URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [drivers/] [block/] [ataflop.c] - Rev 1765
Compare with Previous | Blame | View Log
/* * drivers/block/ataflop.c * * Copyright (C) 1993 Greg Harp * Atari Support by Bjoern Brauel, Roman Hodek * * Big cleanup Sep 11..14 1994 Roman Hodek: * - Driver now works interrupt driven * - Support for two drives; should work, but I cannot test that :-( * - Reading is done in whole tracks and buffered to speed up things * - Disk change detection and drive deselecting after motor-off * similar to TOS * - Autodetection of disk format (DD/HD); untested yet, because I * don't have an HD drive :-( * * Fixes Nov 13 1994 Martin Schaller: * - Autodetection works now * - Support for 5 1/4'' disks * - Removed drive type (unknown on atari) * - Do seeks with 8 Mhz * * Changes by Andreas Schwab: * - After errors in multiple read mode try again reading single sectors * (Feb 1995): * - Clean up error handling * - Set blk_size for proper size checking * - Initialize track register when testing presence of floppy * - Implement some ioctl's * * Changes by Torsten Lang: * - When probing the floppies we should add the FDCCMDADD_H flag since * the FDC will otherwise wait forever when no disk is inserted... * * ++ Freddi Aschwanden (fa) 20.9.95 fixes for medusa: * - MFPDELAY() after each FDC access -> atari * - more/other disk formats * - DMA to the block buffer directly if we have a 32bit DMA * - for medusa, the step rate is always 3ms * - on medusa, use only cache_push() * Roman: * - Make disk format numbering independent from minors * - Let user set max. supported drive type (speeds up format * detection, saves buffer space) * * Roman 10/15/95: * - implement some more ioctls * - disk formatting * * Andreas 95/12/12: * - increase gap size at start of track for HD/ED disks * * Things left to do: * - Formatting * - Maybe a better strategy for disk change detection (does anyone * know one?) */ #include <linux/module.h> #include <linux/sched.h> #include <linux/string.h> #include <linux/fs.h> #include <linux/fcntl.h> #include <linux/kernel.h> #include <linux/timer.h> #include <linux/fd.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/delay.h> #include <linux/mm.h> #include <linux/malloc.h> #include <asm/system.h> #include <asm/bitops.h> #include <asm/irq.h> #include <asm/pgtable.h> #include <asm/bootinfo.h> #include <asm/atafd.h> #include <asm/atafdreg.h> #include <asm/atarihw.h> #include <asm/atariints.h> #include <asm/atari_stdma.h> #define MAJOR_NR FLOPPY_MAJOR #include <linux/blk.h> #define FD_MAX_UNITS 2 #undef DEBUG /* Disk types: DD, HD, ED */ static struct atari_disk_type { const char *name; unsigned spt; /* sectors per track */ unsigned blocks; /* total number of blocks */ unsigned fdc_speed; /* fdc_speed setting */ unsigned stretch; /* track doubling ? */ } disk_type[] = { { "d360", 9, 720, 0, 0}, /* 0: 360kB diskette */ { "D360", 9, 720, 0, 1}, /* 1: 360kb in 720k or 1.2MB drive */ { "D720", 9,1440, 0, 0}, /* 2: 720kb in 720k or 1.2MB drive */ { "D820", 10,1640, 0, 0}, /* 3: DD disk with 82 tracks/10 sectors */ /* formats above are probed for type DD */ #define MAX_TYPE_DD 3 { "h1200",15,2400, 3, 0}, /* 4: 1.2MB diskette */ { "H1440",18,2880, 3, 0}, /* 5: 1.4 MB diskette (HD) */ { "H1640",20,3280, 3, 0}, /* 6: 1.64MB diskette (fat HD) 82 tr 20 sec */ /* formats above are probed for types DD and HD */ #define MAX_TYPE_HD 6 { "E2880",36,5760, 3, 0}, /* 7: 2.8 MB diskette (ED) */ { "E3280",40,6560, 3, 0}, /* 8: 3.2 MB diskette (fat ED) 82 tr 40 sec */ /* formats above are probed for types DD, HD and ED */ #define MAX_TYPE_ED 8 /* types below are never autoprobed */ { "H1680",21,3360, 3, 0}, /* 9: 1.68MB diskette (fat HD) 80 tr 21 sec */ { "h410",10,820, 0, 1}, /* 10: 410k diskette 41 tr 10 sec, stretch */ { "h1476",18,2952, 3, 0}, /* 11: 1.48MB diskette 82 tr 18 sec */ { "H1722",21,3444, 3, 0}, /* 12: 1.72MB diskette 82 tr 21 sec */ { "h420",10,840, 0, 1}, /* 13: 420k diskette 42 tr 10 sec, stretch */ { "H830",10,1660, 0, 0}, /* 14: 820k diskette 83 tr 10 sec */ { "h1494",18,2952, 3, 0}, /* 15: 1.49MB diskette 83 tr 18 sec */ { "H1743",21,3486, 3, 0}, /* 16: 1.74MB diskette 83 tr 21 sec */ { "h880",11,1760, 0, 0}, /* 17: 880k diskette 80 tr 11 sec */ { "D1040",13,2080, 0, 0}, /* 18: 1.04MB diskette 80 tr 13 sec */ { "D1120",14,2240, 0, 0}, /* 19: 1.12MB diskette 80 tr 14 sec */ { "h1600",20,3200, 3, 0}, /* 20: 1.60MB diskette 80 tr 20 sec */ { "H1760",22,3520, 3, 0}, /* 21: 1.76MB diskette 80 tr 22 sec */ { "H1920",24,3840, 3, 0}, /* 22: 1.92MB diskette 80 tr 24 sec */ { "E3200",40,6400, 3, 0}, /* 23: 3.2MB diskette 80 tr 40 sec */ { "E3520",44,7040, 3, 0}, /* 24: 3.52MB diskette 80 tr 44 sec */ { "E3840",48,7680, 3, 0}, /* 25: 3.84MB diskette 80 tr 48 sec */ { "H1840",23,3680, 3, 0}, /* 26: 1.84MB diskette 80 tr 23 sec */ { "D800",10,1600, 0, 0}, /* 27: 800k diskette 80 tr 10 sec */ }; static int StartDiskType[] = { MAX_TYPE_DD, MAX_TYPE_HD, MAX_TYPE_ED }; #define TYPE_DD 0 #define TYPE_HD 1 #define TYPE_ED 2 static int DriveType = TYPE_HD; /* Array for translating minors into disk formats */ static struct { int index; unsigned drive_types; } minor2disktype[] = { { 0, TYPE_DD }, /* 1: d360 */ { 4, TYPE_HD }, /* 2: h1200 */ { 1, TYPE_DD }, /* 3: D360 */ { 2, TYPE_DD }, /* 4: D720 */ { 1, TYPE_DD }, /* 5: h360 = D360 */ { 2, TYPE_DD }, /* 6: h720 = D720 */ { 5, TYPE_HD }, /* 7: H1440 */ { 7, TYPE_ED }, /* 8: E2880 */ /* some PC formats :-) */ { 8, TYPE_ED }, /* 9: E3280 <- was "CompaQ" == E2880 for PC */ { 5, TYPE_HD }, /* 10: h1440 = H1440 */ { 9, TYPE_HD }, /* 11: H1680 */ { 10, TYPE_DD }, /* 12: h410 */ { 3, TYPE_DD }, /* 13: H820 <- == D820, 82x10 */ { 11, TYPE_HD }, /* 14: h1476 */ { 12, TYPE_HD }, /* 15: H1722 */ { 13, TYPE_DD }, /* 16: h420 */ { 14, TYPE_DD }, /* 17: H830 */ { 15, TYPE_HD }, /* 18: h1494 */ { 16, TYPE_HD }, /* 19: H1743 */ { 17, TYPE_DD }, /* 20: h880 */ { 18, TYPE_DD }, /* 21: D1040 */ { 19, TYPE_DD }, /* 22: D1120 */ { 20, TYPE_HD }, /* 23: h1600 */ { 21, TYPE_HD }, /* 24: H1760 */ { 22, TYPE_HD }, /* 25: H1920 */ { 23, TYPE_ED }, /* 26: E3200 */ { 24, TYPE_ED }, /* 27: E3520 */ { 25, TYPE_ED }, /* 28: E3840 */ { 26, TYPE_HD }, /* 29: H1840 */ { 27, TYPE_DD }, /* 30: D800 */ { 6, TYPE_HD }, /* 31: H1640 <- was H1600 == h1600 for PC */ }; #define NUM_DISK_MINORS (sizeof(minor2disktype)/sizeof(*minor2disktype)) /* * Maximum disk size (in kilobytes). This default is used whenever the * current disk size is unknown. */ #define MAX_DISK_SIZE 3280 static int floppy_sizes[256]; static int floppy_blocksizes[256] = { 0, }; /* current info on each unit */ static struct atari_floppy_struct { int connected; /* !