URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [arch/] [m68k/] [fpsp040/] [stanh.S] - Rev 1765
Compare with Previous | Blame | View Log
|| stanh.sa 3.1 12/10/90|| The entry point sTanh computes the hyperbolic tangent of| an input argument; sTanhd does the same except for denormalized| input.|| Input: Double-extended number X in location pointed to| by address register a0.|| Output: The value tanh(X) returned in floating-point register Fp0.|| Accuracy and Monotonicity: The returned result is within 3 ulps in| 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the| result is subsequently rounded to double precision. The| result is provably monotonic in double precision.|| Speed: The program stanh takes approximately 270 cycles.|| Algorithm:|| TANH| 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3.|| 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by| sgn := sign(X), y := 2|X|, z := expm1(Y), and| tanh(X) = sgn*( z/(2+z) ).| Exit.|| 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1,| go to 7.|| 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6.|| 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by| sgn := sign(X), y := 2|X|, z := exp(Y),| tanh(X) = sgn - [ sgn*2/(1+z) ].| Exit.|| 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we| calculate Tanh(X) by| sgn := sign(X), Tiny := 2**(-126),| tanh(X) := sgn - sgn*Tiny.| Exit.|| 7. (|X| < 2**(-40)). Tanh(X) = X. Exit.|| Copyright (C) Motorola, Inc. 1990| All Rights Reserved|| THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA| The copyright notice above does not evidence any| actual or intended publication of such source code.|STANH idnt 2,1 | Motorola 040 Floating Point Software Package|section 8.include "fpsp.h".set X,FP_SCR5.set XDCARE,X+2.set XFRAC,X+4.set SGN,L_SCR3.set V,FP_SCR6BOUNDS1: .long 0x3FD78000,0x3FFFDDCE | ... 2^(-40), (5/2)LOG2|xref t_frcinx|xref t_extdnrm|xref setox|xref setoxm1.global stanhdstanhd:|--TANH(X) = X FOR DENORMALIZED Xbra t_extdnrm.global stanhstanh:fmovex (%a0),%fp0 | ...LOAD INPUTfmovex %fp0,X(%a6)movel (%a0),%d0movew 4(%a0),%d0movel %d0,X(%a6)andl #0x7FFFFFFF,%d0cmp2l BOUNDS1(%pc),%d0 | ...2**(-40) < |X| < (5/2)LOG2 ?bcss TANHBORS|--THIS IS THE USUAL CASE|--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2).movel X(%a6),%d0movel %d0,SGN(%a6)andl #0x7FFF0000,%d0addl #0x00010000,%d0 | ...EXPONENT OF 2|X|movel %d0,X(%a6)andl #0x80000000,SGN(%a6)fmovex X(%a6),%fp0 | ...FP0 IS Y = 2|X|movel %d1,-(%a7)clrl %d1fmovemx %fp0-%fp0,(%a0)bsr setoxm1 | ...FP0 IS Z = EXPM1(Y)movel (%a7)+,%d1fmovex %fp0,%fp1fadds #0x40000000,%fp1 | ...Z+2movel SGN(%a6),%d0fmovex %fp1,V(%a6)eorl %d0,V(%a6)fmovel %d1,%FPCR |restore users exceptionsfdivx V(%a6),%fp0bra t_frcinxTANHBORS:cmpl #0x3FFF8000,%d0blt TANHSMcmpl #0x40048AA1,%d0bgt TANHHUGE|-- (5/2) LOG2 < |X| < 50 LOG2,|--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X),|--TANH(X) = SGN - SGN*2/[EXP(Y)+1].movel X(%a6),%d0movel %d0,SGN(%a6)andl #0x7FFF0000,%d0addl #0x00010000,%d0 | ...EXPO OF 2|X|movel %d0,X(%a6) | ...Y = 2|X|andl #0x80000000,SGN(%a6)movel SGN(%a6),%d0fmovex X(%a6),%fp0 | ...Y = 2|X|movel %d1,-(%a7)clrl %d1fmovemx %fp0-%fp0,(%a0)bsr setox | ...FP0 IS EXP(Y)movel (%a7)+,%d1movel SGN(%a6),%d0fadds #0x3F800000,%fp0 | ...EXP(Y)+1eorl #0xC0000000,%d0 | ...-SIGN(X)*2fmoves %d0,%fp1 | ...-SIGN(X)*2 IN SGL FMTfdivx %fp0,%fp1 | ...-SIGN(X)2 / [EXP(Y)+1 ]movel SGN(%a6),%d0orl #0x3F800000,%d0 | ...SGNfmoves %d0,%fp0 | ...SGN IN SGL FMTfmovel %d1,%FPCR |restore users exceptionsfaddx %fp1,%fp0bra t_frcinxTANHSM:movew #0x0000,XDCARE(%a6)fmovel %d1,%FPCR |restore users exceptionsfmovex X(%a6),%fp0 |last inst - possible exception setbra t_frcinxTANHHUGE:|---RETURN SGN(X) - SGN(X)EPSmovel X(%a6),%d0andl #0x80000000,%d0orl #0x3F800000,%d0fmoves %d0,%fp0andl #0x80000000,%d0eorl #0x80800000,%d0 | ...-SIGN(X)*EPSfmovel %d1,%FPCR |restore users exceptionsfadds %d0,%fp0bra t_frcinx|end
