URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [drivers/] [block/] [hd.c] - Rev 1777
Go to most recent revision | Compare with Previous | Blame | View Log
/* * linux/drivers/block/hd.c * * Copyright (C) 1991, 1992 Linus Torvalds */ /* * This is the low-level hd interrupt support. It traverses the * request-list, using interrupts to jump between functions. As * all the functions are called within interrupts, we may not * sleep. Special care is recommended. * * modified by Drew Eckhardt to check nr of hd's from the CMOS. * * Thanks to Branko Lankester, lankeste@fwi.uva.nl, who found a bug * in the early extended-partition checks and added DM partitions * * IRQ-unmask, drive-id, multiple-mode, support for ">16 heads", * and general streamlining by Mark Lord. */ #define DEFAULT_MULT_COUNT 0 /* set to 0 to disable multiple mode at boot */ #define DEFAULT_UNMASK_INTR 0 /* set to 0 to *NOT* unmask irq's more often */ #include <asm/irq.h> #include <linux/errno.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/timer.h> #include <linux/fs.h> #include <linux/kernel.h> #include <linux/hdreg.h> #include <linux/genhd.h> #include <linux/malloc.h> #include <linux/string.h> #include <linux/ioport.h> #include <linux/mc146818rtc.h> /* CMOS defines */ #define REALLY_SLOW_IO #include <asm/system.h> #include <asm/io.h> #include <asm/segment.h> #define MAJOR_NR HD_MAJOR #include <linux/blk.h> static int revalidate_hddisk(kdev_t, int); #define HD_DELAY 0 #define MAX_ERRORS 16 /* Max read/write errors/sector */ #define RESET_FREQ 8 /* Reset controller every 8th retry */ #define RECAL_FREQ 4 /* Recalibrate every 4th retry */ #define MAX_HD 2 #define STAT_OK (READY_STAT|SEEK_STAT) #define OK_STATUS(s) (((s)&(STAT_OK|(BUSY_STAT|WRERR_STAT|ERR_STAT)))==STAT_OK) static void recal_intr(void); static void bad_rw_intr(void); static char recalibrate[MAX_HD] = { 0, }; static char special_op[MAX_HD] = { 0, }; static int access_count[MAX_HD] = {0, }; static char busy[MAX_HD] = {0, }; static struct wait_queue * busy_wait = NULL; static int reset = 0; static int hd_error = 0; /* * This struct defines the HD's and their types. */ struct hd_i_struct { unsigned int head,sect,cyl,wpcom,lzone,ctl; }; static struct hd_driveid *hd_ident_info[MAX_HD] = {0, }; #ifdef HD_TYPE static struct hd_i_struct hd_info[] = { HD_TYPE }; struct hd_i_struct bios_info[] = { HD_TYPE }; static int NR_HD = ((sizeof (hd_info))/(sizeof (struct hd_i_struct))); #else static struct hd_i_struct hd_info[] = { {0,0,0,0,0,0},{0,0,0,0,0,0} }; struct hd_i_struct bios_info[] = { {0,0,0,0,0,0},{0,0,0,0,0,0} }; static int NR_HD = 0; #endif static struct hd_struct hd[MAX_HD<<6]={{0,0},}; static int hd_sizes[MAX_HD<<6] = {0, }; static int hd_blocksizes[MAX_HD<<6] = {0, }; #if (HD_DELAY > 0) unsigned long last_req; unsigned long read_timer(void) { unsigned long t, flags; int i; save_flags(flags); cli(); t = jiffies * 11932; outb_p(0, 0x43); i = inb_p(0x40); i |= inb(0x40) << 8; restore_flags(flags); return(t - i); } #endif void hd_setup(char *str, int *ints) { int hdind = 0; if (ints[0] != 3) return; if (bios_info[0].head != 0) hdind=1; bios_info[hdind].head = hd_info[hdind].head = ints[2]; bios_info[hdind].sect = hd_info[hdind].sect = ints[3]; bios_info[hdind].cyl = hd_info[hdind].cyl = ints[1]; bios_info[hdind].wpcom = hd_info[hdind].wpcom = 0; bios_info[hdind].lzone = hd_info[hdind].lzone = ints[1]; bios_info[hdind].ctl = hd_info[hdind].ctl = (ints[2] > 8 ? 