=0 : drive is connected */ int autoprobe; /* !=0 : do autoprobe */ struct atari_disk_type *disktype; /* current type of disk */ int track; /* current head position or -1 if unknown */ unsigned int steprate; /* steprate setting */ unsigned int wpstat; /* current state of WP signal (for disk change detection) */ int flags; /* flags */ } unit[FD_MAX_UNITS]; #define UD unit[drive] #define UDT unit[drive].disktype #define SUD unit[SelectedDrive] #define SUDT unit[SelectedDrive].disktype #define FDC_READ(reg) ({ \ /* unsigned long __flags; */ \ unsigned short __val; \ /* save_flags(__flags); cli(); */ \ dma_wd.dma_mode_status = 0x80 | (reg); \ udelay(25); \ __val = dma_wd.fdc_acces_seccount; \ MFPDELAY(); \ /* restore_flags(__flags); */ \ __val & 0xff; \ }) #define FDC_WRITE(reg,val) \ do { \ /* unsigned long __flags; */ \ /* save_flags(__flags); cli(); */ \ dma_wd.dma_mode_status = 0x80 | (reg); \ udelay(25); \ dma_wd.fdc_acces_seccount = (val); \ MFPDELAY(); \ /* restore_flags(__flags); */ \ } while(0) /* Buffering variables: * First, there is a DMA buffer in ST-RAM that is used for floppy DMA * operations. Second, a track buffer is used to cache a whole track * of the disk to save read operations. These are two separate buffers * because that allows write operations without clearing the track buffer. */ static int MaxSectors[] = { 11, 22, 44 }; static int BufferSize[] = { 15*512, 30*512, 60*512 }; #define MAX_SECTORS (MaxSectors[DriveType]) #define BUFFER_SIZE (BufferSize[DriveType]) unsigned char *DMABuffer; /* buffer for writes */ static unsigned long PhysDMABuffer; /* physical address */ static int UseTrackbuffer = -1; /* Do track buffering? */ unsigned char *TrackBuffer; /* buffer for reads */ static unsigned long PhysTrackBuffer; /* physical address */ static int BufferDrive, BufferSide, BufferTrack; static int read_track; /* non-zero if we are reading whole tracks */ #define SECTOR_BUFFER(sec) (TrackBuffer + ((sec)-1)*512) #define IS_BUFFERED(drive,side,track) \ (BufferDrive == (drive) && BufferSide == (side) && BufferTrack == (track)) /* * These are global variables, as that's the easiest way to give * information to interrupts. They are the data used for the current * request. */ static int SelectedDrive = 0; static int ReqCmd, ReqBlock; static int ReqSide, ReqTrack, ReqSector, ReqCnt; static int HeadSettleFlag = 0; static unsigned char *ReqData, *ReqBuffer; static int MotorOn = 0, MotorOffTrys; static int IsFormatting = 0, FormatError; static int UserSteprate[FD_MAX_UNITS] = { -1, -1 }; /* Synchronization of FDC access. */ static volatile int fdc_busy = 0; static struct wait_queue *fdc_wait = NULL; static struct wait_queue *format_wait = NULL; static unsigned int changed_floppies = 0xff, fake_change = 0; #define CHECK_CHANGE_DELAY HZ/2 #define FD_MOTOR_OFF_DELAY (3*HZ) #define FD_MOTOR_OFF_MAXTRY (10*20) #define FLOPPY_TIMEOUT (6*HZ) #define RECALIBRATE_ERRORS 4 /* After this many errors the drive * will be recalibrated. */ #define MAX_ERRORS 8 /* After this many errors the driver * will give up. */ #define START_MOTOR_OFF_TIMER(delay) \ do { \ motor_off_timer.expires = jiffies + (delay); \ add_timer( &motor_off_timer ); \ MotorOffTrys = 0; \ } while(0) #define START_CHECK_CHANGE_TIMER(delay) \ do { \ timer_table[FLOPPY_TIMER].expires = jiffies + (delay); \ timer_active |= (1 << FLOPPY_TIMER); \ } while(0) #define START_TIMEOUT() \ do { \ del_timer( &timeout_timer ); \ timeout_timer.expires = jiffies + FLOPPY_TIMEOUT; \ add_timer( &timeout_timer ); \ } while(0) #define STOP_TIMEOUT() \ do { \ del_timer( &timeout_timer ); \ } while(0) /* * The driver is trying to determine the correct media format * while Probing is set. fd_rwsec_done() clears it after a * successful access. */ static int Probing = 0; /* This flag is set when a dummy seek is necessary to make the WP * status bit accessible. */ static int NeedSeek = 0; #ifdef DEBUG #define DPRINT(a) printk a #else #define DPRINT(a) #endif /***************************** Prototypes *****************************/ static void fd_select_side( int side ); static void fd_select_drive( int drive ); static void fd_deselect( void ); static void fd_motor_off_timer( unsigned long dummy ); static void check_change( void ); static __inline__ void set_head_settle_flag( void ); static __inline__ int get_head_settle_flag( void ); static void floppy_irq (int irq, struct pt_regs *fp, void *dummy); static void fd_error( void ); static int do_format(kdev_t drive, struct atari_format_descr *desc); static void do_fd_action( int drive ); static void fd_calibrate( void ); static void fd_calibrate_done( int status ); static void fd_seek( void ); static void fd_seek_done( int status ); static void fd_rwsec( void ); static void fd_readtrack_check( unsigned long dummy ); static void fd_rwsec_done( int status ); static void fd_writetrack( void ); static void fd_writetrack_done( int status ); static void fd_times_out( unsigned long dummy ); static void finish_fdc( void ); static void finish_fdc_done( int dummy ); static void