OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [arch/] [i386/] [math-emu/] [reg_u_div.S] - Rev 1777

Go to most recent revision | Compare with Previous | Blame | View Log

        .file   "reg_u_div.S"
/*---------------------------------------------------------------------------+
 |  reg_u_div.S                                                              |
 |                                                                           |
 | Core division routines                                                    |
 |                                                                           |
 | Copyright (C) 1992,1993,1995                                              |
 |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      |
 |                       Australia.  E-mail billm@jacobi.maths.monash.edu.au |
 |                                                                           |
 |                                                                           |
 +---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------+
 |  Kernel for the division routines.                                        |
 |                                                                           |
 |  void reg_u_div(FPU_REG *a, FPU_REG *a,                                   |
 |                 FPU_REG *dest, unsigned int control_word)                 |
 |                                                                           |
 |  Does not compute the destination exponent, but does adjust it.           |
 +---------------------------------------------------------------------------*/

#include "exception.h"
#include "fpu_emu.h"
#include "control_w.h"


/* #define      dSIGL(x)        (x) */
/* #define      dSIGH(x)        4(x) */


#ifndef NON_REENTRANT_FPU
/*
        Local storage on the stack:
        Result:         FPU_accum_3:FPU_accum_2:FPU_accum_1:FPU_accum_0
        Overflow flag:  ovfl_flag
 */
#define FPU_accum_3     -4(%ebp)
#define FPU_accum_2     -8(%ebp)
#define FPU_accum_1     -12(%ebp)
#define FPU_accum_0     -16(%ebp)
#define FPU_result_1    -20(%ebp)
#define FPU_result_2    -24(%ebp)
#define FPU_ovfl_flag   -28(%ebp)

#else
.data
/*
        Local storage in a static area:
        Result:         FPU_accum_3:FPU_accum_2:FPU_accum_1:FPU_accum_0
        Overflow flag:  ovfl_flag
 */
        .align 2,0
FPU_accum_3:
        .long   0
FPU_accum_2:
        .long   0
FPU_accum_1:
        .long   0
FPU_accum_0:
        .long   0
FPU_result_1:
        .long   0
FPU_result_2:
        .long   0
FPU_ovfl_flag:
        .byte   0
#endif NON_REENTRANT_FPU


.text
ENTRY(reg_u_div)
        pushl   %ebp
        movl    %esp,%ebp
#ifndef NON_REENTRANT_FPU
        subl    $28,%esp
#endif NON_REENTRANT_FPU

        pushl   %esi
        pushl   %edi
        pushl   %ebx

        movl    PARAM1,%esi     /* pointer to num */
        movl    PARAM2,%ebx     /* pointer to denom */
        movl    PARAM3,%edi     /* pointer to answer */

#ifdef DENORM_OPERAND
        movl    EXP(%esi),%eax
        cmpl    EXP_UNDER,%eax
        jg      xOp1_not_denorm

        call    SYMBOL_NAME(denormal_operand)
        orl     %eax,%eax
        jnz     fpu_Arith_exit

xOp1_not_denorm:
        movl    EXP(%ebx),%eax
        cmpl    EXP_UNDER,%eax
        jg      xOp2_not_denorm

        call    SYMBOL_NAME(denormal_operand)
        orl     %eax,%eax
        jnz     fpu_Arith_exit

xOp2_not_denorm:
#endif DENORM_OPERAND

ENTRY(divide_kernel)
#ifdef PARANOID
/*      testl   $0x80000000, SIGH(%esi) // Dividend */
/*      je      L_bugged */
        testl   $0x80000000, SIGH(%ebx) /* Divisor */
        je      L_bugged
#endif PARANOID

/* Check if the divisor can be treated as having just 32 bits */
        cmpl    $0,SIGL(%ebx)
        jnz     L_Full_Division /* Can't do a quick divide */

/* We should be able to zip through the division here */
        movl    SIGH(%ebx),%ecx /* The divisor */
        movl    SIGH(%esi),%edx /* Dividend */
        movl    SIGL(%esi),%eax /* Dividend */

        cmpl    %ecx,%edx
        setaeb  FPU_ovfl_flag   /* Keep a record */
        jb      L_no_adjust

        subl    %ecx,%edx       /* Prevent the overflow */

L_no_adjust:
        /* Divide the 64 bit number by the 32 bit denominator */
        divl    %ecx
        movl    %eax,FPU_result_2

        /* Work on the remainder of the first division */
        xorl    %eax,%eax
        divl    %ecx
        movl    %eax,FPU_result_1

        /* Work on the remainder of the 64 bit division */
        xorl    %eax,%eax
        divl    %ecx

        testb   $255,FPU_ovfl_flag      /* was the num > denom ? */
        je      L_no_overflow

        /* Do the shifting here */
        /* increase the exponent */
        incl    EXP(%edi)

        /* shift the mantissa right one bit */
        stc                     /* To set the ms bit */
        rcrl    FPU_result_2
        rcrl    FPU_result_1
        rcrl    %eax

L_no_overflow:
        jmp     LRound_precision        /* Do the rounding as required */