8 : 0); NR_HD = hdind+1; } static void dump_status (const char *msg, unsigned int stat) { unsigned long flags; char devc; devc = CURRENT ? 'a' + DEVICE_NR(CURRENT->rq_dev) : '?'; save_flags (flags); sti(); printk("hd%c: %s: status=0x%02x { ", devc, msg, stat & 0xff); if (stat & BUSY_STAT) printk("Busy "); if (stat & READY_STAT) printk("DriveReady "); if (stat & WRERR_STAT) printk("WriteFault "); if (stat & SEEK_STAT) printk("SeekComplete "); if (stat & DRQ_STAT) printk("DataRequest "); if (stat & ECC_STAT) printk("CorrectedError "); if (stat & INDEX_STAT) printk("Index "); if (stat & ERR_STAT) printk("Error "); printk("}\n"); if ((stat & ERR_STAT) == 0) { hd_error = 0; } else { hd_error = inb(HD_ERROR); printk("hd%c: %s: error=0x%02x { ", devc, msg, hd_error & 0xff); if (hd_error & BBD_ERR) printk("BadSector "); if (hd_error & ECC_ERR) printk("UncorrectableError "); if (hd_error & ID_ERR) printk("SectorIdNotFound "); if (hd_error & ABRT_ERR) printk("DriveStatusError "); if (hd_error & TRK0_ERR) printk("TrackZeroNotFound "); if (hd_error & MARK_ERR) printk("AddrMarkNotFound "); printk("}"); if (hd_error & (BBD_ERR|ECC_ERR|ID_ERR|MARK_ERR)) { printk(", CHS=%d/%d/%d", (inb(HD_HCYL)<<8) + inb(HD_LCYL), inb(HD_CURRENT) & 0xf, inb(HD_SECTOR)); if (CURRENT) printk(", sector=%ld", CURRENT->sector); } printk("\n"); } restore_flags (flags); } void check_status(void) { int i = inb_p(HD_STATUS); if (!OK_STATUS(i)) { dump_status("check_status", i); bad_rw_intr(); } } static int controller_busy(void) { int retries = 100000; unsigned char status; do { status = inb_p(HD_STATUS); } while ((status & BUSY_STAT) && --retries); return status; } static int status_ok(void) { unsigned char status = inb_p(HD_STATUS); if (status & BUSY_STAT) return 1; /* Ancient, but does it make sense??? */ if (status & WRERR_STAT) return 0; if (!(status & READY_STAT)) return 0; if (!(status & SEEK_STAT)) return 0; return 1; } static int controller_ready(unsigned int drive, unsigned int head) { int retry = 100; do { if (controller_busy() & BUSY_STAT) return 0; outb_p(0xA0 | (drive<<4) | head, HD_CURRENT); if (status_ok()) return 1; } while (--retry); return 0; } static void hd_out(unsigned int drive,unsigned int nsect,unsigned int sect, unsigned int head,unsigned int cyl,unsigned int cmd, void (*intr_addr)(void)) { unsigned short port; #if (HD_DELAY > 0) while (read_timer() - last_req < HD_DELAY) /* nothing */; #endif if (reset) return; if (!controller_ready(drive, head)) { reset = 1; return; } SET_INTR(intr_addr); outb_p(hd_info[drive].ctl,HD_CMD); port=HD_DATA; outb_p(hd_info[drive].wpcom>>2,++port); outb_p(nsect,++port); outb_p(sect,++port); outb_p(cyl,++port); outb_p(cyl>>8,++port); outb_p(0xA0|(drive<<4)|head,++port); outb_p(cmd,++port); } static void hd_request (void); static unsigned int identified [MAX_HD] = {0,}; /* 1 = drive ID already displayed */ static unsigned int unmask_intr [MAX_HD] = {0,}; /* 1 = unmask IRQs during I/O */ static unsigned int max_mult [MAX_HD] = {0,}; /* max sectors for MultMode */ static unsigned int mult_req [MAX_HD] = {0,}; /* requested MultMode count */ static unsigned int mult_count [MAX_HD] = {0,}; /* currently enabled MultMode count */ static struct request WCURRENT; static void fixstring (unsigned char *s, int bytecount) { unsigned char *p, *end = &s[bytecount &= ~1]; /* bytecount must be even */ /* convert from big-endian to little-endian */ for (p = end ; p != s;) { unsigned short *pp = (unsigned short *) (p -= 2); *pp = (*pp >> 8) | (*pp << 8); } /* strip leading blanks */ while (s != end && *s == ' ') ++s; /* compress internal blanks and strip trailing blanks */ while (s != end && *s) { if (*s++ != ' ' || (s != end && *s && *s != ' ')) *p++ = *(s-1); } /* wipe out trailing garbage */ while (p != end) *p++ = '\0'; } static void identify_intr(void) { unsigned int dev = DEVICE_NR(CURRENT->rq_dev); unsigned short stat = inb_p(HD_STATUS); struct hd_driveid *id = hd_ident_info[dev]; if (unmask_intr[dev]) sti(); if (stat & (BUSY_STAT|ERR_STAT)) { printk (" hd%c: non-IDE device, %dMB, CHS=%d/%d/%d\n", dev+'a', hd_info[dev].cyl*hd_info[dev].head*hd_info[dev].sect / 2048, hd_info[dev].cyl, hd_info[dev].head, hd_info[dev].sect); if (id != NULL) { hd_ident_info[dev] = NULL; kfree_s (id, 512); } } else { insw(HD_DATA, id, 256); /* get ID info */ max_mult[dev] = id->max_multsect; if ((id->field_valid&1) && id->cur_cyls && id->cur_heads && (id->cur_heads <= 16) && id->cur_sectors) { /* * Extract the physical drive geometry for our use. * Note that we purposely do *not* update the bios_info. * This way, programs that use it (like fdisk) will * still have the same logical view as the BIOS does, * which keeps the partition table from being screwed. */ hd_info[dev].cyl = id->cur_cyls; hd_info[dev].head = id->cur_heads; hd_info[dev].sect = id->cur_sectors; } fixstring (id->serial_no, sizeof(id->serial_no)); fixstring (id->fw_rev, sizeof(id->fw_rev)); fixstring (id->model, sizeof(id->model)); printk (" hd%c: %.40s, %dMB w/%dKB Cache, CHS=%d/%d/%d, MaxMult=%d\n", dev+'a', id->model, id->cyls*id->heads*id->sectors/2048, id->buf_size/2, bios_info[dev].cyl, bios_info[dev].head, bios_info[dev].sect, id->max_multsect); /* * Early model Quantum drives go weird at this point, * but doing a recalibrate seems to "fix" them. * (Doing a full reset confuses some other model Quantums) */ if (!strncmp(id->model, "QUANTUM", 7)) special_op[dev] = recalibrate[dev] = 1; } #if (HD_DELAY > 0) last_req = read_timer(); #endif hd_request(); return; } static void set_multmode_intr(void) { unsigned int dev = DEVICE_NR(CURRENT->rq_dev), stat = inb_p(HD_STATUS); if (unmask_intr[dev]) sti(); if (stat & (BUSY_STAT|ERR_STAT)) { mult_req[dev] = mult_count[dev] = 0; dump_status("set multmode failed", stat); } else { if ((mult_count[dev] = mult_req[dev])) printk (" hd%c: enabled %d-sector multiple mode\n", dev+'a', mult_count[dev]); else printk (" hd%c: disabled multiple mode\n", dev+'a'); } #if (HD_DELAY > 0) last_req = read_timer(); #endif hd_request(); return; } static int drive_busy(void) { unsigned int i; unsigned char c; for (i = 0; i < 500000 ; i++) { c = inb_p(HD_STATUS); if ((c & (BUSY_STAT | READY_STAT | SEEK_STAT)) == STAT_OK) return 0; } dump_status("reset timed out", c); return 1; } static void reset_controller(void) { int i; outb_p(4,HD_CMD); for(i = 0; i < 1000; i++) barrier(); outb_p(hd_info[0].ctl & 0x0f,HD_CMD); for(i = 0; i < 1000; i++) barrier(); if (drive_busy()) printk("hd: controller still busy\n"); else if ((hd_error = inb(HD_ERROR)) != 1) printk("hd: controller reset failed: %02x\n",hd_error); } static void reset_hd(void) { static int i; repeat: if (reset) { reset = 0; i = -1; reset_controller(); } else { check_status(); if (reset) goto repeat; } if (++i < NR_HD) { special_op[i] = recalibrate[i] = 1; if (unmask_intr[i]) { unmask_intr[i] = DEFAULT_UNMASK_INTR; printk("hd%c: reset irq-unmasking to %d\n",i+'a', DEFAULT_UNMASK_INTR); } if (mult_req[i] || mult_count[i]) { mult_count[i] = 0; mult_req[i] = DEFAULT_MULT_COUNT; printk("hd%c: reset multiple mode to %d\n",i+'a', DEFAULT_MULT_COUNT); } hd_out(i,hd_info[i].sect,hd_info[i].sect,hd_info[i].head-1, hd_info[i].cyl,WIN_SPECIFY,&reset_hd); if (reset) goto repeat; } else hd_request(); } /* * Ok, don't know what to do with the unexpected interrupts: on some machines * doing a reset and a retry seems to result in an eternal loop. Right now I * ignore it, and just set the timeout. * * On laptops (and "green" PCs), an unexpected interrupt occurs whenever the * drive enters "idle", "standby", or "sleep" mode, so if the status looks * "good", we just ignore the interrupt completely. */ void unexpected_hd_interrupt(void) { unsigned int stat = inb_p(HD_STATUS); if (stat & (BUSY_STAT|DRQ_STAT|ECC_STAT|ERR_STAT)) { dump_status ("unexpected interrupt", stat); SET_TIMER; } } /* * bad_rw_intr() now tries to be a bit smarter and does things * according to the error returned by the controller. * -Mika Liljeberg (liljeber@cs.Helsinki.FI) */ static void bad_rw_intr(void) { int dev; if (!CURRENT) return; dev = DEVICE_NR(CURRENT->rq_dev); if (++CURRENT->errors >= MAX_ERRORS || (hd_error & BBD_ERR)) { end_request(0); special_op[dev] = recalibrate[dev] = 1; } else if (CURRENT->errors % RESET_FREQ == 0) reset = 1; else if ((hd_error & TRK0_ERR) || CURRENT->errors % RECAL_FREQ == 0) special_op[dev] = recalibrate[dev] = 1; /* Otherwise just retry */ } static inline int wait_DRQ(void) { int retries = 100000, stat; while (--retries > 0) if ((stat = inb_p(HD_STATUS)) & DRQ_STAT) return 0; dump_status("wait_DRQ", stat); return -1; } static void read_intr(void) { unsigned int dev = DEVICE_NR(CURRENT->rq_dev); int i, retries = 100000, msect = mult_count[dev], nsect; if (unmask_intr[dev]) sti(); /* permit other IRQs during xfer */ do { i = (unsigned) inb_p(HD_STATUS); if (i & BUSY_STAT) continue; if (!OK_STATUS(i)) break; if (i & DRQ_STAT) goto ok_to_read; } while (--retries > 0); dump_status("read_intr", i); bad_rw_intr(); hd_request(); return; ok_to_read: if (msect) { if ((nsect = CURRENT->current_nr_sectors) > msect) nsect = msect; msect -= nsect; } else nsect = 1; insw(HD_DATA,CURRENT->buffer,nsect<<8); CURRENT->sector += nsect; CURRENT->buffer += nsect<<9; CURRENT->errors = 0; i = (CURRENT->nr_sectors -= nsect); #ifdef DEBUG printk("hd%c: read: sectors(%ld-%ld), remaining=%ld, buffer=0x%08lx\n", dev+'a', CURRENT->sector, CURRENT->sector+nsect, CURRENT->nr_sectors, (unsigned long) CURRENT->buffer+(nsect<<9)); #endif if ((CURRENT->current_nr_sectors -= nsect) <= 0) end_request(1); if (i > 0) { if (msect) goto ok_to_read; SET_INTR(&read_intr); return; } (void) inb_p(HD_STATUS); #if (HD_DELAY > 0) last_req = read_timer(); #endif if (CURRENT) hd_request(); return; } static inline void multwrite (unsigned int dev) { unsigned int mcount = mult_count[dev]; while (mcount--) { outsw(HD_DATA,WCURRENT.buffer,256); if (!--WCURRENT.nr_sectors) return; WCURRENT.buffer += 512; if (!