floppy_off( unsigned int nr); static __inline__ void copy_buffer( void *from, void *to); static void setup_req_params( int drive ); static void redo_fd_request( void); static int invalidate_drive(kdev_t rdev); static int fd_ioctl( struct inode *inode, struct file *filp, unsigned int cmd, unsigned long param); static void fd_probe( int drive ); static int fd_test_drive_present( int drive ); static void config_types( void ); static int floppy_open( struct inode *inode, struct file *filp ); static void floppy_release( struct inode * inode, struct file * filp ); /************************* End of Prototypes **************************/ static struct timer_list motor_off_timer = { NULL, NULL, 0, 0, fd_motor_off_timer }; static struct timer_list readtrack_timer = { NULL, NULL, 0, 0, fd_readtrack_check }; static struct timer_list timeout_timer = { NULL, NULL, 0, 0, fd_times_out }; /* Select the side to use. */ static void fd_select_side( int side ) { unsigned long flags; save_flags(flags); cli(); /* protect against various other ints mucking around with the PSG */ sound_ym.rd_data_reg_sel = 14; /* Select PSG Port A */ sound_ym.wd_data = (side == 0) ? sound_ym.rd_data_reg_sel | 0x01 : sound_ym.rd_data_reg_sel & 0xfe; restore_flags(flags); } /* Select a drive, update the FDC's track register and set the correct * clock speed for this disk's type. */ static void fd_select_drive( int drive ) { unsigned long flags; unsigned char tmp; if (drive == SelectedDrive) return; save_flags(flags); cli(); /* protect against various other ints mucking around with the PSG */ sound_ym.rd_data_reg_sel = 14; /* Select PSG Port A */ tmp = sound_ym.rd_data_reg_sel; sound_ym.wd_data = (tmp | DSKDRVNONE) & ~(drive == 0 ? DSKDRV0 : DSKDRV1); restore_flags(flags); /* restore track register to saved value */ FDC_WRITE( FDCREG_TRACK, UD.track ); udelay(25); /* select 8/16 MHz */ if (UDT) if (ATARIHW_PRESENT(FDCSPEED)) dma_wd.fdc_speed = UDT->fdc_speed; SelectedDrive = drive; } /* Deselect both drives. */ static void fd_deselect( void ) { unsigned long flags; save_flags(flags); cli(); /* protect against various other ints mucking around with the PSG */ sound_ym.rd_data_reg_sel=14; /* Select PSG Port A */ sound_ym.wd_data = sound_ym.rd_data_reg_sel | 7; /* no drives selected */ SelectedDrive = -1; restore_flags(flags); } /* This timer function deselects the drives when the FDC switched the * motor off. The deselection cannot happen earlier because the FDC * counts the index signals, which arrive only if one drive is selected. */ static void fd_motor_off_timer( unsigned long dummy ) { /* unsigned long flags; */ unsigned char status; int delay; del_timer( &motor_off_timer ); if (SelectedDrive < 0) /* no drive selected, needn't deselect anyone */ return; /* save_flags(flags); cli(); */ if (stdma_islocked()) goto retry; status = FDC_READ( FDCREG_STATUS ); if (!(status & 0x80)) { /* motor already turned off by FDC -> deselect drives */ MotorOn = 0; fd_deselect(); /* restore_flags(flags); */ return; } /* not yet off, try again */ retry: /* restore_flags(flags); */ /* Test again later; if tested too often, it seems there is no disk * in the drive and the FDC will leave the motor on forever (or, * at least until a disk is inserted). So we'll test only twice * per second from then on... */ delay = (MotorOffTrys < FD_MOTOR_OFF_MAXTRY) ? (++MotorOffTrys, HZ/20) : HZ/2; START_MOTOR_OFF_TIMER( delay ); } /* This function is repeatedly called to detect disk changes (as good * as possible) and keep track of the current state of the write protection. */ static void check_change( void ) { static int drive = 0; unsigned long flags; unsigned char old_porta; int stat; if (++drive > 1 || !UD.connected) drive = 0; save_flags(flags); cli(); /* protect against various other ints mucking around with the PSG */ if (!stdma_islocked()) { sound_ym.rd_data_reg_sel = 14; old_porta = sound_ym.rd_data_reg_sel; sound_ym.wd_data = (old_porta | DSKDRVNONE) & ~(drive == 0 ? DSKDRV0 : DSKDRV1); stat = !!(FDC_READ( FDCREG_STATUS ) & FDCSTAT_WPROT); sound_ym.wd_data = old_porta; if (stat != UD.wpstat) { DPRINT(( "wpstat[%d] = %d\n", drive, stat )); UD.wpstat = stat; set_bit (drive, &changed_floppies); } } restore_flags(flags); START_CHECK_CHANGE_TIMER( CHECK_CHANGE_DELAY ); } /* Handling of the Head Settling Flag: This flag should be set after each * seek operation, because we don't use seeks with verify. */ static __inline__ void set_head_settle_flag( void ) { HeadSettleFlag = FDCCMDADD_E; } static __inline__ int get_head_settle_flag( void ) { int tmp = HeadSettleFlag; HeadSettleFlag = 0; return( tmp ); } /* General Interrupt Handling */ static void (*FloppyIRQHandler)( int status ) = NULL; static void floppy_irq (int irq, struct pt_regs *fp, void *dummy) { unsigned char status; void (*handler)( int ); handler = FloppyIRQHandler; FloppyIRQHandler = NULL; if (handler) { nop(); status = FDC_READ( FDCREG_STATUS ); DPRINT(("FDC irq, status = %02x handler = %08lx\n",status,(unsigned long)handler)); handler( status ); } else { DPRINT(("FDC irq, no handler\n")); } } /* Error handling: If some error happened, retry some times, then * recalibrate, then try again, and fail after MAX_ERRORS. */ static void fd_error( void ) { if (IsFormatting) { IsFormatting = 0; FormatError = 1; wake_up( &format_wait ); return; } if (!CURRENT) return; CURRENT->errors++; if (CURRENT->errors >= MAX_ERRORS) { printk(KERN_ERR "fd%d: too many errors.