URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [arch/] [sparc/] [mm/] [sun4c.c] - Rev 1765
Compare with Previous | Blame | View Log
/* sun4c.c: Doing in software what should be done in hardware. * * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu) */ #include <linux/kernel.h> #include <linux/mm.h> #include <asm/page.h> #include <asm/pgtable.h> #include <asm/vaddrs.h> #include <asm/idprom.h> #include <asm/machines.h> #include <asm/memreg.h> #include <asm/processor.h> extern int num_segmaps, num_contexts; /* Flushing the cache. */ struct sun4c_vac_props sun4c_vacinfo; static int ctxflushes, segflushes, pageflushes; /* convert a virtual address to a physical address and vice versa. Easy on the 4c */ static unsigned long sun4c_v2p(unsigned long vaddr) { return(vaddr - PAGE_OFFSET); } static unsigned long sun4c_p2v(unsigned long vaddr) { return(vaddr + PAGE_OFFSET); } /* Invalidate every sun4c cache line tag. */ void sun4c_flush_all(void) { unsigned long begin, end; if(sun4c_vacinfo.on) panic("SUN4C: AIEEE, trying to invalidate vac while" " it is on."); /* Clear 'valid' bit in all cache line tags */ begin = AC_CACHETAGS; end = (AC_CACHETAGS + sun4c_vacinfo.num_bytes); while(begin < end) { __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : "r" (begin), "i" (ASI_CONTROL)); begin += sun4c_vacinfo.linesize; } } /* Blow the entire current context out of the virtual cache. */ static inline void sun4c_flush_context(void) { unsigned long vaddr; ctxflushes++; if(sun4c_vacinfo.do_hwflushes) { for(vaddr=0; vaddr < sun4c_vacinfo.num_bytes; vaddr+=PAGE_SIZE) __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : "r" (vaddr), "i" (ASI_HWFLUSHCONTEXT)); } else { int incr = sun4c_vacinfo.linesize; for(vaddr=0; vaddr < sun4c_vacinfo.num_bytes; vaddr+=incr) __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : "r" (vaddr), "i" (ASI_FLUSHCTX)); } } /* Scrape the segment starting at ADDR from the virtual cache. */ static inline void sun4c_flush_segment(unsigned long addr) { unsigned long end; segflushes++; addr &= SUN4C_REAL_PGDIR_MASK; end = (addr + sun4c_vacinfo.num_bytes); if(sun4c_vacinfo.do_hwflushes) { for( ; addr < end; addr += PAGE_SIZE) __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : "r" (addr), "i" (ASI_HWFLUSHSEG)); } else { int incr = sun4c_vacinfo.linesize; for( ; addr < end; addr += incr) __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : "r" (addr), "i" (ASI_FLUSHSEG)); } } /* Bolix one page from the virtual cache. */ static inline void sun4c_flush_page(unsigned long addr) { addr &= PAGE_MASK; pageflushes++; if(sun4c_vacinfo.do_hwflushes) { __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : "r" (addr), "i" (ASI_HWFLUSHPAGE)); } else { unsigned long end = addr + PAGE_SIZE; int incr = sun4c_vacinfo.linesize; for( ; addr < end; addr += incr) __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : "r" (addr), "i" (ASI_FLUSHPG)); } } /* The sun4c's do have an on chip store buffer. And the way you * clear them out isn't so obvious. The only way I can think of * to accomplish this is to read the current context register, * store the same value there, then do a bunch of nops for the * pipeline to clear itself completely. This is only used for * dealing with memory errors, so it is not that critical. */ void sun4c_complete_all_stores(void) { volatile int _unused; _unused = sun4c_get_context(); sun4c_set_context(_unused); nop(); nop(); nop(); nop(); nop(); nop(); nop(); nop(); /* Is that enough? */ } /* Bootup utility functions. */ static inline void sun4c_init_clean_segmap(unsigned char pseg) { unsigned long vaddr; sun4c_put_segmap(0, pseg); for(vaddr = 0; vaddr < SUN4C_REAL_PGDIR_SIZE; vaddr+=PAGE_SIZE) sun4c_put_pte(vaddr, 0); sun4c_put_segmap(0, invalid_segment); } static inline void sun4c_init_clean_mmu(unsigned long kernel_end) { unsigned long vaddr; unsigned char savectx, ctx; savectx = sun4c_get_context(); kernel_end = SUN4C_REAL_PGDIR_ALIGN(kernel_end); for(ctx = 0; ctx < num_contexts; ctx++) { sun4c_set_context(ctx); for(vaddr = 0; vaddr < 0x20000000; vaddr += SUN4C_REAL_PGDIR_SIZE) sun4c_put_segmap(vaddr, invalid_segment); for(vaddr = 0xe0000000; vaddr < KERNBASE; vaddr += SUN4C_REAL_PGDIR_SIZE) sun4c_put_segmap(vaddr, invalid_segment); for(vaddr = kernel_end; vaddr < KADB_DEBUGGER_BEGVM; vaddr += SUN4C_REAL_PGDIR_SIZE) sun4c_put_segmap(vaddr, invalid_segment); for(vaddr = LINUX_OPPROM_ENDVM; vaddr; vaddr += SUN4C_REAL_PGDIR_SIZE) sun4c_put_segmap(vaddr, invalid_segment); } sun4c_set_context(ctx); } void sun4c_probe_vac(void) { int propval; sun4c_disable_vac(); sun4c_vacinfo.num_bytes = prom_getintdefault(prom_root_node, "vac-size", 65536); sun4c_vacinfo.linesize = prom_getintdefault(prom_root_node, "vac-linesize", 16); sun4c_vacinfo.num_lines = (sun4c_vacinfo.num_bytes / sun4c_vacinfo.linesize); switch(sun4c_vacinfo.linesize) { case 16: sun4c_vacinfo.log2lsize = 4; break; case 32: sun4c_vacinfo.log2lsize = 5; break; default: prom_printf("probe_vac: Didn't expect vac-linesize of %d, halting\n", sun4c_vacinfo.linesize); prom_halt(); }; propval = prom_getintdefault(prom_root_node, "vac_hwflush", -1); sun4c_vacinfo.do_hwflushes = (propval == -1 ? prom_getintdefault(prom_root_node, "vac-hwflush", 0) : propval); if(sun4c_vacinfo.num_bytes != 65536) { prom_printf("WEIRD Sun4C VAC cache size, tell davem"); prom_halt(); } sun4c_flush_all(); sun4c_enable_vac(); } static void sun4c_probe_mmu(void) { num_segmaps = prom_getintdefault(prom_root_node, "mmu-npmg", 128); num_contexts = prom_getintdefault(prom_root_node, "mmu-nctx", 0x8); } static inline void sun4c_init_ss2_cache_bug(void) { extern unsigned long start; if(idprom->id_machtype == (SM_SUN4C | SM_4C_SS2)) { /* Whee.. */ printk("SS2 cache bug detected, uncaching trap table page\n"); sun4c_flush_page((unsigned int) &start); sun4c_put_pte(((unsigned long) &start), (sun4c_get_pte((unsigned long) &start) | _SUN4C_PAGE_NOCACHE)); } } static inline unsigned long sun4c_init_alloc_dvma_pages(unsigned long start_mem) { unsigned long addr, pte; for(addr = DVMA_VADDR; addr < DVMA_END; addr += PAGE_SIZE) { pte = (start_mem - PAGE_OFFSET) >> PAGE_SHIFT; pte |= (_SUN4C_PAGE_VALID | _SUN4C_PAGE_WRITE | _SUN4C_PAGE_NOCACHE); sun4c_put_pte(addr, pte); start_mem += PAGE_SIZE; } return start_mem; } /* TLB management. */ struct sun4c_mmu_entry { struct sun4c_mmu_entry *next; struct sun4c_mmu_entry *prev; unsigned long vaddr; unsigned char pseg; unsigned char locked; }; static struct sun4c_mmu_entry mmu_entry_pool[256]; static void sun4c_init_mmu_entry_pool(void) { int i; for(i=0; i < 256; i++) { mmu_entry_pool[i].pseg = i; mmu_entry_pool[i].next = 0; mmu_entry_pool[i].prev = 0; mmu_entry_pool[i].vaddr = 0; mmu_entry_pool[i].locked = 0; } mmu_entry_pool[invalid_segment].locked = 1; } static inline void fix_permissions(unsigned long vaddr, unsigned long bits_on, unsigned long bits_off) { unsigned long start, end; end = vaddr + SUN4C_REAL_PGDIR_SIZE; for(start = vaddr; start < end; start += PAGE_SIZE) if(sun4c_get_pte(start) & _SUN4C_PAGE_VALID) sun4c_put_pte(start, (sun4c_get_pte(start) | bits_on) & ~bits_off); } static inline void sun4c_init_map_kernelprom(unsigned long kernel_end) { unsigned long vaddr; unsigned char pseg, ctx; for(vaddr = KADB_DEBUGGER_BEGVM; vaddr < LINUX_OPPROM_ENDVM; vaddr += SUN4C_REAL_PGDIR_SIZE) { pseg = sun4c_get_segmap(vaddr); if(pseg != invalid_segment) { mmu_entry_pool[pseg].locked = 1; for(ctx = 0; ctx < num_contexts; ctx++) prom_putsegment(ctx, vaddr, pseg); fix_permissions(vaddr, _SUN4C_PAGE_PRIV, 0); } } for(vaddr = KERNBASE; vaddr < kernel_end; vaddr += SUN4C_REAL_PGDIR_SIZE) { pseg = sun4c_get_segmap(vaddr); mmu_entry_pool[pseg].locked = 1; for(ctx = 0; ctx < num_contexts; ctx++) prom_putsegment(ctx, vaddr, pseg); fix_permissions(vaddr, _SUN4C_PAGE_PRIV, _SUN4C_PAGE_NOCACHE); } } static void sun4c_init_lock_area(unsigned long start, unsigned long end) { int i, ctx; while(start < end) { for(i=0; i < invalid_segment; i++) if(!mmu_entry_pool[i].locked) break; mmu_entry_pool[i].locked = 1; sun4c_init_clean_segmap(i); for(ctx = 0; ctx < num_contexts; ctx++) prom_putsegment(ctx, start, mmu_entry_pool[i].pseg); start += SUN4C_REAL_PGDIR_SIZE; } } struct sun4c_mmu_ring { struct sun4c_mmu_entry ringhd; int num_entries; }; static struct sun4c_mmu_ring sun4c_context_ring[16]; /* used user entries */ static struct sun4c_mmu_ring sun4c_ufree_ring; /* free user entries */ static struct sun4c_mmu_ring sun4c_kernel_ring; /* used kernel entries */ static struct sun4c_mmu_ring sun4c_kfree_ring; /* free kernel entries */ static inline void sun4c_init_rings(void) { int i; for(i=0; i<16; i++) { sun4c_context_ring[i].ringhd.next = sun4c_context_ring[i].ringhd.prev = &sun4c_context_ring[i].ringhd; sun4c_context_ring[i].num_entries = 0; } sun4c_ufree_ring.ringhd.next = sun4c_ufree_ring.ringhd.prev = &sun4c_ufree_ring.ringhd; sun4c_kernel_ring.ringhd.next = sun4c_kernel_ring.ringhd.prev = &sun4c_kernel_ring.ringhd; sun4c_kfree_ring.ringhd.next = sun4c_kfree_ring.ringhd.prev = &sun4c_kfree_ring.ringhd; sun4c_ufree_ring.num_entries = sun4c_kernel_ring.num_entries = sun4c_kfree_ring.num_entries = 0; } static inline void add_ring(struct sun4c_mmu_ring *ring, struct sun4c_mmu_entry *entry) { struct sun4c_mmu_entry *head = &ring->ringhd; entry->prev = head; (entry->next = head->next)->prev = entry; head->next = entry; ring->num_entries++; } static inline void remove_ring(struct sun4c_mmu_ring *ring, struct sun4c_mmu_entry *entry) { struct sun4c_mmu_entry *next = entry->next; (next->prev = entry->prev)->next = next; ring->num_entries--; } static inline void recycle_ring(struct sun4c_mmu_ring *ring, struct sun4c_mmu_entry *entry) { struct sun4c_mmu_entry *head = &ring->ringhd; struct sun4c_mmu_entry *next = entry->next; (next->prev = entry->prev)->next = next; entry->prev = head; (entry->next = head->next)->prev = entry; head->next = entry; /* num_entries stays the same */ } static inline void free_user_entry(int ctx, struct sun4c_mmu_entry *entry) { remove_ring(sun4c_context_ring+ctx, entry); add_ring(&sun4c_ufree_ring, entry); } static inline void assign_user_entry(int ctx, struct sun4c_mmu_entry *entry) { remove_ring(&sun4c_ufree_ring, entry); add_ring(sun4c_context_ring+ctx, entry); } static inline void free_kernel_entry(struct sun4c_mmu_entry *entry, struct sun4c_mmu_ring *ring) { remove_ring(ring, entry); add_ring(&sun4c_kfree_ring, entry); } static inline void assign_kernel_entry(struct sun4c_mmu_entry *entry, struct sun4c_mmu_ring *ring) { remove_ring(ring, entry); add_ring(&sun4c_kernel_ring, entry); } static inline void reassign_kernel_entry(struct sun4c_mmu_entry *entry) { recycle_ring(&sun4c_kernel_ring, entry); } static void sun4c_init_fill_kernel_ring(int howmany) { int i; while(howmany) { for(i=0; i < invalid_segment; i++) if(!mmu_entry_pool[i].locked) break; mmu_entry_pool[i].locked = 1; sun4c_init_clean_segmap(i); add_ring(&sun4c_kfree_ring, &mmu_entry_pool[i]); howmany--; } } static void sun4c_init_fill_user_ring(void) { int i; for(i=0; i < invalid_segment; i++) { if(mmu_entry_pool[i].locked) continue; sun4c_init_clean_segmap(i); add_ring(&sun4c_ufree_ring, &mmu_entry_pool[i]); } } static inline void sun4c_kernel_unmap(struct sun4c_mmu_entry *kentry) { int savectx, ctx; savectx = sun4c_get_context(); flush_user_windows(); sun4c_flush_segment(kentry->vaddr); for(ctx = 0; ctx < num_contexts; ctx++) { sun4c_set_context(ctx); sun4c_put_segmap(kentry->vaddr, invalid_segment); } sun4c_set_context(savectx); } static inline void sun4c_kernel_map(struct sun4c_mmu_entry *kentry) { int savectx, ctx; savectx = sun4c_get_context(); flush_user_windows(); for(ctx = 0; ctx < num_contexts; ctx++) { sun4c_set_context(ctx); sun4c_put_segmap(kentry->vaddr, kentry->pseg); } sun4c_set_context(savectx); } static inline void sun4c_user_unmap(struct sun4c_mmu_entry *uentry) { sun4c_flush_segment(uentry->vaddr); sun4c_put_segmap(uentry->vaddr, invalid_segment); } static inline void sun4c_user_map(struct sun4c_mmu_entry *uentry) { unsigned long start = uentry->vaddr; unsigned long end = start + SUN4C_REAL_PGDIR_SIZE; sun4c_put_segmap(uentry->vaddr, uentry->pseg); while(start < end) { sun4c_put_pte(start, 0); start += PAGE_SIZE; } } static inline void sun4c_demap_context(struct sun4c_mmu_ring *crp, unsigned char ctx) { struct sun4c_mmu_entry *this_entry, *next_entry; int savectx = sun4c_get_context(); this_entry = crp->ringhd.next; flush_user_windows(); sun4c_set_context(ctx); while(crp->num_entries) { next_entry = this_entry->next; sun4c_user_unmap(this_entry); free_user_entry(ctx, this_entry); this_entry = next_entry; } sun4c_set_context(savectx); } static inline void sun4c_demap_one(struct sun4c_mmu_ring *crp, unsigned char ctx) { struct sun4c_mmu_entry *entry = crp->ringhd.next; int savectx = sun4c_get_context(); flush_user_windows(); sun4c_set_context(ctx); sun4c_user_unmap(entry); free_user_entry(ctx, entry); sun4c_set_context(savectx); } /* Using this method to free up mmu entries eliminates a lot of * potential races since we have a kernel that incurs tlb * replacement faults. There may be performance penalties. */ static inline struct sun4c_mmu_entry *sun4c_user_strategy(void) { struct sun4c_mmu_ring *rp = 0; unsigned char mmuhog, i, ctx = 0; /* If some are free, return first one. */ if(sun4c_ufree_ring.num_entries) return sun4c_ufree_ring.ringhd.next; /* Else free one up. */ mmuhog = 0; for(i=0; i < num_contexts; i++) { if(sun4c_context_ring[i].num_entries > mmuhog) { rp = &sun4c_context_ring[i]; mmuhog = rp->num_entries; ctx = i; } } sun4c_demap_one(rp, ctx); return sun4c_ufree_ring.ringhd.next; } static inline struct sun4c_mmu_entry *sun4c_kernel_strategy(void) { struct sun4c_mmu_entry *this_entry; /* If some are free, return first one. */ if(sun4c_kfree_ring.num_entries) return sun4c_kfree_ring.ringhd.next; /* Else free one up. */ this_entry = sun4c_kernel_ring.ringhd.prev; sun4c_kernel_unmap(this_entry); free_kernel_entry(this_entry, &sun4c_kernel_ring); return sun4c_kfree_ring.ringhd.next; } static inline void alloc_user_segment(unsigned long address, unsigned char ctx) { struct sun4c_mmu_entry *entry; address &= SUN4C_REAL_PGDIR_MASK; entry = sun4c_user_strategy(); assign_user_entry(ctx, entry); entry->vaddr = address; sun4c_user_map(entry); } static inline void alloc_kernel_segment(unsigned long address) { struct sun4c_mmu_entry *entry; address &= SUN4C_REAL_PGDIR_MASK; entry = sun4c_kernel_strategy(); assign_kernel_entry(entry, &sun4c_kfree_ring); entry->vaddr = address; sun4c_kernel_map(entry); } /* XXX Just like kernel tlb replacement we'd like to have a low level * XXX equivalent for user faults which need not go through the mm * XXX subsystem just to load a mmu entry. But this might not be as * XXX feasible since we need to go through the kernel page tables * XXX for this process, which we currently don't lock into the mmu * XXX so we would fault with traps off... must think about this... */ static void sun4c_update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte) { unsigned long flags; save_flags(flags); cli(); address &= PAGE_MASK; if(sun4c_get_segmap(address) == invalid_segment) alloc_user_segment(address, sun4c_get_context()); sun4c_put_pte(address, pte_val(pte)); restore_flags(flags); } /* READ THIS: If you put any diagnostic printing code in any of the kernel * fault handling code you will lose badly. This is the most * delicate piece of code in the entire kernel, atomicity of * kernel tlb replacement must be guaranteed. This is why we * have separate user and kernel allocation rings to alleviate * as many bad interactions as possible. * * XXX Someday make this into a fast in-window trap handler to avoid * XXX any and all races. *High* priority, also for performance. */ static void sun4c_quick_kernel_fault(unsigned long address) { unsigned long end, flags; save_flags(flags); cli(); address &= SUN4C_REAL_PGDIR_MASK; end = address + SUN4C_REAL_PGDIR_SIZE; if(sun4c_get_segmap(address) == invalid_segment) alloc_kernel_segment(address); if(address < SUN4C_VMALLOC_START) { unsigned long pte; pte = (address - PAGE_OFFSET) >> PAGE_SHIFT; pte |= pgprot_val(SUN4C_PAGE_KERNEL); /* Stupid pte tricks... */ while(address < end) { sun4c_put_pte(address, pte++); address += PAGE_SIZE; } } else { pte_t *ptep; ptep = (pte_t *) (PAGE_MASK & pgd_val(swapper_pg_dir[address>>SUN4C_PGDIR_SHIFT])); ptep = (ptep + ((address >> PAGE_SHIFT) & (SUN4C_PTRS_PER_PTE - 1))); while(address < end) { sun4c_put_pte(address, pte_val(*ptep++)); address += PAGE_SIZE; } } restore_flags(flags); } /* * 4 page