URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [arch/] [m68k/] [fpsp040/] [decbin.S] - Rev 1765
Compare with Previous | Blame | View Log
|| decbin.sa 3.3 12/19/90|| Description: Converts normalized packed bcd value pointed to by| register A6 to extended-precision value in FP0.|| Input: Normalized packed bcd value in ETEMP(a6).|| Output: Exact floating-point representation of the packed bcd value.|| Saves and Modifies: D2-D5|| Speed: The program decbin takes ??? cycles to execute.|| Object Size:|| External Reference(s): None.|| Algorithm:| Expected is a normal bcd (i.e. non-exceptional; all inf, zero,| and NaN operands are dispatched without entering this routine)| value in 68881/882 format at location ETEMP(A6).|| A1. Convert the bcd exponent to binary by successive adds and muls.| Set the sign according to SE. Subtract 16 to compensate| for the mantissa which is to be interpreted as 17 integer| digits, rather than 1 integer and 16 fraction digits.| Note: this operation can never overflow.|| A2. Convert the bcd mantissa to binary by successive| adds and muls in FP0. Set the sign according to SM.| The mantissa digits will be converted with the decimal point| assumed following the least-significant digit.| Note: this operation can never overflow.|| A3. Count the number of leading/trailing zeros in the| bcd string. If SE is positive, count the leading zeros;| if negative, count the trailing zeros. Set the adjusted| exponent equal to the exponent from A1 and the zero count| added if SM = 1 and subtracted if SM = 0. Scale the| mantissa the equivalent of forcing in the bcd value:|| SM = 0 a non-zero digit in the integer position| SM = 1 a non-zero digit in Mant0, lsd of the fraction|| this will insure that any value, regardless of its| representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted| consistently.|| A4. Calculate the factor 10^exp in FP1 using a table of| 10^(2^n) values. To reduce the error in forming factors| greater than 10^27, a directed rounding scheme is used with| tables rounded to RN, RM, and RP, according to the table| in the comments of the pwrten section.|| A5. Form the final binary number by scaling the mantissa by| the exponent factor. This is done by multiplying the| mantissa in FP0 by the factor in FP1 if the adjusted| exponent sign is positive, and dividing FP0 by FP1 if| it is negative.|| Clean up and return. Check if the final mul or div resulted| in an inex2 exception. If so, set inex1 in the fpsr and| check if the inex1 exception is enabled. If so, set d7 upper| word to $0100. This will signal unimp.sa that an enabled inex1| exception occurred. Unimp will fix the stack.|| Copyright (C) Motorola, Inc. 1990| All Rights Reserved|| THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA| The copyright notice above does not evidence any| actual or intended publication of such source code.|DECBIN idnt 2,1 | Motorola 040 Floating Point Software Package|section 8.include "fpsp.h"|| PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded| to nearest, minus, and plus, respectively. The tables include| 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding| is required until the power is greater than 27, however, all| tables include the first 5 for ease of indexing.||xref PTENRN|xref PTENRM|xref PTENRPRTABLE: .byte 0,0,0,0.byte 2,3,2,3.byte 2,3,3,2.byte 3,2,2,3.global decbin.global calc_e.global pwrten.global calc_m.global norm.global ap_st_z.global ap_st_n|.set FNIBS,7.set FSTRT,0|.set ESTRT,4.set EDIGITS,2 ||| Constants in single precisionFZERO: .long 0x00000000FONE: .long 0x3F800000FTEN: .long 0x41200000.set TEN,10|decbin:| fmovel #0,FPCR ;clr real fpcrmoveml %d2-%d5,-(%a7)|| Calculate exponent:| 1. Copy bcd value in memory for use as a working copy.