--WCURRENT.current_nr_sectors) { WCURRENT.bh = WCURRENT.bh->b_reqnext; if (WCURRENT.bh == NULL) panic("buffer list corrupted\n"); WCURRENT.current_nr_sectors = WCURRENT.bh->b_size>>9; WCURRENT.buffer = WCURRENT.bh->b_data; } } } static void multwrite_intr(void) { int i; unsigned int dev = DEVICE_NR(WCURRENT.rq_dev); if (unmask_intr[dev]) sti(); if (OK_STATUS(i=inb_p(HD_STATUS))) { if (i & DRQ_STAT) { if (WCURRENT.nr_sectors) { multwrite(dev); SET_INTR(&multwrite_intr); return; } } else { if (!WCURRENT.nr_sectors) { /* all done? */ for (i = CURRENT->nr_sectors; i > 0;){ i -= CURRENT->current_nr_sectors; end_request(1); } #if (HD_DELAY > 0) last_req = read_timer(); #endif if (CURRENT) hd_request(); return; } } } dump_status("multwrite_intr", i); bad_rw_intr(); hd_request(); } static void write_intr(void) { int i; int retries = 100000; if (unmask_intr[DEVICE_NR(WCURRENT.rq_dev)]) sti(); do { i = (unsigned) inb_p(HD_STATUS); if (i & BUSY_STAT) continue; if (!OK_STATUS(i)) break; if ((CURRENT->nr_sectors <= 1) || (i & DRQ_STAT)) goto ok_to_write; } while (--retries > 0); dump_status("write_intr", i); bad_rw_intr(); hd_request(); return; ok_to_write: CURRENT->sector++; i = --CURRENT->nr_sectors; --CURRENT->current_nr_sectors; CURRENT->buffer += 512; if (!i || (CURRENT->bh && !SUBSECTOR(i))) end_request(1); if (i > 0) { SET_INTR(&write_intr); outsw(HD_DATA,CURRENT->buffer,256); sti(); } else { #if (HD_DELAY > 0) last_req = read_timer(); #endif hd_request(); } return; } static void recal_intr(void) { check_status(); #if (HD_DELAY > 0) last_req = read_timer(); #endif hd_request(); } /* * This is another of the error-routines I don't know what to do with. The * best idea seems to just set reset, and start all over again. */ static void hd_times_out(void) { unsigned int dev; DEVICE_INTR = NULL; if (!CURRENT) return; disable_irq(HD_IRQ); sti(); reset = 1; dev = DEVICE_NR(CURRENT->rq_dev); printk("hd%c: timeout\n", dev+'a'); if (++CURRENT->errors >= MAX_ERRORS) { #ifdef DEBUG printk("hd%c: too many errors\n", dev+'a'); #endif end_request(0); } cli(); hd_request(); enable_irq(HD_IRQ); } int do_special_op (unsigned int dev) { if (recalibrate[dev]) { recalibrate[dev] = 0; hd_out(dev,hd_info[dev].sect,0,0,0,WIN_RESTORE,&recal_intr); return reset; } if (!identified[dev]) { identified[dev] = 1; unmask_intr[dev] = DEFAULT_UNMASK_INTR; mult_req[dev] = DEFAULT_MULT_COUNT; hd_out(dev,0,0,0,0,WIN_IDENTIFY,&identify_intr); return reset; } if (mult_req[dev] != mult_count[dev]) { hd_out(dev,mult_req[dev],0,0,0,WIN_SETMULT,&set_multmode_intr); return reset; } if (hd_info[dev].head > 16) { printk ("hd%c: cannot handle device with more than 16 heads - giving up\n", dev+'a'); end_request(0); } special_op[dev] = 0; return 1; } /* * The driver enables interrupts as much as possible. In order to do this, * (a) the device-interrupt is disabled before entering hd_request(), * and (b) the timeout-interrupt is disabled before the sti(). * * Interrupts are still masked (by default) whenever we are exchanging * data/cmds with a drive, because some drives seem to have very poor * tolerance for latency during I/O. For devices which don't suffer from * that problem (most don't), the unmask_intr[] flag can be set to unmask * other interrupts during data/cmd transfers (by defining DEFAULT_UNMASK_INTR * to 1, or by using "hdparm -u1 /dev/hd?" from the shell). */ static void hd_request(void) { unsigned int dev, block, nsect, sec, track, head, cyl; if (CURRENT && CURRENT->rq_status == RQ_INACTIVE) return; if (DEVICE_INTR) return; repeat: timer_active &= ~(1<<HD_TIMER); sti(); INIT_REQUEST; if (reset) { cli(); reset_hd(); return; } dev = MINOR(CURRENT->rq_dev); block = CURRENT->sector; nsect = CURRENT->nr_sectors; if (dev >= (NR_HD<<6) || block >= hd[dev].nr_sects || ((block+nsect) > hd[dev].nr_sects)) { #ifdef DEBUG if (dev >= (NR_HD<<6)) printk("hd: bad minor number: device=%s\n", kdevname(CURRENT->rq_dev)); else printk("hd%c: bad access: block=%d, count=%d\n", (MINOR(CURRENT->rq_dev)>>6)+'a', block, nsect); #endif end_request(0); goto repeat; } block += hd[dev].start_sect; dev >>= 6; if (special_op[dev]) { if (do_special_op(dev)) goto repeat; return; } sec = block % hd_info[dev].sect + 1; track = block / hd_info[dev].sect; head = track % hd_info[dev].head; cyl = track / hd_info[dev].head; #ifdef DEBUG printk("hd%c: %sing: CHS=%d/%d/%d, sectors=%d, buffer=0x%08lx\n", dev+'a', (CURRENT->cmd == READ)?"read":"writ", cyl, head, sec, nsect, (unsigned long) CURRENT->buffer); #endif if (!unmask_intr[dev]) cli(); if (CURRENT->cmd == READ) { unsigned int cmd = mult_count[dev] > 1 ? WIN_MULTREAD : WIN_READ; hd_out(dev,nsect,sec,head,cyl,cmd,&read_intr); if (reset) goto repeat; return; } if (CURRENT->cmd == WRITE) { if (mult_count[dev]) hd_out(dev,nsect,sec,head,cyl,WIN_MULTWRITE,&multwrite_intr); else hd_out(dev,nsect,sec,head,cyl,WIN_WRITE,&write_intr); if (reset) goto repeat; if (wait_DRQ()) { bad_rw_intr(); goto repeat; } if (mult_count[dev]) { WCURRENT = *CURRENT; multwrite(dev); } else outsw(HD_DATA,CURRENT->buffer,256); return; } panic("unknown hd-command"); } static void do_hd_request (void) { disable_irq(HD_IRQ); hd_request(); enable_irq(HD_IRQ); } static int hd_ioctl(struct inode * inode, struct file * file, unsigned int cmd, unsigned long arg) { struct hd_geometry *loc = (struct hd_geometry *) arg; int dev, err; unsigned long flags; if ((!inode) || !(inode->i_rdev)) return -EINVAL; dev = DEVICE_NR(inode->i_rdev); if (dev >= NR_HD) return -EINVAL; switch (cmd) { case HDIO_GETGEO: if (!loc) return -EINVAL; err = verify_area(VERIFY_WRITE, loc, sizeof(*loc)); if (err) return err; put_user(bios_info[dev].head, (char *) &loc->heads); put_user(bios_info[dev].sect, (char *) &loc->sectors); put_user(bios_info[dev].cyl, (short *) &loc->cylinders); put_user(hd[MINOR(inode->i_rdev)].start_sect, (long *) &loc->start); return 0; case BLKRASET: if(!suser()) return -EACCES; if(arg > 0xff) return -EINVAL; read_ahead[MAJOR(inode->i_rdev)] = arg; return 0; case BLKRAGET: if (!arg) return -EINVAL; err = verify_area(VERIFY_WRITE, (long *) arg, sizeof(long)); if (err) return err; put_user(read_ahead[MAJOR(inode->i_rdev)],(long *) arg); return 0; case BLKGETSIZE: /* Return device size */ if (!arg) return -EINVAL; err = verify_area(VERIFY_WRITE, (long *) arg, sizeof(long)); if (err) return err; put_user(hd[MINOR(inode->i_rdev)].nr_sects, (long *) arg); return 0; case BLKFLSBUF: if(!suser()) return -EACCES; fsync_dev(inode->i_rdev); invalidate_buffers(inode->i_rdev); return 0; case BLKRRPART: /* Re-read partition tables */ return revalidate_hddisk(inode->i_rdev, 1); case HDIO_SET_UNMASKINTR: if (!suser()) return -EACCES; if ((arg > 1) || (MINOR(inode->i_rdev) & 0x3F)) return -EINVAL; unmask_intr[dev] = arg; return 0; case HDIO_GET_UNMASKINTR: if (!arg) return -EINVAL; err = verify_area(VERIFY_WRITE, (long *) arg, sizeof(long)); if (err) return err; put_user(unmask_intr[dev], (long *) arg); return 0; case HDIO_GET_MULTCOUNT: if (!arg) return -EINVAL; err = verify_area(VERIFY_WRITE, (long *) arg, sizeof(long)); if (err) return err; put_user(mult_count[dev], (long *) arg); return 0; case HDIO_SET_MULTCOUNT: if (!suser()) return -EACCES; if (MINOR(inode->i_rdev) & 