,   -1},   /* slot 15 == nothing */
	    {   -1,   -1,   -1,   -1,   -1},   /* slot 16 == nothing */
	    {   -1,   -1,   -1,   -1,   -1},   /* slot 17 == nothing */
	    { 16+3, 16+3, 16+3, 16+3, 16+3},   /* slot 18 == device 3 */
	    { 16+2, 16+2, 16+2, 16+2, 16+2},   /* slot 19 == device 2 */
	    { 16+1, 16+1, 16+1, 16+1, 16+1},   /* slot 20 == device 1 */
	};
 
	common_fixup(6, 20, 5, irq_tab, 0x26e);
}
 
/*
 * Fixup configuration for all boards that route the PCI interrupts
 * through the SIO PCI/ISA bridge.  This includes Noname (AXPpci33),
 * Avanti (AlphaStation) and Kenetics's Platform 2000.
 */
static inline void sio_fixup(void)
{
	struct pci_dev *dev;
	/*
	 * The Noname board has 5 PCI slots with each of the 4
	 * interrupt pins routed to different pins on the PCI/ISA
	 * bridge (PIRQ0-PIRQ3).  The table below is based on
	 * information available at:
	 *
	 *   http://ftp.digital.com/pub/DEC/axppci/ref_interrupts.txt
	 *
	 * I have no information on the Avanti interrupt routing, but
	 * the routing seems to be identical to the Noname except
	 * that the Avanti has an additional slot whose routing I'm
	 * unsure of.
	 *
	 * pirq_tab[0] is a fake entry to deal with old PCI boards
	 * that have the interrupt pin number hardwired to 0 (meaning
	 * that they use the default INTA line, if they are interrupt
	 * driven at all).
	 */
	static const char pirq_tab[][5] = {
#ifdef CONFIG_ALPHA_P2K
		{ 0,  0, -1, -1, -1}, /* idsel  6 (53c810) */
		{-1, -1, -1, -1, -1}, /* idsel  7 (SIO: PCI/ISA bridge) */
		{ 1,  1,  2,  3,  0}, /* idsel  8 (slot A) */
		{ 2,  2,  3,  0,  1}, /* idsel  9 (slot B) */
		{-1, -1, -1, -1, -1}, /* idsel 10 (unused) */
		{-1, -1, -1, -1, -1}, /* idsel 11 (unused) */
		{ 3,  3, -1, -1, -1}, /* idsel 12 (CMD0646) */
#else
		{ 3,  3,  3,  3,  3}, /* idsel  6 (53c810) */ 
		{-1, -1, -1, -1, -1}, /* idsel  7 (SIO: PCI/ISA bridge) */
		{ 2,  2, -1, -1, -1}, /* idsel  8 (Noname hack: slot closest to ISA) */
		{-1, -1, -1, -1, -1}, /* idsel  9 (unused) */
		{-1, -1, -1, -1, -1}, /* idsel 10 (unused) */
		{ 0,  0,  2,  1,  0}, /* idsel 11 KN25_PCI_SLOT0 */
		{ 1,  1,  0,  2,  1}, /* idsel 12 KN25_PCI_SLOT1 */
		{ 2,  2,  1,  0,  2}, /* idsel 13 KN25_PCI_SLOT2 */
		{ 0,  0,  0,  0,  0}, /* idsel 14 AS255 TULIP */
#endif
	};
	/*
	 * route_tab selects irq routing in PCI/ISA bridge so that:
	 *		PIRQ0 -> irq 15
	 *		PIRQ1 -> irq  9
	 *		PIRQ2 -> irq 10
	 *		PIRQ3 -> irq 11
	 *
	 * This probably ought to be configurable via MILO.  For
	 * example, sound boards seem to like using IRQ 9.
	 */
#ifdef CONFIG_ALPHA_NONAME
	/*
	 * For UDB, the only available PCI slot must not map to IRQ 9,
	 *  since that's the builtin MSS sound chip. That PCI slot
	 *  will map to PIRQ1 (for INTA at least), so we give it IRQ 15
	 *  instead.
	 *
	 * Unfortunately we have to do this for NONAME as well, since
	 *  they are co-indicated when the platform type "Noname" is
	 *  selected... :-(
	 */
#ifdef CONFIG_ALPHA_BOOK1
        /* for the AlphaBook1, NCR810 SCSI is 14, PCMCIA controller is 15 */
        const unsigned int route_tab = 0x0e0f0a0a;
#else /* CONFIG_ALPHA_BOOK1 */
	const unsigned int route_tab = 0x0b0a0f09;
#endif  /* CONFIG_ALPHA_BOOK1 */
#else /* CONFIG_ALPHA_NONAME */
	const unsigned int route_tab = 0x0b0a090f;
#endif /* CONFIG_ALPHA_NONAME */
	unsigned int level_bits;
	unsigned char pin, slot;
	int pirq;
 
	pcibios_write_config_dword(0, PCI_DEVFN(7, 0), 0x60, route_tab);
 