| 2. Calculate absolute value of exponent in d1 by mul and add.| 3. Correct for exponent sign.| 4. Subtract 16 to compensate for interpreting the mant as all integer digits.| (i.e., all digits assumed left of the decimal point.)|| Register usage:|| calc_e:| (*) d0: temp digit storage| (*) d1: accumulator for binary exponent| (*) d2: digit count| (*) d3: offset pointer| ( ) d4: first word of bcd| ( ) a0: pointer to working bcd value| ( ) a6: pointer to original bcd value| (*) FP_SCR1: working copy of original bcd value| (*) L_SCR1: copy of original exponent word|calc_e:movel #EDIGITS,%d2 |# of nibbles (digits) in fraction partmoveql #ESTRT,%d3 |counter to pick up digitsleal FP_SCR1(%a6),%a0 |load tmp bcd storage addressmovel ETEMP(%a6),(%a0) |save input bcd valuemovel ETEMP_HI(%a6),4(%a0) |save words 2 and 3movel ETEMP_LO(%a6),8(%a0) |and work with thesemovel (%a0),%d4 |get first word of bcdclrl %d1 |zero d1 for accumulatore_gd:mulul #TEN,%d1 |mul partial product by one digit placebfextu %d4{%d3:#4},%d0 |get the digit and zero extend into d0addl %d0,%d1 |d1 = d1 + d0addqb #4,%d3 |advance d3 to the next digitdbf %d2,e_gd |if we have used all 3 digits, exit loopbtst #30,%d4 |get SEbeqs e_pos |don't negate if posnegl %d1 |negate before subtractinge_pos:subl #16,%d1 |sub to compensate for shift of mantbges e_save |if still pos, do not negnegl %d1 |now negative, make pos and set SEorl #0x40000000,%d4 |set SE in d4,orl #0x40000000,(%a0) |and in working bcde_save:movel %d1,L_SCR1(%a6) |save exp in memory||| Calculate mantissa:| 1. Calculate absolute value of mantissa in fp0 by mul and add.| 2. Correct for mantissa sign.| (i.e., all digits assumed left of the decimal point.)|| Register usage:|| calc_m:| (*) d0: temp digit storage| (*) d1: lword counter| (*) d2: digit count| (*) d3: offset pointer| ( ) d4: words 2 and 3 of bcd| ( ) a0: pointer to working bcd value| ( ) a6: pointer to original bcd value| (*) fp0: mantissa accumulator| ( ) FP_SCR1: working copy of original bcd value| ( ) L_SCR1: copy of original exponent word|calc_m:moveql #1,%d1 |word counter, init to 1fmoves FZERO,%fp0 |accumulator||| Since the packed number has a long word between the first & second parts,| get the integer digit then skip down & get the rest of the| mantissa. We will unroll the loop once.|bfextu (%a0){#28:#4},%d0 |integer part is ls digit in long wordfaddb %d0,%fp0 |add digit to sum in fp0||| Get the rest of the mantissa.|loadlw:movel (%a0,%d1.L*4),%d4 |load mantissa longword into d4moveql #FSTRT,%d3 |counter to pick up digitsmoveql #FNIBS,%d2 |reset number of digits per a0 ptrmd2b:fmuls FTEN,%fp0 |fp0 = fp0 * 10bfextu %d4{%d3:#4},%d0 |get the digit and zero extendfaddb %d0,%fp0 |fp0 = fp0 + digit||| If all the digits (8) in that long word have been converted (d2=0),| then inc d1 (=2) to point to the next long word and reset d3 to 0| to initialize the digit offset, and set d2 to 7 for the digit count;| else continue with this long word.|addqb #4,%d3 |advance d3 to the next digitdbf %d2,md2b |check for last digit in this lwnextlw:addql #1,%d1 |inc lw pointer in mantissacmpl #2,%d1 |test for last lwble loadlw |if not, get last one|| Check the sign of the mant and make the value in fp0 the same sign.|m_sign:btst #31,(%a0) |test sign of the mantissabeqs ap_st_z |if clear, go to append/strip zerosfnegx %fp0 |if set, negate fp0|| Append/strip zeros:|| For adjusted exponents which have an absolute value greater than 27*,| this routine calculates the amount needed to normalize the mantissa| for the adjusted exponent. That number is subtracted from the exp| if the exp was positive, and added if it was negative. The purpose| of this is to reduce the value of the exponent and the possibility| of error in calculation of pwrten.