0x3F) return -EINVAL; save_flags(flags); cli(); /* a prior request might still be in progress */ if (arg > max_mult[dev]) err = -EINVAL; /* out of range for device */ else if (mult_req[dev] != mult_count[dev]) { special_op[dev] = 1; err = -EBUSY; /* busy, try again */ } else { mult_req[dev] = arg; special_op[dev] = 1; err = 0; } restore_flags(flags); return err; case HDIO_OBSOLETE_IDENTITY: case HDIO_GET_IDENTITY: if (!arg) return -EINVAL; if (MINOR(inode->i_rdev) & 0x3F) return -EINVAL; if (hd_ident_info[dev] == NULL) return -ENOMSG; err = verify_area(VERIFY_WRITE, (char *) arg, sizeof(struct hd_driveid)); if (err) return err; memcpy_tofs((char *)arg, (char *) hd_ident_info[dev], sizeof(struct hd_driveid)); return 0; RO_IOCTLS(inode->i_rdev,arg); default: return -EINVAL; } } static int hd_open(struct inode * inode, struct file * filp) { int target; target = DEVICE_NR(inode->i_rdev); if (target >= NR_HD) return -ENODEV; while (busy[target]) sleep_on(&busy_wait); access_count[target]++; return 0; } /* * Releasing a block device means we sync() it, so that it can safely * be forgotten about... */ static void hd_release(struct inode * inode, struct file * file) { int target; sync_dev(inode->i_rdev); target = DEVICE_NR(inode->i_rdev); access_count[target]--; } static void hd_geninit(struct gendisk *); static struct gendisk hd_gendisk = { MAJOR_NR, /* Major number */ "hd", /* Major name */ 6, /* Bits to shift to get real from partition */ 1 << 6, /* Number of partitions per real */ MAX_HD, /* maximum number of real */ hd_geninit, /* init function */ hd, /* hd struct */ hd_sizes, /* block sizes */ 0, /* number */ (void *) bios_info, /* internal */ NULL /* next */ }; static void hd_interrupt(int irq, void *dev_id, struct pt_regs *regs) { void (*handler)(void) = DEVICE_INTR; DEVICE_INTR = NULL; timer_active &= ~(1<<HD_TIMER); if (!handler) handler = unexpected_hd_interrupt; handler(); sti(); } /* * This is the harddisk IRQ description. The SA_INTERRUPT in sa_flags * means we run the IRQ-handler with interrupts disabled: this is bad for * interrupt latency, but anything else has led to problems on some * machines... * * We enable interrupts in some of the routines after making sure it's * safe. */ static void hd_geninit(struct gendisk *ignored) { int i; #ifdef __i386__ if (!NR_HD) { extern struct drive_info drive_info; unsigned char *BIOS = (unsigned char *) &drive_info; int cmos_disks, drive; for (drive=0 ; drive<2 ; drive++) { bios_info[drive].cyl = hd_info[drive].cyl = *(unsigned short *) BIOS; bios_info[drive].head = hd_info[drive].head = *(2+BIOS); bios_info[drive].wpcom = hd_info[drive].wpcom = *(unsigned short *) (5+BIOS); bios_info[drive].ctl = hd_info[drive].ctl = *(8+BIOS); bios_info[drive].lzone = hd_info[drive].lzone = *(unsigned short *) (12+BIOS); bios_info[drive].sect = hd_info[drive].sect = *(14+BIOS); #ifdef does_not_work_for_everybody_with_scsi_but_helps_ibm_vp if (hd_info[drive].cyl && NR_HD == drive) NR_HD++; #endif BIOS += 16; } /* We query CMOS about hard disks : it could be that we have a SCSI/ESDI/etc controller that is BIOS compatible with ST-506, and thus showing up in our BIOS table, but not register compatible, and therefore not present in CMOS. Furthermore, we will assume that our ST-506 drives <if any> are the primary drives in the system, and the ones reflected as drive 1 or 2. The first drive is stored in the high nibble of CMOS byte 0x12, the