\n", SelectedDrive ); end_request( 0 ); } else if (CURRENT->errors == RECALIBRATE_ERRORS) { printk(KERN_WARNING "fd%d: recalibrating\n", SelectedDrive ); if (SelectedDrive != -1) SUD.track = -1; } redo_fd_request(); } #define SET_IRQ_HANDLER(proc) do { FloppyIRQHandler = (proc); } while(0) /* ---------- Formatting ---------- */ #define FILL(n,val) \ do { \ memset( p, val, n ); \ p += n; \ } while(0) static int do_format(kdev_t device, struct atari_format_descr *desc) { unsigned char *p; int sect, nsect; unsigned long flags; int type, drive = MINOR(device) & 3; DPRINT(("do_format( dr=%d tr=%d he=%d offs=%d )\n", drive, desc->track, desc->head, desc->sect_offset )); save_flags(flags); cli(); while( fdc_busy ) sleep_on( &fdc_wait ); fdc_busy = 1; stdma_lock(floppy_irq, NULL); atari_turnon_irq( IRQ_MFP_FDC ); /* should be already, just to be sure */ restore_flags(flags); type = MINOR(device) >> 2; if (type) { if (--type >= NUM_DISK_MINORS || minor2disktype[type].drive_types > DriveType) { redo_fd_request(); return -EINVAL; } type = minor2disktype[type].index; UDT = &disk_type[type]; } if (!UDT || desc->track >= UDT->blocks/UDT->spt/2 || desc->head >= 2) { redo_fd_request(); return -EINVAL; } nsect = UDT->spt; p = TrackBuffer; /* The track buffer is used for the raw track data, so its contents become invalid! */ BufferDrive = -1; /* stop deselect timer */ del_timer( &motor_off_timer ); FILL( 60 * (nsect / 9), 0x4e ); for( sect = 0; sect < nsect; ++sect ) { FILL( 12, 0 ); FILL( 3, 0xf5 ); *p++ = 0xfe; *p++ = desc->track; *p++ = desc->head; *p++ = (nsect + sect - desc->sect_offset) % nsect + 1; *p++ = 2; *p++ = 0xf7; FILL( 22, 0x4e ); FILL( 12, 0 ); FILL( 3, 0xf5 ); *p++ = 0xfb; FILL( 512, 0xe5 ); *p++ = 0xf7; FILL( 40, 0x4e ); } FILL( TrackBuffer+BUFFER_SIZE-p, 0x4e ); IsFormatting = 1; FormatError = 0; ReqTrack = desc->track; ReqSide = desc->head; do_fd_action( drive ); sleep_on( &format_wait ); redo_fd_request(); return( FormatError ? -EIO : 0 ); } /* do_fd_action() is the general procedure for a fd request: All * required parameter settings (drive select, side select, track * position) are checked and set if needed. For each of these * parameters and the actual reading or writing exist two functions: * one that starts the setting (or skips it if possible) and one * callback for the "done" interrupt. Each done func calls the next * set function to propagate the request down to fd_rwsec_done(). */ static void do_fd_action( int drive ) { DPRINT(("do_fd_action\n")); if (UseTrackbuffer && !IsFormatting) { repeat: if (IS_BUFFERED( drive, ReqSide, ReqTrack )) { if (ReqCmd == READ) { copy_buffer( SECTOR_BUFFER(ReqSector), ReqData ); if (++ReqCnt < CURRENT->current_nr_sectors) { /* read next sector */ setup_req_params( drive ); goto repeat; } else { /* all sectors finished */ CURRENT->nr_sectors -= CURRENT->current_nr_sectors; CURRENT->sector += CURRENT->current_nr_sectors; end_request( 1 ); redo_fd_request(); return; } } else { /* cmd == WRITE, pay attention to track buffer * consistency! */ copy_buffer( ReqData, SECTOR_BUFFER(ReqSector) ); } } } if (SelectedDrive != drive) fd_select_drive( drive ); if (UD.track == -1) fd_calibrate(); else if (UD.track != ReqTrack << UDT->stretch) fd_seek(); else if (IsFormatting) fd_writetrack(); else fd_rwsec(); } /* Seek to track 0 if the current track is unknown */ static void fd_calibrate( void ) { if (SUD.track >= 0) { fd_calibrate_done( 0 ); return; } if (ATARIHW_PRESENT(FDCSPEED)) dma_wd.fdc_speed = 0; /* always seek with 8 Mhz */; DPRINT(("fd_calibrate\n")); SET_IRQ_HANDLER( fd_calibrate_done ); /* we can't verify, since the speed may be incorrect */ FDC_WRITE( FDCREG_CMD, FDCCMD_RESTORE | SUD.steprate ); NeedSeek = 1; MotorOn = 1; START_TIMEOUT(); /* wait for IRQ */ } static void fd_calibrate_done( int status ) { DPRINT(("fd_calibrate_done()\n")); STOP_TIMEOUT(); /* set the correct speed now */ if (ATARIHW_PRESENT(FDCSPEED)) dma_wd.fdc_speed = SUDT->fdc_speed; if (status & FDCSTAT_RECNF) { printk(KERN_ERR "fd%d: restore failed\n", SelectedDrive ); fd_error(); } else { SUD.track = 0; fd_seek(); } } /* Seek the drive to the requested track. The drive must have been * calibrated at some point before this. */ static void fd_seek( void ) { if (SUD.track == ReqTrack << SUDT->stretch) { fd_seek_done( 0 ); return; } if (ATARIHW_PRESENT(FDCSPEED)) { dma_wd.fdc_speed = 0; /* always seek witch 8 Mhz */ MFPDELAY(); } DPRINT(("fd_seek() to track %d\n",ReqTrack)); FDC_WRITE( FDCREG_DATA, ReqTrack << SUDT->stretch); udelay(25); SET_IRQ_HANDLER( fd_seek_done ); FDC_WRITE( FDCREG_CMD, FDCCMD_SEEK | SUD.steprate ); MotorOn = 1; set_head_settle_flag(); START_TIMEOUT(); /* wait for IRQ */ } static void fd_seek_done( int status ) { DPRINT(("fd_seek_done()\n")); STOP_TIMEOUT(); /* set the correct speed */ if (ATARIHW_PRESENT(FDCSPEED)) dma_wd.fdc_speed = SUDT->fdc_speed; if (status & FDCSTAT_RECNF) { printk(KERN_ERR "fd%d: seek error (to track %d)\n", SelectedDrive, ReqTrack ); /* we don't know exactly which track we are on now! */ SUD.track = -1; fd_error(); } else { SUD.track = ReqTrack << SUDT->stretch; NeedSeek = 0; if (IsFormatting) fd_writetrack(); else fd_rwsec(); } } /* This does the actual reading/writing after positioning the head * over the correct track. */ static int MultReadInProgress = 0; static void fd_rwsec( void ) { unsigned long paddr, flags; unsigned int rwflag, old_motoron; unsigned int track; DPRINT(("fd_rwsec(), Sec=%d, Access=%c\n",ReqSector, ReqCmd == WRITE ? 'w' : 'r' )); if (ReqCmd == WRITE) { if (ATARIHW_PRESENT(EXTD_DMA)) { paddr = (unsigned long)VTOP(ReqData); } else { copy_buffer( ReqData, DMABuffer ); paddr = PhysDMABuffer; } dma_cache_maintenance( paddr, 512, 1 ); rwflag = 0x100; } else { if (read_track) paddr = PhysTrackBuffer; else paddr = ATARIHW_PRESENT(EXTD_DMA) ? VTOP(ReqData) : PhysDMABuffer; rwflag = 0; } fd_select_side( ReqSide ); /* Start sector of this operation */ FDC_WRITE( FDCREG_SECTOR, read_track ? 