URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [drivers/] [block/] [paride/] [pcd.c] - Rev 1765
Compare with Previous | Blame | View Log
/* pcd.c (c) 1997-8 Grant R. Guenther <grant@torque.net> Under the terms of the GNU public license. Special 2.0.34 version This is high-level driver for parallel port ATAPI CDrom drives based on chips supported by the paride module. By default, the driver will autoprobe for a single parallel port ATAPI CDrom drive, but if their individual parameters are specified, the driver can handle up to 4 drives. The behaviour of the pcd driver can be altered by setting some parameters from the insmod command line. The following parameters are adjustable: drive0 These four arguments can be arrays of drive1 1-6 integers as follows: drive2 drive3 <prt>,<pro>,<uni>,<mod>,<slv>,<dly> Where, <prt> is the base of the parallel port address for the corresponding drive. (required) <pro> is the protocol number for the adapter that supports this drive. These numbers are logged by 'paride' when the protocol modules are initialised. (0 if not given) <uni> for those adapters that support chained devices, this is the unit selector for the chain of devices on the given port. It should be zero for devices that don't support chaining. (0 if not given) <mod> this can be -1 to choose the best mode, or one of the mode numbers supported by the adapter. (-1 if not given) <slv> ATAPI CDroms can be jumpered to master or slave. Set this to 0 to choose the master drive, 1 to choose the slave, -1 (the default) to choose the first drive found. <dly> some parallel ports require the driver to go more slowly. -1 sets a default value that should work with the chosen protocol. Otherwise, set this to a small integer, the larger it is the slower the port i/o. In some cases, setting this to zero will speed up the device. (default -1) major You may use this parameter to overide the default major number (46) that this driver will use. Be sure to change the device name as well. name This parameter is a character string that contains the name the kernel will use for this device (in /proc output, for instance). (default "pcd") verbose This parameter controls the amount of logging that the driver will do. Set it to 0 for normal operation, 1 to see autoprobe progress messages, or 2 to see additional debugging output. (default 0) nice This parameter controls the driver's use of idle CPU time, at the expense of some speed. If this driver is built into the kernel, you can use kernel the following command line parameters, with the same values as the corresponding module parameters listed above: pcd.drive0 pcd.drive1 pcd.drive2 pcd.drive3 pcd.nice In addition, you can use the parameter pcd.disable to disable the driver entirely. */ /* Changes: 1.01 GRG 1997.01.24 Added test unit ready support 1.02 GRG 1998.05.06 Changes to pcd_completion, ready_wait, and loosen interpretation of ATAPI standard for clearing error status. Use spinlocks. Eliminate sti(). 1.03 GRG 1998.06.16 Eliminated an Ugh 1.04 GRG 1998.08.15 Added extra debugging, improvements to pcd_completion, use HZ in loop timing 1.05s GRG 1998.09.24 Added jumbo support, adjust reset timeout */ #define PCD_VERSION "1.05s" #define PCD_MAJOR 46 #define PCD_NAME "pcd" #define PCD_UNITS 4 /* Here are things one can override from the insmod command. Most are autoprobed by paride unless set here. Verbose is off by default. */ static int verbose = 0; static int major = PCD_MAJOR; static char *name = PCD_NAME; static int nice = 0; static int disable = 0; static int drive0[6] = {0,0,0,-1,-1,-1}; static int drive1[6] = {0,0,0,-1,-1,-1}; static int drive2[6] = {0,0,0,-1,-1,-1}; static int drive3[6] = {0,0,0,-1,-1,-1}; static int (*drives[4])[6] = {&drive0,&drive1,&drive2,&drive3}; static int pcd_drive_count; #define D_PRT 0 #define D_PRO 1 #define D_UNI 2 #define D_MOD 3 #define D_SLV 4 #define D_DLY 5 #define DU (*drives[unit]) /* end of parameters */ #include <linux/module.h> #include <linux/errno.h> #include <linux/fs.