second in the low nibble. This will be either a 4 bit drive type or 0xf indicating use byte 0x19 for an 8 bit type, drive 1, 0x1a for drive 2 in CMOS. Needless to say, a non-zero value means we have an AT controller hard disk for that drive. */ if ((cmos_disks = CMOS_READ(0x12)) & 0xf0) if (cmos_disks & 0x0f) NR_HD = 2; else NR_HD = 1; } #endif /* __i386__ */ i = NR_HD; while (i-- > 0) { /* * The newer E-IDE BIOSs handle drives larger than 1024 * cylinders by increasing the number of logical heads * to keep the number of logical cylinders below the * sacred INT13 limit of 1024 (10 bits). If that is * what's happening here, we'll find out and correct * it later when "identifying" the drive. */ hd[i<<6].nr_sects = bios_info[i].head * bios_info[i].sect * bios_info[i].cyl; hd_ident_info[i] = (struct hd_driveid *) kmalloc(512,GFP_KERNEL); special_op[i] = 1; } if (NR_HD) { if (request_irq(HD_IRQ, hd_interrupt, SA_INTERRUPT, "hd", NULL)) { printk("hd: unable to get IRQ%d for the harddisk driver\n",HD_IRQ); NR_HD = 0; } else { request_region(HD_DATA, 8, "hd"); request_region(HD_CMD, 1, "hd(cmd)"); } } hd_gendisk.nr_real = NR_HD; for(i=0;i<(MAX_HD << 6);i++) hd_blocksizes[i] = 1024; blksize_size[MAJOR_NR] = hd_blocksizes; } static struct file_operations hd_fops = { NULL, /* lseek - default */ block_read, /* read - general block-dev read */ block_write, /* write - general block-dev write */ NULL, /* readdir - bad */ NULL, /* select */ hd_ioctl, /* ioctl */ NULL, /* mmap */ hd_open, /* open */ hd_release, /* release */ block_fsync /* fsync */ }; int hd_init(void) { if (register_blkdev(MAJOR_NR,"hd",&hd_fops)) { printk("hd: unable to get major %d for harddisk\n",MAJOR_NR); return -1; } blk_dev[MAJOR_NR].request_fn = DEVICE_REQUEST; read_ahead[MAJOR_NR] = 8; /* 8 sector (4kB) read-ahead */ hd_gendisk.next = gendisk_head; gendisk_head = &hd_gendisk; timer_table[HD_TIMER].fn = hd_times_out; return 0; } #define DEVICE_BUSY busy[target] #define USAGE access_count[target] #define CAPACITY (bios_info[target].head*bios_info[target].sect*bios_info[target].cyl) /* We assume that the BIOS parameters do not change, so the disk capacity will not change */ #undef MAYBE_REINIT #define GENDISK_STRUCT hd_gendisk /* * This routine is called to flush all partitions and partition tables * for a changed scsi disk, and then re-read the new partition table. * If we are revalidating a disk because of a media change, then we * enter with usage == 0. If we are using an ioctl, we automatically have * usage == 1 (we need an open channel to use an ioctl :-), so this * is our limit. */ static int revalidate_hddisk(kdev_t dev, int maxusage) { int target; struct gendisk * gdev; int max_p; int start; int i; long flags; target = DEVICE_NR(dev); gdev = &GENDISK_STRUCT; save_flags(flags); cli(); if (DEVICE_BUSY || USAGE > maxusage) { restore_flags(flags); return -EBUSY; }; DEVICE_BUSY = 1; restore_flags(flags); max_p = gdev->max_p; start = target << gdev->minor_shift; for (i=max_p - 1; i >=0 ; i--) { int minor = start + i; kdev_t devi = MKDEV(MAJOR_NR, minor); sync_dev(devi); invalidate_inodes(devi); invalidate_buffers(devi); gdev->part[minor].start_sect = 0; gdev->part[minor].nr_sects = 0; }; #ifdef MAYBE_REINIT MAYBE_REINIT; #endif gdev->part[start].nr_sects = CAPACITY; resetup_one_dev(gdev, target); DEVICE_BUSY = 0; wake_up(&busy_wait); return 0; }
Go to most recent revision | Compare with Previous | Blame | View Log