1 : ReqSector ); MFPDELAY(); /* Cheat for track if stretch != 0 */ if (SUDT->stretch) { track = FDC_READ( FDCREG_TRACK); MFPDELAY(); FDC_WRITE( FDCREG_TRACK, track >> SUDT->stretch); } udelay(25); /* Setup DMA */ save_flags(flags); cli(); dma_wd.dma_lo = (unsigned char)paddr; MFPDELAY(); paddr >>= 8; dma_wd.dma_md = (unsigned char)paddr; MFPDELAY(); paddr >>= 8; if (ATARIHW_PRESENT(EXTD_DMA)) st_dma_ext_dmahi = (unsigned short)paddr; else dma_wd.dma_hi = (unsigned char)paddr; MFPDELAY(); restore_flags(flags); /* Clear FIFO and switch DMA to correct mode */ dma_wd.dma_mode_status = 0x90 | rwflag; MFPDELAY(); dma_wd.dma_mode_status = 0x90 | (rwflag ^ 0x100); MFPDELAY(); dma_wd.dma_mode_status = 0x90 | rwflag; MFPDELAY(); /* How many sectors for DMA */ dma_wd.fdc_acces_seccount = read_track ? SUDT->spt : 1; udelay(25); /* Start operation */ dma_wd.dma_mode_status = FDCSELREG_STP | rwflag; udelay(25); SET_IRQ_HANDLER( fd_rwsec_done ); dma_wd.fdc_acces_seccount = (get_head_settle_flag() | (rwflag ? FDCCMD_WRSEC : (FDCCMD_RDSEC | (read_track ? FDCCMDADD_M : 0)))); old_motoron = MotorOn; MotorOn = 1; NeedSeek = 1; /* wait for interrupt */ if (read_track) { /* If reading a whole track, wait about one disk rotation and * then check if all sectors are read. The FDC will even * search for the first non-existent sector and need 1 sec to * recognise that it isn't present :-( */ readtrack_timer.expires = jiffies + HZ/5 + (old_motoron ? 0 : HZ); /* 1 rot. + 5 rot.s if motor was off */ add_timer( &readtrack_timer ); MultReadInProgress = 1; } START_TIMEOUT(); } static void fd_readtrack_check( unsigned long dummy ) { unsigned long flags, addr, addr2; save_flags(flags); cli(); del_timer( &readtrack_timer ); if (!MultReadInProgress) { /* This prevents a race condition that could arise if the * interrupt is triggered while the calling of this timer * callback function takes place. The IRQ function then has * already cleared 'MultReadInProgress' when flow of control * gets here. */ restore_flags(flags); return; } /* get the current DMA address */ /* ++ f.a. read twice to avoid being fooled by switcher */ addr = 0; do { addr2 = addr; addr = dma_wd.dma_lo & 0xff; MFPDELAY(); addr |= (dma_wd.dma_md & 0xff) << 8; MFPDELAY(); if (ATARIHW_PRESENT( EXTD_DMA )) addr |= (st_dma_ext_dmahi & 0xffff) << 16; else addr |= (dma_wd.dma_hi & 0xff) << 16; MFPDELAY(); } while(addr != addr2); if (addr >= PhysTrackBuffer + SUDT->spt*512) { /* already read enough data, force an FDC interrupt to stop * the read operation */ SET_IRQ_HANDLER( NULL ); restore_flags(flags); DPRINT(("fd_readtrack_check(): done\n")); FDC_WRITE( FDCREG_CMD, FDCCMD_FORCI ); udelay(25); /* No error until now -- the FDC would have interrupted * otherwise! */ fd_rwsec_done( 0 ); } else { /* not yet finished, wait another tenth rotation */ restore_flags(flags); DPRINT(("fd_readtrack_check(): not yet finished\n")); readtrack_timer.expires = jiffies + HZ/5/10; add_timer( &readtrack_timer ); } } static void fd_rwsec_done( int status ) { unsigned int track; DPRINT(("fd_rwsec_done()\n")); STOP_TIMEOUT(); if (read_track) { if (!MultReadInProgress) return; MultReadInProgress = 0; del_timer( &readtrack_timer ); } /* Correct the track if stretch != 0 */ if (SUDT->stretch) { track = FDC_READ( FDCREG_TRACK); MFPDELAY(); FDC_WRITE( FDCREG_TRACK, track << SUDT->stretch); } if (!UseTrackbuffer) { dma_wd.dma_mode_status = 0x90; MFPDELAY(); if (!(dma_wd.dma_mode_status & 0x01)) { printk(KERN_ERR "fd%d: DMA error\n", SelectedDrive ); goto err_end; } } MFPDELAY(); if (ReqCmd == WRITE && (status & FDCSTAT_WPROT)) { printk(KERN_NOTICE "fd%d: is write protected\n", SelectedDrive ); goto err_end; } if ((status & FDCSTAT_RECNF) && /* RECNF is no error after a multiple read when the FDC searched for a non-existent sector! */ !(read_track && FDC_READ(FDCREG_SECTOR) > SUDT->spt)) { if (Probing) { if (SUDT > disk_type) { /* try another disk type */ SUDT--; floppy_sizes[SelectedDrive] = SUDT->blocks >> 1; } else { if (SUD.flags & FTD_MSG) printk(KERN_INFO "fd%d: Auto-detected floppy type %s\n", SelectedDrive, SUDT->name ); Probing=0; } } else { /* record not found, but not probing. Maybe stretch wrong ? Restart probing */ if (SUD.autoprobe) { SUDT = disk_type + StartDiskType[DriveType]; floppy_sizes[SelectedDrive] = SUDT->blocks >> 1; Probing = 1; } } if (Probing) { if (ATARIHW_PRESENT(FDCSPEED)) { dma_wd.fdc_speed = SUDT->fdc_speed; MFPDELAY(); } setup_req_params( SelectedDrive ); BufferDrive = -1; do_fd_action( SelectedDrive ); return; } printk(KERN_ERR "fd%d: sector %d not found (side %d, track %d)\n", SelectedDrive, FDC_READ (FDCREG_SECTOR), ReqSide, ReqTrack ); goto err_end; } if (status & FDCSTAT_CRC) { printk(KERN_ERR "fd%d: CRC error (side %d, track %d, sector %d)\n", SelectedDrive, ReqSide, ReqTrack, FDC_READ (FDCREG_SECTOR) ); goto err_end; } if (status & FDCSTAT_LOST) { printk(KERN_ERR "fd%d: lost data (side %d, track %d, sector %d)\n", SelectedDrive, ReqSide, ReqTrack, FDC_READ (FDCREG_SECTOR) ); goto err_end; } Probing = 0; if (ReqCmd == READ) { if (!read_track) { void *addr; addr = ATARIHW_PRESENT( EXTD_DMA ) ? ReqData : DMABuffer; dma_cache_maintenance( VTOP(addr), 512, 0 ); if (!ATARIHW_PRESENT( EXTD_DMA )) copy_buffer (addr, ReqData); } else { dma_cache_maintenance( PhysTrackBuffer, MAX_SECTORS * 512, 0 ); BufferDrive = SelectedDrive; BufferSide = ReqSide; BufferTrack = ReqTrack; copy_buffer (SECTOR_BUFFER (ReqSector), ReqData); } } if (++ReqCnt < CURRENT->current_nr_sectors) { /* read next sector */ setup_req_params( SelectedDrive ); do_fd_action( SelectedDrive ); } else { /* all sectors finished */ CURRENT->nr_sectors -= CURRENT->current_nr_sectors; CURRENT->sector += CURRENT->current_nr_sectors; end_request( 1 ); redo_fd_request(); } return; err_end: BufferDrive = -1; fd_error(); } static void fd_writetrack( void ) { unsigned long paddr, flags; unsigned int track; DPRINT(("fd_writetrack() Tr=%d Si=%d\n", ReqTrack, ReqSide )); paddr = PhysTrackBuffer; dma_cache_maintenance( paddr, BUFFER_SIZE, 1 ); fd_select_side( ReqSide ); /* Cheat for track if stretch != 0 */ if (SUDT->stretch) { track = FDC_READ( FDCREG_TRACK); MFPDELAY(); FDC_WRITE(FDCREG_TRACK,track >> SUDT->stretch); } udelay(40); /* Setup DMA */ save_flags(flags); cli(); dma_wd.dma_lo = (unsigned char)paddr; MFPDELAY(); paddr >>= 8; dma_wd.dma_md = (unsigned char)paddr; MFPDELAY(); paddr >>= 8; if (ATARIHW_PRESENT( EXTD_DMA )) st_dma_ext_dmahi = (unsigned short)paddr; else dma_wd.dma_hi = (unsigned char)paddr; MFPDELAY(); restore_flags(flags); /* Clear FIFO and switch DMA to correct mode */ dma_wd.dma_mode_status = 0x190; MFPDELAY(); dma_wd.dma_mode_status = 0x90; MFPDELAY(); dma_wd.dma_mode_status = 0x190; MFPDELAY(); /* How many sectors for DMA */ dma_wd.fdc_acces_seccount = BUFFER_SIZE/512; udelay(40); /* Start operation */ dma_wd.dma_mode_status = FDCSELREG_STP | 0x100; udelay(40); SET_IRQ_HANDLER( fd_writetrack_done ); dma_wd.fdc_acces_seccount = FDCCMD_WRTRA | get_head_settle_flag(); MotorOn = 1; START_TIMEOUT(); /* wait for interrupt */ } static void fd_writetrack_done( int status ) { DPRINT(("fd_writetrack_done()\n")); STOP_TIMEOUT(); if (status & FDCSTAT_WPROT) { printk(KERN_NOTICE "fd%d: is write protected\n", SelectedDrive ); goto err_end; } if (status & FDCSTAT_LOST) { printk(KERN_ERR "fd%d: lost data (side %d, track %d)\n", SelectedDrive, ReqSide, ReqTrack ); goto err_end; } wake_up( &format_wait ); return; err_end: fd_error(); } static void fd_times_out( unsigned long dummy ) { atari_disable_irq( IRQ_MFP_FDC ); if (!FloppyIRQHandler) goto end; /* int occurred after timer was fired, but * before we came here... */ SET_IRQ_HANDLER( NULL ); /* If the timeout occurred while the readtrack_check timer was * active, we need to cancel it, else bad things will happen */ if (UseTrackbuffer) del_timer( &readtrack_timer ); FDC_WRITE( FDCREG_CMD, FDCCMD_FORCI ); udelay( 25 ); printk(KERN_ERR "floppy timeout\n" ); fd_error(); end: atari_enable_irq( IRQ_MFP_FDC ); } /* The (noop) seek operation here is needed to make the WP bit in the * FDC status register accessible for check_change. If the last disk * operation would have been a RDSEC, this bit would always read as 0 * no matter what :-( To save time, the seek goes to the track we're * already on. */ static void finish_fdc( void ) { if (!NeedSeek) { finish_fdc_done( 0 ); } else { DPRINT(("finish_fdc: dummy seek started\n")); FDC_WRITE (FDCREG_DATA, SUD.track); SET_IRQ_HANDLER( finish_fdc_done ); FDC_WRITE (FDCREG_CMD, FDCCMD_SEEK); MotorOn = 1; START_TIMEOUT(); /* we must wait for the IRQ here, because the ST-DMA is released immediately afterwards and the interrupt may be delivered to the wrong driver. */ } } static void finish_fdc_done( int dummy ) { unsigned long flags; DPRINT(("finish_fdc_done entered\n")); STOP_TIMEOUT(); NeedSeek = 0; if ((timer_active & (1 << FLOPPY_TIMER)) && timer_table[FLOPPY_TIMER].expires < jiffies + 5) /* If the check for a disk change is done too early after this * last seek command, the WP bit still reads wrong :-(( */ timer_table[FLOPPY_TIMER].expires = jiffies + 5; else START_CHECK_CHANGE_TIMER( CHECK_CHANGE_DELAY ); del_timer( &motor_off_timer ); START_MOTOR_OFF_TIMER( FD_MOTOR_OFF_DELAY ); save_flags(flags); cli(); stdma_release(); fdc_busy = 0; wake_up( &fdc_wait ); restore_flags(flags); DPRINT(("finish_fdc() finished\n")); } /* Prevent "aliased" accesses. */ static fd_ref[4] = { 0,0,0,0 }; static fd_device[4] = { 0,0,0,0 }; /* * Current device number. Taken either from the block header or from the * format request descriptor. */ #define CURRENT_DEVICE (CURRENT->rq_dev) /* Current error count. */ #define CURRENT_ERRORS (CURRENT->errors) /* dummy for blk.h */ static void floppy_off( unsigned int nr) {} /* The detection of disk changes is a dark chapter in Atari history :-( * Because the "Drive ready" signal isn't present in the Atari * hardware, one has to rely on the "Write Protect". This works fine, * as long as no write protected disks are used. TOS solves this * problem by introducing tri-state logic ("maybe changed") and * looking at the serial number in block 0. This isn't possible for * Linux, since the floppy driver can't make assumptions about the * filesystem used on the disk and thus the contents of block 0. I've * chosen the method to always say "The disk was changed" if it is * unsure whether it was. This implies that every open or mount * invalidates the disk buffers if you work with write protected * disks. But at least this is better than working with incorrect data * due to unrecognised disk changes. */ static int check_floppy_change (kdev_t dev) { unsigned int drive = MINOR(dev) & 0x03; if (MAJOR(dev) != MAJOR_NR) { printk(KERN_ERR "floppy_changed: not a floppy\n"); return 0; } if (test_bit (drive, &fake_change)) { /* simulated change (e.g. after formatting) */ return 1; } if (test_bit (drive, &changed_floppies)) { /* surely changed (the WP signal changed at least once) */ return 1; } if (UD.wpstat) { /* WP is on -> could be changed: to be sure, buffers should be * invalidated... */ return 1; } return 0; } static int floppy_revalidate (kdev_t dev) { int drive = MINOR(dev) & 3; if (test_bit (drive, &changed_floppies) || test_bit (drive, &fake_change) || unit[drive].disktype == 0) { BufferDrive = -1; clear_bit (drive, &fake_change); clear_bit (drive, &changed_floppies); UDT = 0; } return 0; } static __inline__ void copy_buffer(void *from, void *to) { ulong *p1 = (ulong *)from, *p2 = (ulong *)to; int cnt; for( cnt = 512/4; cnt; cnt-- ) *p2++ = *p1++; } /* This sets up the global variables describing the current request. */ static void setup_req_params( int drive ) { int block = ReqBlock + ReqCnt; ReqTrack = block / UDT->spt; ReqSector = block - ReqTrack * UDT->spt + 1; ReqSide = ReqTrack & 1; ReqTrack >>= 1; ReqData = ReqBuffer + 512 * ReqCnt; if (UseTrackbuffer) read_track = (ReqCmd == READ && CURRENT_ERRORS == 0); else read_track = 0; DPRINT(("Request params: Si=%d Tr=%d Se=%d Data=%08lx\n",ReqSide, ReqTrack, ReqSector, (unsigned