	/*
	 * Go through all devices, fixing up irqs as we see fit:
	 */
	level_bits = 0;
	for (dev = pci_devices; dev; dev = dev->next) {
		if ((dev->class >> 16 == PCI_BASE_CLASS_BRIDGE)
#ifdef CONFIG_ALPHA_BOOK1
                    && (dev->class >> 8 != PCI_CLASS_BRIDGE_PCMCIA)
#endif /* CONFIG_ALPHA_BOOK1 */
                    )
			continue;
		dev->irq = 0;
		if (dev->bus->number != 0) {
			struct pci_dev *curr = dev ;
			/*
			 * read the pin and do the PCI-PCI bridge
			 * interrupt pin swizzle
			 */
			pcibios_read_config_byte(dev->bus->number, dev->devfn,
						 PCI_INTERRUPT_PIN, &pin);
			/* cope with 0 */
			if (pin == 0) pin = 1 ;
			/* follow the chain of bridges, swizzling as we go */
			do {
				/* swizzle */
				pin = bridge_swizzle(pin, PCI_SLOT(curr->devfn)) ;
				/* move up the chain of bridges */
				curr = curr->bus->self ;
			} while (curr->bus->self) ;
			/* The slot is the slot of the last bridge. */
			slot = PCI_SLOT(curr->devfn) ;
		} else {
			/* work out the slot */
			slot = PCI_SLOT(dev->devfn) ;
			/* read the pin */
			pcibios_read_config_byte(dev->bus->number, dev->devfn,
						 PCI_INTERRUPT_PIN, &pin);
		}
 
		if (slot < 6 || slot >= 6 + sizeof(pirq_tab)/sizeof(pirq_tab[0])) {
			printk("bios32.sio_fixup: "
			       "weird, found device %04x:%04x "
			       "in non-existent slot %d!!\n",
			       dev->vendor, dev->device, slot);
			continue;
		}
		pirq = pirq_tab[slot - 6][pin];
 
		DBG_DEVS(("sio_fixup: bus %d  slot 0x%x  VID 0x%x  DID 0x%x\n"
			  "           int_slot 0x%x  pin 0x%x  pirq 0x%x\n",
			  dev->bus->number, PCI_SLOT(dev->devfn), dev->vendor,
			  dev->device, slot, pin, pirq));
		/*
		 * if it's a VGA, enable its BIOS ROM at C0000
		 */
		if ((dev->class >> 8) == PCI_CLASS_DISPLAY_VGA) {
			pcibios_write_config_dword(dev->bus->number, dev->devfn,
						   PCI_ROM_ADDRESS,
						   0x000c0000 | PCI_ROM_ADDRESS_ENABLE);
		}
		if ((dev->class >> 16) == PCI_BASE_CLASS_DISPLAY) {
			continue; /* for now, displays get no IRQ */
		}
 
		if (pirq < 0) {
			printk("bios32.sio_fixup: "
			       "weird, device %04x:%04x coming in on slot %d has no irq line!!\n",
			       dev->vendor, dev->device, slot);
			continue;
		}
 
		dev->irq = (route_tab >> (8 * pirq)) & 0xff;
 
#ifndef CONFIG_ALPHA_BOOK1
                /* do not set *ANY* level triggers for AlphaBook1 */
		/* must set the PCI IRQs to level triggered */
		level_bits |= (1 << dev->irq);
#endif /* !CONFIG_ALPHA_BOOK1 */
 
#if PCI_MODIFY
		/* tell the device: */
		pcibios_write_config_byte(dev->bus->number, dev->devfn,
					  PCI_INTERRUPT_LINE, dev->irq);
#endif
 