|| 1. Branch on the sign of the adjusted exponent.| 2p.(positive exp)| 2. Check M16 and the digits in lwords 2 and 3 in descending order.| 3. Add one for each zero encountered until a non-zero digit.| 4. Subtract the count from the exp.| 5. Check if the exp has crossed zero in #3 above; make the exp abs| and set SE.| 6. Multiply the mantissa by 10**count.| 2n.(negative exp)| 2. Check the digits in lwords 3 and 2 in descending order.| 3. Add one for each zero encountered until a non-zero digit.| 4. Add the count to the exp.| 5. Check if the exp has crossed zero in #3 above; clear SE.| 6. Divide the mantissa by 10**count.|| *Why 27? If the adjusted exponent is within -28 < expA < 28, than| any adjustment due to append/strip zeros will drive the resultant| exponent towards zero. Since all pwrten constants with a power| of 27 or less are exact, there is no need to use this routine to| attempt to lessen the resultant exponent.|| Register usage:|| ap_st_z:| (*) d0: temp digit storage| (*) d1: zero count| (*) d2: digit count| (*) d3: offset pointer| ( ) d4: first word of bcd| (*) d5: lword counter| ( ) a0: pointer to working bcd value| ( ) FP_SCR1: working copy of original bcd value| ( ) L_SCR1: copy of original exponent word||| First check the absolute value of the exponent to see if this| routine is necessary. If so, then check the sign of the exponent| and do append (+) or strip (-) zeros accordingly.| This section handles a positive adjusted exponent.|ap_st_z:movel L_SCR1(%a6),%d1 |load expA for range testcmpl #27,%d1 |test is with 27ble pwrten |if abs(expA) <28, skip ap/st zerosbtst #30,(%a0) |check sign of expbnes ap_st_n |if neg, go to neg sideclrl %d1 |zero count regmovel (%a0),%d4 |load lword 1 to d4bfextu %d4{#28:#4},%d0 |get M16 in d0bnes ap_p_fx |if M16 is non-zero, go fix expaddql #1,%d1 |inc zero countmoveql #1,%d5 |init lword countermovel (%a0,%d5.L*4),%d4 |get lword 2 to d4bnes ap_p_cl |if lw 2 is zero, skip itaddql #8,%d1 |and inc count by 8addql #1,%d5 |inc lword countermovel (%a0,%d5.L*4),%d4 |get lword 3 to d4ap_p_cl:clrl %d3 |init offset regmoveql #7,%d2 |init digit counterap_p_gd:bfextu %d4{%d3:#4},%d0 |get digitbnes ap_p_fx |if non-zero, go to fix expaddql #4,%d3 |point to next digitaddql #1,%d1 |inc digit counterdbf %d2,ap_p_gd |get next digitap_p_fx:movel %d1,%d0 |copy counter to d2movel L_SCR1(%a6),%d1 |get adjusted exp from memorysubl %d0,%d1 |subtract count from expbges ap_p_fm |if still pos, go to pwrtennegl %d1 |now its neg; get absmovel (%a0),%d4 |load lword 1 to d4orl #0x40000000,%d4 | and set SE in d4orl #0x40000000,(%a0) | and in memory|| Calculate the mantissa multiplier to compensate for the striping of| zeros from the mantissa.|ap_p_fm:movel #PTENRN,%a1 |get address of power-of-ten tableclrl %d3 |init table indexfmoves FONE,%fp1 |init fp1 to 1moveql #3,%d2 |init d2 to count bits in counterap_p_el:asrl #1,%d0 |shift lsb into carrybccs ap_p_en |if 1, mul fp1 by pwrten factorfmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no)ap_p_en:addl #12,%d3 |inc d3 to next rtable entrytstl %d0 |check if d0 is zerobnes ap_p_el |if not, get next bitfmulx %fp1,%fp0 |mul mantissa by 10**(no_bits_shifted)bras pwrten |go calc pwrten|| This section handles a negative adjusted exponent.|ap_st_n:clrl %d1 |clr countermoveql #2,%d5 |set up d5 to point to lword 3movel (%a0,%d5.L*4),%d4 |get lword 3bnes ap_n_cl |if not zero, check digitssubl #1,%d5 |dec d5 to point to lword 2addql #8,%d1 |inc counter by 8movel (%a0,%d5.L*4),%d4 |get lword 2ap_n_cl:movel #28,%d3 |point to last digitmoveql #7,%d2 |init digit counterap_n_gd:bfextu %d4{%d3:#4},%d0 |get digitbnes ap_n_fx |if non-zero, go to exp fixsubql #4,%d3 |point to previous digitaddql #1,%d1 |inc digit counterdbf %d2,ap_n_gd |get next digitap_n_fx:movel %d1,%d0 |copy counter to d0movel L_SCR1(%a6),%d1 |get adjusted exp from memorysubl %d0,%d1 |subtract count from expbgts ap_n_fm |if still pos, go fix mantissanegl %d1 |take abs of exp and clr SEmovel (%a0),%d4 |load lword 1 to d4andl #0xbfffffff,%d4 | and clr SE in d4andl #0xbfffffff,(%a0) | and in memory|| Calculate the mantissa multiplier to compensate for the appending of| zeros to the mantissa.