/*---------------------------------------------------------------------------+
 |  Divide:   Return  arg1/arg2 to arg3.                                     |
 |                                                                           |
 |  This routine does not use the exponents of arg1 and arg2, but does       |
 |  adjust the exponent of arg3.                                             |
 |                                                                           |
 |  The maximum returned value is (ignoring exponents)                       |
 |               .ffffffff ffffffff                                          |
 |               ------------------  =  1.ffffffff fffffffe                  |
 |               .80000000 00000000                                          |
 | and the minimum is                                                        |
 |               .80000000 00000000                                          |
 |               ------------------  =  .80000000 00000001   (rounded)       |
 |               .ffffffff ffffffff                                          |
 |                                                                           |
 +---------------------------------------------------------------------------*/


L_Full_Division:
        /* Save extended dividend in local register */
        movl    SIGL(%esi),%eax
        movl    %eax,FPU_accum_2
        movl    SIGH(%esi),%eax
        movl    %eax,FPU_accum_3
        xorl    %eax,%eax
        movl    %eax,FPU_accum_1        /* zero the extension */
        movl    %eax,FPU_accum_0        /* zero the extension */

        movl    SIGL(%esi),%eax /* Get the current num */
        movl    SIGH(%esi),%edx

/*----------------------------------------------------------------------*/
/* Initialization done.
   Do the first 32 bits. */

        movb    $0,FPU_ovfl_flag
        cmpl    SIGH(%ebx),%edx /* Test for imminent overflow */
        jb      LLess_than_1
        ja      LGreater_than_1

        cmpl    SIGL(%ebx),%eax
        jb      LLess_than_1

LGreater_than_1:
/* The dividend is greater or equal, would cause overflow */
        setaeb  FPU_ovfl_flag           /* Keep a record */

        subl    SIGL(%ebx),%eax
        sbbl    SIGH(%ebx),%edx /* Prevent the overflow */
        movl    %eax,FPU_accum_2
        movl    %edx,FPU_accum_3

LLess_than_1:
/* At this point, we have a dividend < divisor, with a record of
   adjustment in FPU_ovfl_flag */

        /* We will divide by a number which is too large */
        movl    SIGH(%ebx),%ecx
        addl    $1,%ecx
        jnc     LFirst_div_not_1

        /* here we need to divide by 100000000h,
           i.e., no division at all.. */
        mov     %edx,%eax
        jmp     LFirst_div_done

LFirst_div_not_1:
        divl    %ecx            /* Divide the numerator by the augmented
                                   denom ms dw */

LFirst_div_done:
        movl    %eax,FPU_result_2       /* Put the result in the answer */

        mull    SIGH(%ebx)      /* mul by the ms dw of the denom */

        subl    %eax,FPU_accum_2        /* Subtract from the num local reg */
        sbbl    %edx,FPU_accum_3

        movl    FPU_result_2,%eax       /* Get the result back */
        mull    SIGL(%ebx)      /* now mul the ls dw of the denom */

        subl    %eax,FPU_accum_1        /* Subtract from the num local reg */
        sbbl    %edx,FPU_accum_2
        sbbl    $0,FPU_accum_3
        je      LDo_2nd_32_bits         /* Must check for non-zero result here */

#ifdef PARANOID
        jb      L_bugged_1
#endif PARANOID

        /* need to subtract another once of the denom */
        incl    FPU_result_2    /* Correct the answer */

        movl    SIGL(%ebx),%eax
        movl    SIGH(%ebx),%edx
        subl    %eax,FPU_accum_1        /* Subtract from the num local reg */
        sbbl    %edx,FPU_accum_2

#ifdef PARANOID
        sbbl    $0,FPU_accum_3
        jne     L_bugged_1      /* Must check for non-zero result here */
#endif PARANOID

/*----------------------------------------------------------------------*/
/* Half of the main problem is done, there is just a reduced numerator
   to handle now.
   Work with the second 32 bits, FPU_accum_0 not used from now on */
LDo_2nd_32_bits:
        movl    FPU_accum_2,%edx        /* get the reduced num */
        movl    FPU_accum_1,%eax

        /* need to check for possible subsequent overflow */
        cmpl    SIGH(%ebx),%edx
        jb      LDo_2nd_div
        ja      LPrevent_2nd_overflow

        cmpl    SIGL(%ebx),%eax
        jb      LDo_2nd_div

LPrevent_2nd_overflow:
/* The numerator is greater or equal, would cause overflow */
        /* prevent overflow */
        subl    SIGL(%ebx),%eax
        sbbl    SIGH(%ebx),%edx
        movl    %edx,FPU_accum_2
        movl    %eax,FPU_accum_1

        incl    FPU_result_2    /* Reflect the subtraction in the answer */

#ifdef PARANOID
        je      L_bugged_2      /* Can't bump the result to 1.0 */
#endif PARANOID

LDo_2nd_div:
        cmpl    $0,%ecx         /* augmented denom msw */
        jnz     LSecond_div_not_1

        /* %ecx == 0, we are dividing by 1.0 */
        mov     %edx,%eax
        jmp     LSecond_div_done

LSecond_div_not_1:
        divl    %ecx            /* Divide the numerator by the denom ms dw */