#ifdef CONFIG_ALPHA_BOOK1
                /*
                 * on the AlphaBook1, the PCMCIA chip (Cirrus 6729)
                 * is sensitive to PCI bus bursts, so we must DISABLE
                 * burst mode for the NCR 8xx SCSI... :-(
		 *
		 * Note that the NCR810 SCSI driver must preserve the
		 *  setting of the bit in order for this to work. At the
		 *  moment (2.0.29), ncr53c8xx.c does NOT do this, but
		 *  53c7,8xx.c DOES...
                 */
                if ((dev->vendor == PCI_VENDOR_ID_NCR) &&
                    ((dev->device == PCI_DEVICE_ID_NCR_53C810) ||
                     (dev->device == PCI_DEVICE_ID_NCR_53C815) ||
                     (dev->device == PCI_DEVICE_ID_NCR_53C820) ||
                     (dev->device == PCI_DEVICE_ID_NCR_53C825)
                     )) {
		    unsigned int io_port;
		    unsigned char ctest4;
 
                    pcibios_read_config_dword(dev->bus->number, dev->devfn,
                                              PCI_BASE_ADDRESS_0, &io_port);
                    io_port &= PCI_BASE_ADDRESS_IO_MASK;
                    ctest4 = inb(io_port+0x21);
                    if (!(ctest4 & 0x80)) {
		        printk("AlphaBook1 NCR init: setting burst disable\n");
                        outb(ctest4 | 0x80, io_port+0x21);
                    }
	}
#endif /* CONFIG_ALPHA_BOOK1 */
 
	} /* end for devs */
 
	/*
	 * Now, make all PCI interrupts level sensitive.  Notice:
	 * these registers must be accessed byte-wise.  inw()/outw()
	 * don't work.
	 *
	 * Make sure to turn off any level bits set for IRQs 9,10,11,15,
	 *  so that the only bits getting set are for devices actually found.
	 * Note that we do preserve the remainder of the bits, which we hope
	 *  will be set correctly by ARC/SRM.
	 *
	 * Note: we at least preserve any level-set bits on AlphaBook1
	 */
	level_bits |= ((inb(0x4d0) | (inb(0x4d1) << 8)) & 0x71ff);
	outb((level_bits >> 0) & 0xff, 0x4d0);
	outb((level_bits >> 8) & 0xff, 0x4d1);
 
#ifdef CONFIG_ALPHA_BOOK1
        {
	  unsigned char orig, config;
	  /* on the AlphaBook1, make sure that register PR1 indicates 1Mb mem */
	  outb(0x0f, 0x3ce); orig = inb(0x3cf); /* read PR5  */
	  outb(0x0f, 0x3ce); outb(0x05, 0x3cf); /* unlock PR0-4 */
	  outb(0x0b, 0x3ce); config = inb(0x3cf); /* read PR1 */
	  if ((config & 0xc0) != 0xc0) {
            printk("AlphaBook1 VGA init: setting 1Mb memory\n");
            config |= 0xc0;
            outb(0x0b, 0x3ce); outb(config, 0x3cf); /* write PR1 */
	  }
	  outb(0x0f, 0x3ce); outb(orig, 0x3cf); /* (re)lock PR0-4 */
        }
#endif /* CONFIG_ALPHA_BOOK1 */
 
#ifndef CONFIG_ALPHA_BOOK1
        /* do not do IDE init for AlphaBook1 */
	enable_ide(0x26e);
#endif /* !CONFIG_ALPHA_BOOK1 */
}
 
 
#ifdef CONFIG_TGA_CONSOLE
extern void tga_console_find(void);
#endif /* CONFIG_TGA_CONSOLE */
 
unsigned long pcibios_fixup(unsigned long mem_start, unsigned long mem_end)
{
#if PCI_MODIFY && !defined(CONFIG_ALPHA_RUFFIAN)
	/*
	 * Scan the tree, allocating PCI memory and I/O space.
	 */
	layout_bus(&pci_root);
#endif
 