|ap_n_fm:movel #PTENRN,%a1 |get address of power-of-ten tableclrl %d3 |init table indexfmoves FONE,%fp1 |init fp1 to 1moveql #3,%d2 |init d2 to count bits in counterap_n_el:asrl #1,%d0 |shift lsb into carrybccs ap_n_en |if 1, mul fp1 by pwrten factorfmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no)ap_n_en:addl #12,%d3 |inc d3 to next rtable entrytstl %d0 |check if d0 is zerobnes ap_n_el |if not, get next bitfdivx %fp1,%fp0 |div mantissa by 10**(no_bits_shifted)||| Calculate power-of-ten factor from adjusted and shifted exponent.|| Register usage:|| pwrten:| (*) d0: temp| ( ) d1: exponent| (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp| (*) d3: FPCR work copy| ( ) d4: first word of bcd| (*) a1: RTABLE pointer| calc_p:| (*) d0: temp| ( ) d1: exponent| (*) d3: PWRTxx table index| ( ) a0: pointer to working copy of bcd| (*) a1: PWRTxx pointer| (*) fp1: power-of-ten accumulator|| Pwrten calculates the exponent factor in the selected rounding mode| according to the following table:|| Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode|| ANY ANY RN RN|| + + RP RP| - + RP RM| + - RP RM| - - RP RP|| + + RM RM| - + RM RP| + - RM RP| - - RM RM|| + + RZ RM| - + RZ RM| + - RZ RP| - - RZ RP||pwrten:movel USER_FPCR(%a6),%d3 |get user's FPCRbfextu %d3{#26:#2},%d2 |isolate rounding mode bitsmovel (%a0),%d4 |reload 1st bcd word to d4asll #2,%d2 |format d2 to bebfextu %d4{#0:#2},%d0 | {FPCR[6],FPCR[5],SM,SE}addl %d0,%d2 |in d2 as index into RTABLEleal RTABLE,%a1 |load rtable basemoveb (%a1,%d2),%d0 |load new rounding bits from tableclrl %d3 |clear d3 to force no exc and extendedbfins %d0,%d3{#26:#2} |stuff new rounding bits in FPCRfmovel %d3,%FPCR |write new FPCRasrl #1,%d0 |write correct PTENxx tablebccs not_rp |to a1leal PTENRP,%a1 |it is RPbras calc_p |go to init sectionnot_rp:asrl #1,%d0 |keep checkingbccs not_rmleal PTENRM,%a1 |it is RMbras calc_p |go to init sectionnot_rm:leal PTENRN,%a1 |it is RNcalc_p:movel %d1,%d0 |copy exp to d0;use d0bpls no_neg |if exp is negative,negl %d0 |invert itorl #0x40000000,(%a0) |and set SE bitno_neg:clrl %d3 |table indexfmoves FONE,%fp1 |init fp1 to 1e_loop:asrl #1,%d0 |shift next bit into carrybccs e_next |if zero, skip the mulfmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no)e_next:addl #12,%d3 |inc d3 to next rtable entrytstl %d0 |check if d0 is zerobnes e_loop |not zero, continue shifting||| Check the sign of the adjusted exp and make the value in fp0 the| same sign. If the exp was pos then multiply fp1*fp0;| else divide fp0/fp1.|| Register Usage:| norm:| ( ) a0: pointer to working bcd value| (*) fp0: mantissa accumulator| ( ) fp1: scaling factor - 10**(abs(exp))|norm:btst #30,(%a0) |test the sign of the exponentbeqs mul |if clear, go to multiplydiv:fdivx %fp1,%fp0 |exp is negative, so divide mant by expbras end_decmul:fmulx %fp1,%fp0 |exp is positive, so multiply by exp||| Clean up and return with result in fp0.|| If the final mul/div in decbin incurred an inex exception,| it will be inex2, but will be reported as inex1 by get_op.|end_dec:fmovel %FPSR,%d0 |get status registerbclrl #inex2_bit+8,%d0 |test for inex2 and clear itfmovel %d0,%FPSR |return status reg w/o inex2beqs no_exc |skip this if no excorl #inx1a_mask,USER_FPSR(%a6) |set inex1/ainexno_exc:moveml (%a7)+,%d2-%d5rts|end