LSecond_div_done:
        movl    %eax,FPU_result_1       /* Put the result in the answer */

        mull    SIGH(%ebx)      /* mul by the ms dw of the denom */

        subl    %eax,FPU_accum_1        /* Subtract from the num local reg */
        sbbl    %edx,FPU_accum_2

#ifdef PARANOID
        jc      L_bugged_2
#endif PARANOID

        movl    FPU_result_1,%eax       /* Get the result back */
        mull    SIGL(%ebx)      /* now mul the ls dw of the denom */

        subl    %eax,FPU_accum_0        /* Subtract from the num local reg */
        sbbl    %edx,FPU_accum_1        /* Subtract from the num local reg */
        sbbl    $0,FPU_accum_2

#ifdef PARANOID
        jc      L_bugged_2
#endif PARANOID

        jz      LDo_3rd_32_bits

#ifdef PARANOID
        cmpl    $1,FPU_accum_2
        jne     L_bugged_2
#endif PARANOID

        /* need to subtract another once of the denom */
        movl    SIGL(%ebx),%eax
        movl    SIGH(%ebx),%edx
        subl    %eax,FPU_accum_0        /* Subtract from the num local reg */
        sbbl    %edx,FPU_accum_1
        sbbl    $0,FPU_accum_2

#ifdef PARANOID
        jc      L_bugged_2
        jne     L_bugged_2
#endif PARANOID

        addl    $1,FPU_result_1 /* Correct the answer */
        adcl    $0,FPU_result_2

#ifdef PARANOID
        jc      L_bugged_2      /* Must check for non-zero result here */
#endif PARANOID

/*----------------------------------------------------------------------*/
/* The division is essentially finished here, we just need to perform
   tidying operations.
   Deal with the 3rd 32 bits */
LDo_3rd_32_bits:
        movl    FPU_accum_1,%edx                /* get the reduced num */
        movl    FPU_accum_0,%eax

        /* need to check for possible subsequent overflow */
        cmpl    SIGH(%ebx),%edx /* denom */
        jb      LRound_prep
        ja      LPrevent_3rd_overflow

        cmpl    SIGL(%ebx),%eax /* denom */
        jb      LRound_prep

LPrevent_3rd_overflow:
        /* prevent overflow */
        subl    SIGL(%ebx),%eax
        sbbl    SIGH(%ebx),%edx
        movl    %edx,FPU_accum_1
        movl    %eax,FPU_accum_0

        addl    $1,FPU_result_1 /* Reflect the subtraction in the answer */
        adcl    $0,FPU_result_2
        jne     LRound_prep
        jnc     LRound_prep

        /* This is a tricky spot, there is an overflow of the answer */
        movb    $255,FPU_ovfl_flag              /* Overflow -> 1.000 */

LRound_prep:
/*
 * Prepare for rounding.
 * To test for rounding, we just need to compare 2*accum with the
 * denom.
 */
        movl    FPU_accum_0,%ecx
        movl    FPU_accum_1,%edx
        movl    %ecx,%eax
        orl     %edx,%eax
        jz      LRound_ovfl             /* The accumulator contains zero. */

        /* Multiply by 2 */
        clc
        rcll    $1,%ecx
        rcll    $1,%edx
        jc      LRound_large            /* No need to compare, denom smaller */

        subl    SIGL(%ebx),%ecx
        sbbl    SIGH(%ebx),%edx
        jnc     LRound_not_small

        movl    $0x70000000,%eax        /* Denom was larger */
        jmp     LRound_ovfl

LRound_not_small:
        jnz     LRound_large

        movl    $0x80000000,%eax        /* Remainder was exactly 1/2 denom */
        jmp     LRound_ovfl

LRound_large:
        movl    $0xff000000,%eax        /* Denom was smaller */

LRound_ovfl:
/* We are now ready to deal with rounding, but first we must get
   the bits properly aligned */
        testb   $255,FPU_ovfl_flag      /* was the num > denom ? */
        je      LRound_precision

        incl    EXP(%edi)

        /* shift the mantissa right one bit */
        stc                     /* Will set the ms bit */
        rcrl    FPU_result_2
        rcrl    FPU_result_1
        rcrl    %eax

/* Round the result as required */
LRound_precision:
        decl    EXP(%edi)       /* binary point between 1st & 2nd bits */

        movl    %eax,%edx
        movl    FPU_result_1,%ebx
        movl    FPU_result_2,%eax
        jmp     fpu_reg_round


#ifdef PARANOID
/* The logic is wrong if we got here */
L_bugged:
        pushl   EX_INTERNAL|0x202
        call    EXCEPTION
        pop     %ebx
        jmp     L_exit

L_bugged_1:
        pushl   EX_INTERNAL|0x203
        call    EXCEPTION
        pop     %ebx
        jmp     L_exit

L_bugged_2:
        pushl   EX_INTERNAL|0x204
        call    EXCEPTION
        pop     %ebx
        jmp     L_exit

L_exit:
        popl    %ebx
        popl    %edi
        popl    %esi

        leave
        ret
#endif PARANOID

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.