buckets for task struct and kernel stack allocation. * * TASK_STACK_BEGIN * bucket[0] * bucket[1] * [ ... ] * bucket[NR_TASKS-1] * TASK_STACK_BEGIN + (sizeof(struct task_bucket) * NR_TASKS) * * Each slot looks like: * * page 1 -- task struct * page 2 -- unmapped, for stack redzone (maybe use for pgd) * page 3/4 -- kernel stack */ struct task_bucket { struct task_struct task; char _unused1[PAGE_SIZE - sizeof(struct task_struct)]; char kstack[(PAGE_SIZE*3)]; }; struct task_bucket *sun4c_bucket[NR_TASKS]; #define BUCKET_EMPTY ((struct task_bucket *) 0) #define BUCKET_SIZE (PAGE_SIZE << 2) #define BUCKET_SHIFT 14 /* log2(sizeof(struct task_bucket)) */ #define BUCKET_NUM(addr) ((((addr) - SUN4C_LOCK_VADDR) >> BUCKET_SHIFT)) #define BUCKET_ADDR(num) (((num) << BUCKET_SHIFT) + SUN4C_LOCK_VADDR) #define BUCKET_PTE(page) \ ((((page) - PAGE_OFFSET) >> PAGE_SHIFT) | pgprot_val(SUN4C_PAGE_KERNEL)) #define BUCKET_PTE_PAGE(pte) \ (PAGE_OFFSET + (((pte) & 0xffff) << PAGE_SHIFT)) static inline void get_task_segment(unsigned long addr) { struct sun4c_mmu_entry *stolen; unsigned long flags; save_flags(flags); cli(); addr &= SUN4C_REAL_PGDIR_MASK; stolen = sun4c_user_strategy(); remove_ring(&sun4c_ufree_ring, stolen); stolen->vaddr = addr; sun4c_kernel_map(stolen); restore_flags(flags); } static inline void free_task_segment(unsigned long addr) { struct sun4c_mmu_entry *entry; unsigned long flags; unsigned char pseg; save_flags(flags); cli(); addr &= SUN4C_REAL_PGDIR_MASK; pseg = sun4c_get_segmap(addr); entry = &mmu_entry_pool[pseg]; sun4c_flush_segment(addr); sun4c_kernel_unmap(entry); add_ring(&sun4c_ufree_ring, entry); restore_flags(flags); } static inline void garbage_collect(int entry) { int start, end; /* 16 buckets per segment... */ entry &= ~15; start = entry; for(end = (start + 16); start < end; start++) if(sun4c_bucket[start] != BUCKET_EMPTY) return; /* Entire segment empty, release it. */ free_task_segment(BUCKET_ADDR(entry)); } static struct task_struct *sun4c_alloc_task_struct(void) { unsigned long addr, page; int entry; page = get_free_page(GFP_KERNEL); if(!page) return (struct task_struct *) 0; /* XXX Bahh, linear search too slow, use hash * XXX table in final implementation. Or * XXX keep track of first free when we free * XXX a bucket... anything but this. */ for(entry = 0; entry < NR_TASKS; entry++) if(sun4c_bucket[entry] == BUCKET_EMPTY) break; if(entry == NR_TASKS) { free_page(page); return (struct task_struct *) 0; } addr = BUCKET_ADDR(entry); sun4c_bucket[entry] = (struct task_bucket *) addr; if(sun4c_get_segmap(addr) == invalid_segment) get_task_segment(addr); sun4c_put_pte(addr, BUCKET_PTE(page)); return (struct task_struct *) addr; } static unsigned long sun4c_alloc_kernel_stack(struct task_struct *tsk) { unsigned long saddr = (unsigned long) tsk; unsigned long page[3]; if(!saddr) return 0; page[0] = get_free_page(GFP_KERNEL); if(!page[0]) return 0; page[1] = get_free_page(GFP_KERNEL); if(!page[1]) { free_page(page[0]); return 0; } page[2] = get_free_page(GFP_KERNEL); if(!page[2]) { free_page(page[0]); free_page(page[1]); return 0; } saddr += PAGE_SIZE; sun4c_put_pte(saddr, BUCKET_PTE(page[0])); sun4c_put_pte(saddr + PAGE_SIZE, BUCKET_PTE(page[1])); sun4c_put_pte(saddr + (PAGE_SIZE<<1), BUCKET_PTE(page[2])); return saddr; } static void sun4c_free_kernel_stack(unsigned long stack) { unsigned long page[3]; page[0] = BUCKET_PTE_PAGE(sun4c_get_pte(stack)); page[1] = BUCKET_PTE_PAGE(sun4c_get_pte(stack+PAGE_SIZE)); page[2] = BUCKET_PTE_PAGE(sun4c_get_pte(stack+(PAGE_SIZE<<1))); sun4c_flush_segment(stack & SUN4C_REAL_PGDIR_MASK); sun4c_put_pte(stack, 0); sun4c_put_pte(stack + PAGE_SIZE, 0); sun4c_put_pte(stack + (PAGE_SIZE<<1), 0); free_page(page[0]); free_page(page[1]); free_page(page[2]); } static void sun4c_free_task_struct(struct task_struct *tsk) { unsigned long tsaddr = (unsigned long) tsk; unsigned long page = BUCKET_PTE_PAGE(sun4c_get_pte(tsaddr)); int entry = BUCKET_NUM(tsaddr); sun4c_flush_segment(tsaddr & SUN4C_REAL_PGDIR_MASK); sun4c_put_pte(tsaddr, 0); sun4c_bucket[entry] = BUCKET_EMPTY; free_page(page); garbage_collect(entry); } static void sun4c_init_buckets(void) { int entry; if(sizeof(struct task_bucket) != (PAGE_SIZE << 2)) { prom_printf("task bucket not 4 pages!\n"); prom_halt(); } for(entry = 0; entry < NR_TASKS; entry++) sun4c_bucket[entry] = BUCKET_EMPTY; } static unsigned long sun4c_iobuffer_start; static unsigned long sun4c_iobuffer_end; static unsigned long *sun4c_iobuffer_map; static int iobuffer_map_size; /* * Alias our pages so they do not cause a trap. * Also one page may be aliased into several I/O areas and we may * finish these I/O separately. */ static char *sun4c_lockarea(char *vaddr, unsigned long size) { unsigned long base, scan; unsigned long npages; unsigned long vpage; unsigned long pte; unsigned long apage; npages = (((unsigned long)vaddr & ~PAGE_MASK) + size + (PAGE_SIZE-1)) >> PAGE_SHIFT; scan = 0; for (;;) { scan = find_next_zero_bit(sun4c_iobuffer_map, iobuffer_map_size, scan); if ((base = scan) + npages > iobuffer_map_size) goto abend; for (;;) { if (scan >= base + npages) goto found; if (test_bit(scan, sun4c_iobuffer_map)) break; scan++; } } found: vpage = ((unsigned long) vaddr) & PAGE_MASK; for (scan = base; scan < base+npages; scan++) { pte = ((vpage-PAGE_OFFSET) >> PAGE_SHIFT); pte |= pgprot_val(SUN4C_PAGE_KERNEL); pte |= _SUN4C_PAGE_NOCACHE; set_bit(scan, sun4c_iobuffer_map); apage = (scan << PAGE_SHIFT) + sun4c_iobuffer_start; sun4c_flush_page(vpage); sun4c_put_pte(apage, pte); vpage += PAGE_SIZE; } return (char *) ((base << PAGE_SHIFT) + sun4c_iobuffer_start + (((unsigned long) vaddr) & ~PAGE_MASK)); abend: printk("DMA vaddr=0x%p size=%08lx\n", vaddr, size); panic("Out of iobuffer table"); return 0; } static void sun4c_unlockarea(char *vaddr, unsigned long size) { unsigned long vpage, npages; vpage = (unsigned long)vaddr & PAGE_MASK; npages = (((unsigned long)vaddr & ~PAGE_MASK) + size + (PAGE_SIZE-1)) >> PAGE_SHIFT; while (npages != 0) { --npages; sun4c_put_pte(vpage, 0); clear_bit((vpage - sun4c_iobuffer_start) >> PAGE_SHIFT, sun4c_iobuffer_map); vpage += PAGE_SIZE; } } /* Note the scsi code at init time passes to here buffers * which sit on the kernel stack, those are already locked * by implication and fool the page locking code above * if passed to by mistake. */ static char *sun4c_get_scsi_one(char *bufptr, unsigned long len, struct linux_sbus *sbus) { unsigned long page; page = ((unsigned long) bufptr) & PAGE_MASK; if(page > high_memory) return bufptr; /* already locked */ return sun4c_lockarea(bufptr, len); } static void sun4c_get_scsi_sgl(struct mmu_sglist *sg, int sz, struct linux_sbus *sbus) { while(sz >= 0) { sg[sz].alt_addr = sun4c_lockarea(sg[sz].addr, sg[sz].len); sz--; } } static void sun4c_release_scsi_one(char *bufptr, unsigned long len, struct linux_sbus *sbus) { unsigned long page = (unsigned long) bufptr; if(page < sun4c_iobuffer_start) return; /* On kernel stack or similar, see above */ sun4c_unlockarea(bufptr, len); } static void sun4c_release_scsi_sgl(struct mmu_sglist *sg, int sz, struct linux_sbus *sbus) { while(sz >= 0) { sun4c_unlockarea(sg[sz].alt_addr, sg[sz].len); sg[sz].alt_addr = 0; sz--; } } #define TASK_ENTRY_SIZE BUCKET_SIZE /* see above */ #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) struct vm_area_struct sun4c_kstack_vma; static unsigned long sun4c_init_lock_areas(unsigned long start_mem) { unsigned long sun4c_taskstack_start; unsigned long sun4c_taskstack_end; int bitmap_size; sun4c_init_buckets(); sun4c_taskstack_start = SUN4C_LOCK_VADDR; sun4c_taskstack_end = (sun4c_taskstack_start + (TASK_ENTRY_SIZE * NR_TASKS)); if(sun4c_taskstack_end >= SUN4C_LOCK_END) { prom_printf("Too many tasks, decrease NR_TASKS please.\n"); prom_halt(); } sun4c_iobuffer_start = SUN4C_REAL_PGDIR_ALIGN(sun4c_taskstack_end); sun4c_iobuffer_end = SUN4C_LOCK_END; bitmap_size = (sun4c_iobuffer_end - sun4c_iobuffer_start) >> PAGE_SHIFT; bitmap_size = (bitmap_size + 7) >> 3; bitmap_size = LONG_ALIGN(bitmap_size); iobuffer_map_size = bitmap_size << 3; sun4c_iobuffer_map = (unsigned long *) start_mem; memset((void *) start_mem, 0, bitmap_size); start_mem += bitmap_size; /* Now get us some mmu entries for I/O maps. */ sun4c_init_lock_area(sun4c_iobuffer_start, sun4c_iobuffer_end); sun4c_kstack_vma.vm_mm = init_task.mm; sun4c_kstack_vma.vm_start = sun4c_taskstack_start; sun4c_kstack_vma.vm_end = sun4c_taskstack_end; sun4c_kstack_vma.vm_page_prot = PAGE_SHARED; sun4c_kstack_vma.vm_flags = VM_READ | VM_WRITE | VM_EXEC; insert_vm_struct(&init_task, &sun4c_kstack_vma); return start_mem; } /* Cache flushing on the sun4c. */ static void sun4c_flush_cache_all(void) { unsigned long start, end; /* Clear all tags in the sun4c cache. * The cache is write through so this is safe. */ start = AC_CACHETAGS; end = start + sun4c_vacinfo.num_bytes; flush_user_windows(); while(start < end) { __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : "r" (start), "i" (ASI_CONTROL)); start += sun4c_vacinfo.linesize; } } static void sun4c_flush_cache_mm(struct mm_struct *mm) { unsigned long flags; int octx; #ifndef __SMP__ if(mm->context != NO_CONTEXT) { #endif octx = sun4c_get_context(); save_flags(flags); cli(); flush_user_windows(); sun4c_set_context(mm->context); sun4c_flush_context(); sun4c_set_context(octx); restore_flags(flags); #ifndef __SMP__ } #endif } static void sun4c_flush_cache_range(struct mm_struct *mm, unsigned long start, unsigned long end) { unsigned long flags; int size, octx; #ifndef __SMP__ if(mm->context != NO_CONTEXT) { #endif size = start - end; flush_user_windows(); if(size >= sun4c_vacinfo.num_bytes) goto flush_it_all; save_flags(flags); cli(); octx = sun4c_get_context(); sun4c_set_context(mm->context); if(size <= (PAGE_SIZE << 1)) { start &= PAGE_MASK; while(start < end) { sun4c_flush_page(start); start += PAGE_SIZE; }; } else { start &= SUN4C_REAL_PGDIR_MASK; while(start < end) { sun4c_flush_segment(start); start += SUN4C_REAL_PGDIR_SIZE; } } sun4c_set_context(octx); restore_flags(flags); #ifndef __SMP__ } #endif return; flush_it_all: /* Cache size bounded flushing, thank you. */ sun4c_flush_cache_all(); } static void sun4c_flush_cache_page(struct vm_area_struct *vma, unsigned long page) { unsigned long flags; int octx; struct mm_struct *mm = vma->vm_mm; /* Sun4c has no separate I/D caches so cannot optimize for non * text page flushes. */ #ifndef __SMP__ if(mm->context != NO_CONTEXT) { #endif octx = sun4c_get_context(); save_flags(flags); cli(); flush_user_windows(); sun4c_set_context(mm->context); sun4c_flush_page(page); sun4c_set_context(octx); restore_flags(flags); #ifndef __SMP__ } #endif } /* Sun4c cache is write-through, so no need to validate main memory * during a page copy in kernel space. */ static void sun4c_flush_page_to_ram(unsigned long page) { } /* TLB flushing on the sun4c. These routines count on the cache * flushing code to flush the user register windows so that we need * not do so when we get here. */ static void sun4c_flush_tlb_all(void) { struct