	/*
	 * Now is the time to do all those dirty little deeds...
	 */
#if defined(CONFIG_ALPHA_NONAME) || defined(CONFIG_ALPHA_AVANTI) || defined(CONFIG_ALPHA_P2K)
	sio_fixup();
#elif defined(CONFIG_ALPHA_CABRIOLET) || defined(CONFIG_ALPHA_EB164)
	cabriolet_fixup();
#elif defined(CONFIG_ALPHA_PC164) || defined(CONFIG_ALPHA_LX164)
	alphapc164_fixup();
#elif defined(CONFIG_ALPHA_EB66P)
	eb66p_fixup();
#elif defined(CONFIG_ALPHA_EB66)
	eb66_and_eb64p_fixup();
#elif defined(CONFIG_ALPHA_EB64P)
	eb66_and_eb64p_fixup();
#elif defined(CONFIG_ALPHA_MIKASA)
	mikasa_fixup();
#elif defined(CONFIG_ALPHA_ALCOR) || defined(CONFIG_ALPHA_XLT)
	alcor_fixup();
#elif defined(CONFIG_ALPHA_SABLE)
	sable_fixup();
#elif defined(CONFIG_ALPHA_MIATA)
	miata_fixup();
#elif defined(CONFIG_ALPHA_NORITAKE)
	noritake_fixup();
#elif defined(CONFIG_ALPHA_SX164)
	sx164_fixup();
#elif defined(CONFIG_ALPHA_TAKARA)
	takara_fixup();
#elif defined(CONFIG_ALPHA_RUFFIAN)
	ruffian_fixup();
#else
#	error You must tell me what kind of platform you want.
#endif
 
#ifdef CONFIG_TGA_CONSOLE
        tga_console_find();
#endif /* CONFIG_TGA_CONSOLE */
 
	return mem_start;
}
 
 
const char *pcibios_strerror (int error)
{
        static char buf[80];
 
        switch (error) {
                case PCIBIOS_SUCCESSFUL:
                        return "SUCCESSFUL";
 
                case PCIBIOS_FUNC_NOT_SUPPORTED:
                        return "FUNC_NOT_SUPPORTED";
 
                case PCIBIOS_BAD_VENDOR_ID:
                        return "SUCCESSFUL";
 
                case PCIBIOS_DEVICE_NOT_FOUND:
                        return "DEVICE_NOT_FOUND";
 
                case PCIBIOS_BAD_REGISTER_NUMBER:
                        return "BAD_REGISTER_NUMBER";
 
                default:
                        sprintf (buf, "UNKNOWN RETURN 0x%x", error);
                        return buf;
        }
}
 
asmlinkage int sys_pciconfig_read(
	unsigned long bus,
	unsigned long dfn,
	unsigned long off,
	unsigned long len,
	unsigned char *buf)
{
        unsigned char ubyte;
        unsigned short ushort;
        unsigned int uint;
	long err = 0;
 
	switch (len) {
	    case 1:
	        err = pcibios_read_config_byte(bus, dfn, off, &ubyte);
		if (err != PCIBIOS_SUCCESSFUL)
		    ubyte = 0xff;
		put_user(ubyte, buf);
		break;
	    case 2:
	        err = pcibios_read_config_word(bus, dfn, off, &ushort);
		if (err != PCIBIOS_SUCCESSFUL)
		    ushort = 0xffff;
		put_user(ushort, (unsigned short *)buf);
		break;
	    case 4:
	        err = pcibios_read_config_dword(bus, dfn, off, &uint);
		if (err != PCIBIOS_SUCCESSFUL)
		    uint = 0xffffffff;
		put_user(uint, (unsigned int *)buf);
		break;
	    default:
	        err = -EINVAL;
	        break;
	}
        return err;
}
asmlinkage int sys_pciconfig_write(
	unsigned long bus,
	unsigned long dfn,
	unsigned long off,
	unsigned long len,
	unsigned char *buf)
{
        unsigned char ubyte;
        unsigned short ushort;
        unsigned int uint;
        long err = 0;
 
	switch (len) {
	    case 1:
                ubyte = get_user(buf);
                err = pcibios_write_config_byte(bus, dfn, off, ubyte);
                if (err != PCIBIOS_SUCCESSFUL) {
			err = -EFAULT;
		}
		break;
	    case 2:
                ushort = get_user((unsigned short *)buf);
                err = pcibios_write_config_word(bus, dfn, off, ushort);
                if (err != PCIBIOS_SUCCESSFUL) {
			err = -EFAULT;
		}
		break;
	    case 4:
                uint = get_user((unsigned int *)buf);
                err = pcibios_write_config_dword(bus, dfn, off, uint);
                if (err != PCIBIOS_SUCCESSFUL) {
			err = -EFAULT;
		}
		break;
	    default:
	        err = -EINVAL;
	        break;
	}
        return err;
}
 