long)ReqData )); } static void redo_fd_request(void) { int device, drive, type; DPRINT(("redo_fd_request: CURRENT=%08lx CURRENT->dev=%04x CURRENT->sector=%ld\n", (unsigned long)CURRENT, CURRENT ? CURRENT->rq_dev : 0, CURRENT ? CURRENT->sector : 0 )); IsFormatting = 0; if (CURRENT && CURRENT->rq_status == RQ_INACTIVE){ return; } repeat: if (!CURRENT) goto the_end; if (MAJOR(CURRENT->rq_dev) != MAJOR_NR) panic(DEVICE_NAME ": request list destroyed"); if (CURRENT->bh && !buffer_locked(CURRENT->bh)) panic(DEVICE_NAME ": block not locked"); device = MINOR(CURRENT_DEVICE); drive = device & 3; type = device >> 2; if (!UD.connected) { /* drive not connected */ printk(KERN_ERR "Unknown Device: fd%d\n", drive ); end_request(0); goto repeat; } if (type == 0) { if (!UDT) { Probing = 1; UDT = disk_type + StartDiskType[DriveType]; floppy_sizes[drive] = UDT->blocks >> 1; UD.autoprobe = 1; } } else { /* user supplied disk type */ if (--type >= NUM_DISK_MINORS) { printk(KERN_WARNING "fd%d: invalid disk format", drive ); end_request( 0 ); goto repeat; } if (minor2disktype[type].drive_types > DriveType) { printk(KERN_WARNING "fd%d: unsupported disk format", drive ); end_request( 0 ); goto repeat; } type = minor2disktype[type].index; UDT = &disk_type[type]; floppy_sizes[drive] = UDT->blocks >> 1; UD.autoprobe = 0; } if (CURRENT->sector + 1 > UDT->blocks) { end_request(0); goto repeat; } /* stop deselect timer */ del_timer( &motor_off_timer ); ReqCnt = 0; ReqCmd = CURRENT->cmd; ReqBlock = CURRENT->sector; ReqBuffer = CURRENT->buffer; setup_req_params( drive ); do_fd_action( drive ); return; the_end: finish_fdc(); } void do_fd_request(void) { unsigned long flags; DPRINT(("do_fd_request for pid %d\n",current->pid)); while( fdc_busy ) sleep_on( &fdc_wait ); fdc_busy = 1; stdma_lock(floppy_irq, NULL); atari_disable_irq( IRQ_MFP_FDC ); save_flags(flags); /* The request function is called with ints sti(); * disabled... so must save the IPL for later */ redo_fd_request(); restore_flags(flags); atari_enable_irq( IRQ_MFP_FDC ); } static int invalidate_drive (kdev_t rdev) { /* invalidate the buffer track to force a reread */ BufferDrive = -1; set_bit (MINOR(rdev) & 3, &fake_change); check_disk_change (rdev); return 0; } static int fd_ioctl(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long param) { #define IOCTL_MODE_BIT 8 #define OPEN_WRITE_BIT 16 #define IOCTL_ALLOWED (filp && (filp->f_mode & IOCTL_MODE_BIT)) #define COPYIN(x) (memcpy_fromfs( &(x), (void *) param, sizeof(x))) int drive, type, error; kdev_t device; struct atari_format_descr fmt_desc; struct atari_disk_type *dtp; struct floppy_struct getprm; device = inode->i_rdev; switch (cmd) { RO_IOCTLS (device, param); } drive = MINOR (device); type = drive >> 2; drive &= 3; switch (cmd) { case FDGETPRM: if (type) { if (--type >= NUM_DISK_MINORS) return -ENODEV; if (minor2disktype[type].drive_types > DriveType) return -ENODEV; type = minor2disktype[type].index; dtp = &disk_type[type]; } else { if (!UDT) return -ENXIO; else dtp = UDT; } error = verify_area(VERIFY_WRITE, (void *)param, sizeof(struct floppy_struct)); if (error) return( error ); memset((void *)&getprm, 0, sizeof(getprm)); getprm.size = dtp->blocks; getprm.sect = dtp->spt; getprm.head = 2; getprm.track = dtp->blocks/dtp->spt/2; getprm.stretch = dtp->stretch; memcpy_tofs((void *)param, &getprm, sizeof(struct floppy_struct)); return 0; } if (!IOCTL_ALLOWED) return -EPERM; switch (cmd) { case FDSETPRM: case FDDEFPRM: return -EINVAL; case FDMSGON: UD.flags |= FTD_MSG; return 0; case FDMSGOFF: UD.flags &= ~FTD_MSG; return 0; case FDSETEMSGTRESH: return -EINVAL; case FDFMTBEG: return 0; case FDFMTTRK: if (fd_ref[drive] != 1 && fd_ref[drive] != -1) return -EBUSY; if ((error = verify_area(VERIFY_READ, (void *)param, sizeof(struct atari_format_descr) ))) return( error ); COPYIN( fmt_desc ); return do_format(device, &fmt_desc); case FDCLRPRM: UDT = NULL; floppy_sizes[drive] = MAX_DISK_SIZE; return invalidate_drive (device); case FDFMTEND: case FDFLUSH: return invalidate_drive (drive); } return -EINVAL; } /* Initialize the 'unit' variable for drive 'drive' */ static void fd_probe( int drive ) { UD.connected = 0; UDT = NULL; if (!fd_test_drive_present( drive )) return; UD.connected = 1; UD.track = 0; switch( UserSteprate[drive] ) { case 2: UD.steprate = FDCSTEP_2; break; case 3: UD.steprate = FDCSTEP_3; break; case 6: UD.steprate = FDCSTEP_6; break; case 12: UD.steprate = FDCSTEP_12; break; default: /* should be -1 for "not set by user" */ if (ATARIHW_PRESENT( FDCSPEED ) || is_medusa) UD.steprate = FDCSTEP_3; else UD.steprate = FDCSTEP_6; break; } MotorOn = 1; /* from probe restore operation! */ } /* This function tests the physical presence of a floppy drive (not * whether a disk is inserted). This is done by issuing a restore * command, waiting max. 2 seconds (that should be enough to move the * head across the whole disk) and looking at the state of the "TR00" * signal. This should now be raised if there is a drive connected * (and there is no hardware failure :-) Otherwise, the drive is * declared absent. */ static int fd_test_drive_present( int drive ) { unsigned long timeout; unsigned char status; int ok; if (drive > 1) return( 0 ); fd_select_drive( drive ); /* disable interrupt temporarily */ atari_turnoff_irq( IRQ_MFP_FDC ); FDC_WRITE (FDCREG_TRACK, 0xff00); FDC_WRITE( FDCREG_CMD, FDCCMD_RESTORE | FDCCMDADD_H | FDCSTEP_6 ); for( ok = 0, timeout = jiffies + 2*HZ+HZ/2; jiffies < timeout; ) { if (!