sun4c_mmu_entry *this_entry, *next_entry; unsigned long flags; int savectx, ctx; save_flags(flags); cli(); this_entry = sun4c_kernel_ring.ringhd.next; savectx = sun4c_get_context(); while(sun4c_kernel_ring.num_entries) { next_entry = this_entry->next; for(ctx = 0; ctx < num_contexts; ctx++) { sun4c_set_context(ctx); sun4c_put_segmap(this_entry->vaddr, invalid_segment); } free_kernel_entry(this_entry, &sun4c_kernel_ring); this_entry = next_entry; } sun4c_set_context(savectx); restore_flags(flags); } static void sun4c_flush_tlb_mm(struct mm_struct *mm) { struct sun4c_mmu_entry *this_entry, *next_entry; struct sun4c_mmu_ring *crp; int savectx, ctx; #ifndef __SMP__ if(mm->context != NO_CONTEXT) { #endif crp = &sun4c_context_ring[mm->context]; savectx = sun4c_get_context(); ctx = mm->context; this_entry = crp->ringhd.next; sun4c_set_context(mm->context); while(crp->num_entries) { next_entry = this_entry->next; sun4c_user_unmap(this_entry); free_user_entry(ctx, this_entry); this_entry = next_entry; } sun4c_set_context(savectx); #ifndef __SMP__ } #endif } static void sun4c_flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { struct sun4c_mmu_entry *this_entry; unsigned char pseg, savectx; #ifndef __SMP__ if(mm->context == NO_CONTEXT) return; #endif flush_user_windows(); savectx = sun4c_get_context(); sun4c_set_context(mm->context); start &= SUN4C_REAL_PGDIR_MASK; while(start < end) { pseg = sun4c_get_segmap(start); if(pseg == invalid_segment) goto next_one; this_entry = &mmu_entry_pool[pseg]; sun4c_put_segmap(this_entry->vaddr, invalid_segment); free_user_entry(mm->context, this_entry); next_one: start += SUN4C_REAL_PGDIR_SIZE; } sun4c_set_context(savectx); } static void sun4c_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; int savectx; #ifndef __SMP__ if(mm->context != NO_CONTEXT) { #endif savectx = sun4c_get_context(); sun4c_set_context(mm->context); page &= PAGE_MASK; if(sun4c_get_pte(page) & _SUN4C_PAGE_VALID) sun4c_put_pte(page, 0); sun4c_set_context(savectx); #ifndef __SMP__ } #endif } /* Sun4c mmu hardware doesn't update the dirty bit in the pte's * for us, so we do it in software. */ static void sun4c_set_pte(pte_t *ptep, pte_t pte) { if((pte_val(pte) & (_SUN4C_PAGE_WRITE|_SUN4C_PAGE_DIRTY)) == _SUN4C_PAGE_WRITE) pte_val(pte) |= _SUN4C_PAGE_DIRTY; *ptep = pte; } /* static */ void sun4c_mapioaddr(unsigned long physaddr, unsigned long virt_addr, int bus_type, int rdonly) { unsigned long page_entry; page_entry = ((physaddr >> PAGE_SHIFT) & 0xffff); page_entry |= (_SUN4C_PAGE_VALID | _SUN4C_PAGE_WRITE | _SUN4C_PAGE_NOCACHE | _SUN4C_PAGE_IO); if(rdonly) page_entry &= (~_SUN4C_PAGE_WRITE); sun4c_flush_page(virt_addr); sun4c_put_pte(virt_addr, page_entry); } static inline void sun4c_alloc_context(struct mm_struct *mm) { struct ctx_list *ctxp; ctxp = ctx_free.next; if(ctxp != &ctx_free) { remove_from_ctx_list(ctxp); add_to_used_ctxlist(ctxp); mm->context = ctxp->ctx_number; ctxp->ctx_mm = mm; return; } ctxp = ctx_used.next; if(ctxp->ctx_mm == current->mm) ctxp = ctxp->next; if(ctxp == &ctx_used) panic("out of mmu contexts"); remove_from_ctx_list(ctxp); add_to_used_ctxlist(ctxp); ctxp->ctx_mm->context = NO_CONTEXT; ctxp->ctx_mm = mm; mm->context = ctxp->ctx_number; sun4c_demap_context(&sun4c_context_ring[ctxp->ctx_number], ctxp->ctx_number); } #if some_day_soon /* We need some tweaking to start using this */ extern void force_user_fault(unsigned long, int); void sun4c_switch_heuristic(struct pt_regs *regs) { unsigned long sp = regs->u_regs[UREG_FP]; unsigned long sp2 = sp + REGWIN_SZ - 0x8; force_user_fault(regs->pc, 0); force_user_fault(sp, 0); if((sp&PAGE_MASK) != (sp2&PAGE_MASK)) force_user_fault(sp2, 0); } #endif static void sun4c_switch_to_context(struct task_struct *tsk) { /* Kernel threads can execute in any context and so can tasks * sleeping in the middle of exiting. If this task has already * been allocated a piece of the mmu realestate, just jump to * it. */ if((tsk->tss.flags & SPARC_FLAG_KTHREAD) || (tsk->flags & PF_EXITING)) return; if(tsk->mm->context == NO_CONTEXT) sun4c_alloc_context(tsk->mm); sun4c_set_context(tsk->mm->context); } static void sun4c_flush_hook(void) { if(current->tss.flags & SPARC_FLAG_KTHREAD) { sun4c_alloc_context(current->mm); sun4c_set_context(current->mm->context); } } static void sun4c_exit_hook(void) { struct ctx_list *ctx_old; struct mm_struct *mm = current->mm; if(mm->context != NO_CONTEXT) { sun4c_demap_context(&sun4c_context_ring[mm->context], mm->context); ctx_old = ctx_list_pool + mm->context; remove_from_ctx_list(ctx_old); add_to_free_ctxlist(ctx_old); mm->context = NO_CONTEXT; } } static char s4cinfo[512]; static char *sun4c_mmu_info(void) { int used_user_entries, i; used_user_entries = 0; for(i=0; i < num_contexts; i++) used_user_entries += sun4c_context_ring[i].num_entries; sprintf(s4cinfo, "vacsize\t\t: %d bytes\n" "vachwflush\t: %s\n" "vaclinesize\t: %d bytes\n" "mmuctxs\t\t: %d\n" "mmupsegs\t: %d\n" "usedpsegs\t: %d\n" "ufreepsegs\t: %d\n" "context\t\t: %d flushes\n" "segment\t\t: %d flushes\n" "page\t\t: %d flushes\n", sun4c_vacinfo.num_bytes, (sun4c_vacinfo.do_hwflushes ? "yes" : "no"), sun4c_vacinfo.linesize, num_contexts, (invalid_segment + 1), used_user_entries, sun4c_ufree_ring.num_entries, ctxflushes, segflushes, pageflushes); return s4cinfo; } /* Nothing below here should touch the mmu hardware nor the mmu_entry * data structures. */ static unsigned int sun4c_pmd_align(unsigned int addr) { return SUN4C_PMD_ALIGN(addr); } static unsigned int sun4c_pgdir_align(unsigned