#if (defined(CONFIG_ALPHA_PC164) || \
     defined(CONFIG_ALPHA_LX164) || \
     defined(CONFIG_ALPHA_SX164) || \
     defined(CONFIG_ALPHA_EB164) || \
     defined(CONFIG_ALPHA_EB66P) || \
     defined(CONFIG_ALPHA_CABRIOLET)) && defined(CONFIG_ALPHA_SRM)
 
/*
  on the above machines, under SRM console, we must use the CSERVE PALcode
  routine to manage the interrupt mask for us, otherwise, the kernel/HW get
  out of sync with what the PALcode thinks it needs to deliver/ignore
 */
void
cserve_update_hw(unsigned long irq, unsigned long mask)
{
    extern void cserve_ena(unsigned long);
    extern void cserve_dis(unsigned long);
 
    if (mask & (1UL << irq))
	/* disable */
	cserve_dis(irq - 16);
    else
      /* enable */
	cserve_ena(irq - 16);
    return;
}
#endif /* (PC164 || LX164 || SX164 || EB164 || CABRIO) && SRM */
 
#ifdef CONFIG_ALPHA_MIATA
 
/* init the built-in ES1888 sound chip (SB16 compatible) */
int es1888_init(void)
{
    /* sequence of IO reads to init the audio controller */
    inb(0x0229);
    inb(0x0229);
    inb(0x0229);
    inb(0x022b);
    inb(0x0229);
    inb(0x022b);
    inb(0x0229);
    inb(0x0229);
    inb(0x022b);
    inb(0x0229);
    inb(0x0220); /* this sets the base address to 0x220 */
 
    /* sequence to set DMA channels */
    outb(0x01, 0x0226); /* reset */
    inb(0x0226); /* pause */
    outb(0x00, 0x0226); /* release reset */
    while (!(inb(0x022e) & 0x80)) /* wait for bit 7 to assert*/
        continue;
    inb(0x022a); /* pause */
    outb(0xc6, 0x022c); /* enable extended mode */
    while (inb(0x022c) & 0x80) /* wait for bit 7 to deassert */
        continue;
    outb(0xb1, 0x022c); /* setup for write to Interrupt CR */
    while (inb(0x022c) & 0x80) /* wait for bit 7 to deassert */
        continue;
    outb(0x14, 0x022c); /* set IRQ 5 */
    while (inb(0x022c) & 0x80) /* wait for bit 7 to deassert */
        continue;
    outb(0xb2, 0x022c); /* setup for write to DMA CR */
    while (inb(0x022c) & 0x80) /* wait for bit 7 to deassert */
        continue;
    outb(0x18, 0x022c); /* set DMA channel 1 */
 
    return 0;
}
 
#endif /* CONFIG_ALPHA_MIATA */
 
#ifdef CONFIG_ALPHA_SRM_SETUP
void reset_for_srm(void)
{
	extern void scrreset(void);
	struct pci_dev *dev;
	int i;
 
	/* reset any IRQs that we changed */
	for (i = 0; i < irq_reset_count; i++) {
	    dev = irq_dev_to_reset[i];
 
	    pcibios_write_config_byte(dev->bus->number, dev->devfn,
				      PCI_INTERRUPT_LINE, irq_to_reset[i]);
#if 1
	    printk("reset_for_srm: bus %d slot 0x%x "
		   "SRM IRQ 0x%x changed back from 0x%x\n",
		   dev->bus->number, PCI_SLOT(dev->devfn),
		   irq_to_reset[i], dev->irq);
#endif
	}
 
	/* reset any IO addresses that we changed */
	for (i = 0; i < io_reset_count; i++) {
	    dev = io_dev_to_reset[i];
 
	    pcibios_write_config_byte(dev->bus->number, dev->devfn,
				      io_reg_to_reset[i], io_to_reset[i]);
#if 1
	    printk("reset_for_srm: bus %d slot 0x%x "
		   "SRM IO restored to 0x%x\n",
		   dev->bus->number, PCI_SLOT(dev->devfn),
		   io_to_reset[i]);
#endif
}
 
	/* reset the visible screen to the top of display memory */
	scrreset();
}
#endif /* CONFIG_ALPHA_SRM_SETUP */
 
#endif /* CONFIG_PCI */
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.