(mfp.par_dt_reg & 0x20)) break; } status = FDC_READ( FDCREG_STATUS ); ok = (status & FDCSTAT_TR00) != 0; /* force interrupt to abort restore operation (FDC would try * about 50 seconds!) */ FDC_WRITE( FDCREG_CMD, FDCCMD_FORCI ); udelay(500); status = FDC_READ( FDCREG_STATUS ); udelay(20); if (ok) { /* dummy seek command to make WP bit accessible */ FDC_WRITE( FDCREG_DATA, 0 ); FDC_WRITE( FDCREG_CMD, FDCCMD_SEEK ); while( mfp.par_dt_reg & 0x20 ) ; status = FDC_READ( FDCREG_STATUS ); } atari_turnon_irq( IRQ_MFP_FDC ); return( ok ); } /* Look how many and which kind of drives are connected. If there are * floppies, additionally start the disk-change and motor-off timers. */ static void config_types( void ) { int drive, cnt = 0; /* for probing drives, set the FDC speed to 8 MHz */ if (ATARIHW_PRESENT(FDCSPEED)) dma_wd.fdc_speed = 0; printk(KERN_INFO "Probing floppy drive(s):\n"); for( drive = 0; drive < FD_MAX_UNITS; drive++ ) { fd_probe( drive ); if (UD.connected) { printk(KERN_INFO "fd%d\n", drive); ++cnt; } } if (FDC_READ( FDCREG_STATUS ) & FDCSTAT_BUSY) { /* If FDC is still busy from probing, give it another FORCI * command to abort the operation. If this isn't done, the FDC * will interrupt later and its IRQ line stays low, because * the status register isn't read. And this will block any * interrupts on this IRQ line :-( */ FDC_WRITE( FDCREG_CMD, FDCCMD_FORCI ); udelay(500); FDC_READ( FDCREG_STATUS ); udelay(20); } if (cnt > 0) { START_MOTOR_OFF_TIMER( FD_MOTOR_OFF_DELAY ); if (cnt == 1) fd_select_drive( 0 ); START_CHECK_CHANGE_TIMER( CHECK_CHANGE_DELAY ); } } /* * floppy_open check for aliasing (/dev/fd0 can be the same as * /dev/PS0 etc), and disallows simultaneous access to the same * drive with different device numbers. */ static int floppy_open( struct inode *inode, struct file *filp ) { int drive, type; int old_dev; if (!filp) { DPRINT (("Weird, open called with filp=0\n")); return -EIO; } drive = MINOR (inode->i_rdev) & 3; type = MINOR(inode->i_rdev) >> 2; DPRINT(("fd_open: type=%d\n",type)); if (type > NUM_DISK_MINORS) return -ENXIO; old_dev = fd_device[drive]; if (fd_ref[drive]) if (old_dev != inode->i_rdev) return -EBUSY; if (fd_ref[drive] == -1 || (fd_ref[drive] && filp->f_flags & O_EXCL)) return -EBUSY; if (filp->f_flags & O_EXCL) fd_ref[drive] = -1; else fd_ref[drive]++; fd_device[drive] = inode->i_rdev; if (old_dev && old_dev != inode->i_rdev) invalidate_buffers(old_dev); /* Allow ioctls if we have write-permissions even if read-only open */ if (filp->f_mode & 2 || permission (inode, 2) == 0) filp->f_mode |= IOCTL_MODE_BIT; if (filp->f_mode & 2) filp->f_mode |= OPEN_WRITE_BIT; MOD_INC_USE_COUNT; if (filp->f_flags & O_NDELAY) return 0; if (filp->f_mode & 3) { check_disk_change( inode->i_rdev ); if (filp->f_mode & 2) { if (UD.wpstat) { floppy_release(inode, filp); return -EROFS; } } } return 0; } static void floppy_release( struct inode * inode, struct file * filp ) { int drive; drive = inode->i_rdev & 3; if (!filp || (filp->f_mode & (2 | OPEN_WRITE_BIT))) /* if the file is mounted OR (writable now AND writable at open time) Linus: Does this cover all cases? */ block_fsync (inode, filp); if (fd_ref[drive] < 0) fd_ref[drive] = 0; else if (!fd_ref[drive]--) { printk(KERN_ERR "floppy_release with fd_ref == 0"); fd_ref[drive] = 0; } MOD_DEC_USE_COUNT; } static struct file_operations floppy_fops = { NULL, /* lseek - default */ block_read, /* read - general block-dev read */ block_write, /* write - general block-dev write */ NULL, /* readdir - bad */ NULL, /* select */ fd_ioctl, /* ioctl */ NULL, /* mmap */ floppy_open, /* open */ floppy_release, /* release */ block_fsync, /* fsync */ NULL, /* fasync */ check_floppy_change, /* media_change */ floppy_revalidate, /* revalidate */ }; int atari_floppy_init (void) { int i; if (register_blkdev(MAJOR_NR,"fd",&floppy_fops)) { printk(KERN_ERR "Unable to get major %d for floppy\n",MAJOR_NR); return -EBUSY; } if (UseTrackbuffer < 0) /* not set by user -> use default: for now, we turn track buffering off for all Medusas, though it could be used with ones that have a counter card. But the test is too hard :-( */ UseTrackbuffer = !is_medusa; /* initialize variables */ SelectedDrive = -1; BufferDrive = -1; /* initialize check_change timer */ timer_table[FLOPPY_TIMER].fn = check_change; timer_active &= ~(1 << FLOPPY_TIMER); DMABuffer = kmalloc(BUFFER_SIZE + 512, GFP_KERNEL | GFP_DMA); if (!DMABuffer) { printk(KERN_ERR "atari_floppy_init: cannot get dma buffer\n"); unregister_blkdev(MAJOR_NR, "fd"); return -ENOMEM; } TrackBuffer = DMABuffer + 512; PhysDMABuffer = (unsigned long) VTOP(DMABuffer); PhysTrackBuffer = (unsigned long) VTOP(TrackBuffer); BufferDrive = BufferSide = BufferTrack = -1; for (i = 0; i < FD_MAX_UNITS; i++) { unit[i].track = -1; unit[i].flags = 0; } for (i = 0; i < 256; i++) if ((i >> 2) > 0 && (i >> 2) <= NUM_DISK_MINORS) { int type = minor2disktype[(i >> 2) - 1].index; floppy_sizes[i] = disk_type[type].blocks >> 1; } else floppy_sizes[i] = MAX_DISK_SIZE; blk_size[MAJOR_NR] = floppy_sizes; blksize_size[MAJOR_NR] = floppy_blocksizes; blk_dev[MAJOR_NR].request_fn = DEVICE_REQUEST; printk(KERN_INFO "Atari floppy driver: max. %cD, %strack buffering\n", DriveType == 0 ? 'D' : DriveType == 1 ? 'H' : 'E', UseTrackbuffer ? "" : "no "); config_types(); return 0; } void atari_floppy_setup( char *str, int *ints ) { int i; if (ints[0] < 1) { printk(KERN_ERR "ataflop_setup: no arguments!\n" ); return; } else if (ints[0] > 2+FD_MAX_UNITS) { printk(KERN_ERR "ataflop_setup: too many arguments\n" ); } if (ints[1] < 0 || ints[1] > 2) printk(KERN_ERR "ataflop_setup: bad drive type\n" ); else DriveType = ints[1]; if (ints[0] >= 2) UseTrackbuffer = (ints[2] > 0); for( i = 3; i <= ints[0] && i-3 < FD_MAX_UNITS; ++i ) { if (ints[i] != 2 && ints[i] != 3 && ints[i] != 6 && ints[i] != 12) printk(KERN_ERR "ataflop_setup: bad steprate\n" ); else UserSteprate[i-3] = ints[i]; } } #ifdef MODULE int init_module (void) { if (!MACH_IS_ATARI) return -ENXIO; return atari_floppy_init (); } void cleanup_module (void) { unregister_blkdev(MAJOR_NR, "fd"); blk_dev[MAJOR_NR].request_fn = 0; timer_active &= ~(1 << FLOPPY_TIMER); timer_table[FLOPPY_TIMER].fn = 0; kfree (DMABuffer); } #endif