int addr) { return SUN4C_PGDIR_ALIGN(addr); } /* First the functions which the mid-level code uses to directly * manipulate the software page tables. Some defines since we are * emulating the i386 page directory layout. */ #define PGD_PRESENT 0x001 #define PGD_RW 0x002 #define PGD_USER 0x004 #define PGD_ACCESSED 0x020 #define PGD_DIRTY 0x040 #define PGD_TABLE (PGD_PRESENT | PGD_RW | PGD_USER | PGD_ACCESSED | PGD_DIRTY) static unsigned long sun4c_vmalloc_start(void) { return SUN4C_VMALLOC_START; } static int sun4c_pte_none(pte_t pte) { return !pte_val(pte); } static int sun4c_pte_present(pte_t pte) { return pte_val(pte) & _SUN4C_PAGE_VALID; } static void sun4c_pte_clear(pte_t *ptep) { pte_val(*ptep) = 0; } static int sun4c_pmd_none(pmd_t pmd) { return !pmd_val(pmd); } static int sun4c_pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & ~PAGE_MASK) != PGD_TABLE || pmd_val(pmd) > high_memory; } static int sun4c_pmd_present(pmd_t pmd) { return pmd_val(pmd) & PGD_PRESENT; } static void sun4c_pmd_clear(pmd_t *pmdp) { pmd_val(*pmdp) = 0; } static int sun4c_pgd_none(pgd_t pgd) { return 0; } static int sun4c_pgd_bad(pgd_t pgd) { return 0; } static int sun4c_pgd_present(pgd_t pgd) { return 1; } static void sun4c_pgd_clear(pgd_t * pgdp) { } /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static int sun4c_pte_write(pte_t pte) { return pte_val(pte) & _SUN4C_PAGE_WRITE; } static int sun4c_pte_dirty(pte_t pte) { return pte_val(pte) & _SUN4C_PAGE_DIRTY; } static int sun4c_pte_young(pte_t pte) { return pte_val(pte) & _SUN4C_PAGE_REF; } static pte_t sun4c_pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_SUN4C_PAGE_WRITE; return pte; } static pte_t sun4c_pte_mkclean(pte_t pte) { pte_val(pte) &= ~_SUN4C_PAGE_DIRTY; return pte; } static pte_t sun4c_pte_mkold(pte_t pte) { pte_val(pte) &= ~_SUN4C_PAGE_REF; return pte; } static pte_t sun4c_pte_mkwrite(pte_t pte) { pte_val(pte) |= _SUN4C_PAGE_WRITE; return pte; } static pte_t sun4c_pte_mkdirty(pte_t pte) { pte_val(pte) |= _SUN4C_PAGE_DIRTY; return pte; } static pte_t sun4c_pte_mkyoung(pte_t pte) { pte_val(pte) |= _SUN4C_PAGE_REF; return pte; } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ static pte_t sun4c_mk_pte(unsigned long page, pgprot_t pgprot) { return __pte(((page - PAGE_OFFSET) >> PAGE_SHIFT) | pgprot_val(pgprot)); } static pte_t sun4c_mk_pte_io(unsigned long page, pgprot_t pgprot, int space) { return __pte(((page - PAGE_OFFSET) >> PAGE_SHIFT) | pgprot_val(pgprot)); } static pte_t sun4c_pte_modify(pte_t pte, pgprot_t newprot) { return __pte((pte_val(pte) & _SUN4C_PAGE_CHG_MASK) | pgprot_val(newprot)); } static unsigned long sun4c_pte_page(pte_t pte) { return (PAGE_OFFSET + ((pte_val(pte) & 0xffff) << (PAGE_SHIFT))); } static unsigned long sun4c_pmd_page(pmd_t pmd) { return (pmd_val(pmd) & PAGE_MASK); } /* to find an entry in a page-table-directory */ static pgd_t *sun4c_pgd_offset(struct mm_struct * mm, unsigned long address) { return mm->pgd + (address >> SUN4C_PGDIR_SHIFT); } /* Find an entry in the second-level page table.. */ static pmd_t *sun4c_pmd_offset(pgd_t * dir, unsigned long address) { return (pmd_t *) dir; } /* Find an entry in the third-level page table.. */ static pte_t *sun4c_pte_offset(pmd_t * dir, unsigned long address) { return (pte_t *) sun4c_pmd_page(*dir) + ((address >> PAGE_SHIFT) & (SUN4C_PTRS_PER_PTE - 1)); } /* Update the root mmu directory. */ static void sun4c_update_rootmmu_dir(struct task_struct *tsk, pgd_t *pgdir) { } /* Allocate and free page tables. The xxx_kernel() versions are * used to allocate a kernel page table - this turns on ASN bits * if any, and marks the page tables reserved. */ static void sun4c_pte_free_kernel(pte_t *pte) { free_page((unsigned long) pte); } static pte_t *sun4c_pte_alloc_kernel(pmd_t *pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (SUN4C_PTRS_PER_PTE - 1); if (sun4c_pmd_none(*pmd)) { pte_t *page = (pte_t *) get_free_page(GFP_KERNEL); if (sun4c_pmd_none(*pmd)) { if (page) { pmd_val(*pmd) = PGD_TABLE | (unsigned long) page; return page + address; } pmd_val(*pmd) = PGD_TABLE | (unsigned long) BAD_PAGETABLE; return NULL; } free_page((unsigned long) page); } if (sun4c_pmd_bad(*pmd)) { printk("Bad pmd in pte_alloc_kernel: %08lx\n", pmd_val(*pmd)); pmd_val(*pmd) = PGD_TABLE | (unsigned long) BAD_PAGETABLE; return NULL; } return (pte_t *) sun4c_pmd_page(*pmd) + address; } /* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */ static void sun4c_pmd_free_kernel(pmd_t *pmd) { pmd_val(*pmd) = 0; } static pmd_t *sun4c_pmd_alloc_kernel(pgd_t *pgd, unsigned long address) { return (pmd_t *) pgd; } static void sun4c_pte_free(pte_t *pte) { free_page((unsigned long) pte); } static pte_t *sun4c_pte_alloc(pmd_t * pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (SUN4C_PTRS_PER_PTE - 1); if (sun4c_pmd_none(*pmd)) { pte_t *page = (pte_t *) get_free_page(GFP_KERNEL); if (sun4c_pmd_none(*pmd)) { if (page) { pmd_val(*pmd) = PGD_TABLE | (unsigned long) page; return page + address; } pmd_val(*pmd) = PGD_TABLE | (unsigned long) BAD_PAGETABLE; return NULL; } free_page((unsigned long) page); } if (sun4c_pmd_bad(*pmd)) { printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd)); pmd_val(*pmd) = PGD_TABLE | (unsigned long) BAD_PAGETABLE; return NULL; } return (pte_t *) sun4c_pmd_page(*pmd) + address; } /* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */ static void sun4c_pmd_free(pmd_t * pmd) { pmd_val(*pmd) = 0; } static pmd_t *sun4c_pmd_alloc(pgd_t * pgd, unsigned long address) { return (pmd_t *) pgd; } static void sun4c_pgd_free(pgd_t *pgd) { free_page((unsigned long) pgd); } static pgd_t *sun4c_pgd_alloc(void) { return (pgd_t *) get_free_page(GFP_KERNEL); } #define SUN4C_KERNEL_BUCKETS 16 extern unsigned long free_area_init(unsigned long, unsigned long); extern unsigned long sparc_context_init(unsigned long, int); extern unsigned long end; unsigned long sun4c_paging_init(unsigned long start_mem, unsigned long end_mem) { int i, cnt; unsigned long kernel_end; kernel_end = (unsigned long) &end; kernel_end += (SUN4C_REAL_PGDIR_SIZE * 3); kernel_end = SUN4C_REAL_PGDIR_ALIGN(kernel_end); sun4c_probe_mmu(); invalid_segment = (num_segmaps - 1); sun4c_init_mmu_entry_pool(); sun4c_init_rings(); sun4c_init_map_kernelprom(kernel_end); sun4c_init_clean_mmu(kernel_end); sun4c_init_fill_kernel_ring(SUN4C_KERNEL_BUCKETS); sun4c_init_lock_area(IOBASE_VADDR, IOBASE_END); sun4c_init_lock_area(DVMA_VADDR, DVMA_END); start_mem = sun4c_init_lock_areas(start_mem); sun4c_init_fill_user_ring(); sun4c_set_context(0); memset(swapper_pg_dir, 0, PAGE_SIZE); memset(pg0, 0, PAGE_SIZE); /* Save work later. */ pgd_val(swapper_pg_dir[SUN4C_VMALLOC_START>>SUN4C_PGDIR_SHIFT]) = PGD_TABLE | (unsigned long) pg0; sun4c_init_ss2_cache_bug(); start_mem = PAGE_ALIGN(start_mem); start_mem = sun4c_init_alloc_dvma_pages(start_mem); start_mem = sparc_context_init(start_mem, num_contexts); start_mem = free_area_init(start_mem, end_mem); cnt = 0; for(i = 0; i < num_segmaps; i++) if(mmu_entry_pool[i].locked) cnt++; printk("SUN4C: %d mmu entries for the kernel\n", cnt); return start_mem; } /* Load up routines and constants for sun4c mmu */ void ld_mmu_sun4c(void) { printk("Loading sun4c MMU routines\n"); /* First the constants */ pmd_shift = SUN4C_PMD_SHIFT; pmd_size = SUN4C_PMD_SIZE; pmd_mask = SUN4C_PMD_MASK; pgdir_shift = SUN4C_PGDIR_SHIFT; pgdir_size = SUN4C_PGDIR_SIZE; pgdir_mask = SUN4C_PGDIR_MASK; ptrs_per_pte = SUN4C_PTRS_PER_PTE; ptrs_per_pmd = SUN4C_PTRS_PER_PMD; ptrs_per_pgd = SUN4C_PTRS_PER_PGD; page_none = SUN4C_PAGE_NONE; page_shared = SUN4C_PAGE_SHARED; page_copy = SUN4C_PAGE_COPY; page_readonly = SUN4C_PAGE_READONLY; page_kernel = SUN4C_PAGE_KERNEL; pg_iobits = _SUN4C_PAGE_NOCACHE | _SUN4C_PAGE_IO | _SUN4C_PAGE_VALID | _SUN4C_PAGE_WRITE | _SUN4C_PAGE_DIRTY; /* Functions */ #ifndef __SMP__ flush_cache_all = sun4c_flush_cache_all; flush_cache_mm = sun4c_flush_cache_mm; flush_cache_range = sun4c_flush_cache_range; flush_cache_page = sun4c_flush_cache_page; flush_tlb_all = sun4c_flush_tlb_all; flush_tlb_mm = sun4c_flush_tlb_mm; flush_tlb_range = sun4c_flush_tlb_range; flush_tlb_page = sun4c_flush_tlb_page; #else local_flush_cache_all = sun4c_flush_cache_all; local_flush_cache_mm = sun4c_flush_cache_mm; local_flush_cache_range = sun4c_flush_cache_range; local_flush_cache_page = sun4c_flush_cache_page; local_flush_tlb_all = sun4c_flush_tlb_all; local_flush_tlb_mm = sun4c_flush_tlb_mm; local_flush_tlb_range = sun4c_flush_tlb_range; local_flush_tlb_page = sun4c_flush_tlb_page; flush_cache_all = smp_flush_cache_all; flush_cache_mm = smp_flush_cache_mm; flush_cache_range = smp_flush_cache_range; flush_cache_page = smp_flush_cache_page; flush_tlb_all = smp_flush_tlb_all; flush_tlb_mm = smp_flush_tlb_mm; flush_tlb_range = smp_flush_tlb_range; flush_tlb_page = smp_flush_tlb_page; #endif flush_page_to_ram = sun4c_flush_page_to_ram; set_pte = sun4c_set_pte; switch_to_context = sun4c_switch_to_context; pmd_align = sun4c_pmd_align; pgdir_align = sun4c_pgdir_align; vmalloc_start = sun4c_vmalloc_start; pte_page = sun4c_pte_page; pmd_page = sun4c_pmd_page; sparc_update_rootmmu_dir = sun4c_update_rootmmu_dir; pte_none = sun4c_pte_none; pte_present = sun4c_pte_present; pte_clear = sun4c_pte_clear; pmd_none = sun4c_pmd_none; pmd_bad = sun4c_pmd_bad; pmd_present = sun4c_pmd_present; pmd_clear = sun4c_pmd_clear; pgd_none = sun4c_pgd_none; pgd_bad = sun4c_pgd_bad; pgd_present = sun4c_pgd_present; pgd_clear = sun4c_pgd_clear; mk_pte = sun4c_mk_pte; mk_pte_io = sun4c_mk_pte_io; pte_modify = sun4c_pte_modify; pgd_offset = sun4c_pgd_offset; pmd_offset = sun4c_pmd_offset; pte_offset = sun4c_pte_offset; pte_free_kernel = sun4c_pte_free_kernel; pmd_free_kernel = sun4c_pmd_free_kernel; pte_alloc_kernel = sun4c_pte_alloc_kernel; pmd_alloc_kernel = sun4c_pmd_alloc_kernel; pte_free = sun4c_pte_free; pte_alloc = sun4c_pte_alloc; pmd_free = sun4c_pmd_free; pmd_alloc = sun4c_pmd_alloc; pgd_free = sun4c_pgd_free; pgd_alloc = sun4c_pgd_alloc; pte_write = sun4c_pte_write; pte_dirty = sun4c_pte_dirty; pte_young = sun4c_pte_young; pte_wrprotect = sun4c_pte_wrprotect; pte_mkclean = sun4c_pte_mkclean; pte_mkold = sun4c_pte_mkold; pte_mkwrite = sun4c_pte_mkwrite; pte_mkdirty = sun4c_pte_mkdirty; pte_mkyoung = sun4c_pte_mkyoung; update_mmu_cache = sun4c_update_mmu_cache; mmu_exit_hook = sun4c_exit_hook; mmu_flush_hook = sun4c_flush_hook; mmu_lockarea = sun4c_lockarea; mmu_unlockarea = sun4c_unlockarea; mmu_get_scsi_one = sun4c_get_scsi_one; mmu_get_scsi_sgl = sun4c_get_scsi_sgl; mmu_release_scsi_one = sun4c_release_scsi_one; mmu_release_scsi_sgl = sun4c_release_scsi_sgl; mmu_v2p = sun4c_v2p; mmu_p2v = sun4c_p2v; /* Task struct and kernel stack allocating/freeing. */ alloc_kernel_stack = sun4c_alloc_kernel_stack; alloc_task_struct = sun4c_alloc_task_struct; free_kernel_stack = sun4c_free_kernel_stack; free_task_struct = sun4c_free_task_struct; quick_kernel_fault = sun4c_quick_kernel_fault; mmu_info = sun4c_mmu_info; /* These should _never_ get called with two level tables. */ pgd_set = 0; pgd_page = 0; }