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/cdrom.h> #include <asm/segment.h> #include "spinlock.h" #ifndef MODULE #include "setup.h" static STT pcd_stt[6] = {{"drive0",6,drive0}, {"drive1",6,drive1}, {"drive2",6,drive2}, {"drive3",6,drive3}, {"disable",1,&disable}, {"nice",1,&nice}}; void pcd_setup( char *str, int *ints) { generic_setup(pcd_stt,6,str); } #endif #include "paride.h" /* set up defines for blk.h, why don't all drivers do it this way ? */ #define MAJOR_NR major #define DEVICE_NAME "PCD" #define DEVICE_REQUEST do_pcd_request #define DEVICE_NR(device) (MINOR(device)) #define DEVICE_ON(device) #define DEVICE_OFF(device) #include <linux/blk.h> #include "pseudo.h" #define PCD_RETRIES 5 #define PCD_TMO 800 /* timeout in jiffies */ #define PCD_DELAY 50 /* spin delay in uS */ #define PCD_READY_TMO 20 /* in seconds */ #define PCD_SPIN (1000000*PCD_TMO)/(HZ*PCD_DELAY) #define IDE_ERR 0x01 #define IDE_DRQ 0x08 #define IDE_READY 0x40 #define IDE_BUSY 0x80 int pcd_init(void); void cleanup_module( void ); static int pcd_open(struct inode *inode, struct file *file); static void do_pcd_request(void); static void do_pcd_read(void); static int pcd_ioctl(struct inode *inode,struct file *file, unsigned int cmd, unsigned long arg); static void pcd_release (struct inode *inode, struct file *file); static int pcd_detect(void); static void pcd_lock(int unit); static void pcd_unlock(int unit); static void pcd_eject(int unit); static int pcd_check_media(int unit); static void do_pcd_read_drq(void); static int pcd_blocksizes[PCD_UNITS]; #define PCD_NAMELEN 8 struct pcd_unit { struct pi_adapter pia; /* interface to paride layer */ struct pi_adapter *pi; int drive; /* master/slave */ int last_sense; /* result of last request sense */ int access; /* count of active opens */ int present; /* does this unit exist ? */ char name[PCD_NAMELEN]; /* pcd0, pcd1, etc */ }; struct pcd_unit pcd[PCD_UNITS]; /* 'unit' must be defined in all functions - either as a local or a param */ #define PCD pcd[unit] #define PI PCD.pi static char pcd_scratch[64]; static char pcd_buffer[2048]; /* raw block buffer */ static int pcd_bufblk = -1; /* block in buffer, in CD units, -1 for nothing there. See also pd_unit. */ /* the variables below are used mainly in the I/O request engine, which processes only one request at a time. */ static int pcd_unit = -1; /* unit of current request & bufblk */ static int pcd_retries; /* retries on current request */ static int pcd_busy = 0; /* request being processed ? */ static int pcd_sector; /* address of next requested sector */ static int pcd_count; /* number of blocks still to do */ static char * pcd_buf; /* buffer for request in progress */ static int pcd_warned = 0; /* Have we logged a phase warning ? */ /* kernel glue structures */ static struct file_operations pcd_fops = { NULL, /* lseek - default */ block_read, /* read - general block-dev read */ block_write, /* write - general block-dev write */ NULL, /* readdir - bad */ NULL, /* select */ pcd_ioctl, /* ioctl */ NULL, /* mmap */ pcd_open, /* open */ pcd_release, /* release */ block_fsync, /* fsync */ NULL, /* fasync */ NULL, /* media change ? */ NULL /* revalidate new media */ }; static void pcd_init_units( void ) { int unit, j; pcd_drive_count = 0; for (unit=0;unit<PCD_UNITS;unit++) { PCD.pi = & PCD.pia; PCD.access = 0; PCD.present = 0; PCD.last_sense = 0; j = 0; while ((j < PCD_NAMELEN-2) && (PCD.name[j]=name[j])) j++; PCD.name[j++] = '0' + unit; PCD.name[j] = 0; PCD.drive = DU[D_SLV]; if (DU[D_PRT]) pcd_drive_count++; } } int pcd_init (void) /* preliminary initialisation */ { int i; if (disable) return -1; pcd_init_units(); if (pcd_detect()) return -1; if (register_blkdev(MAJOR_NR,name,&pcd_fops)) { printk("pcd: unable to get major number %d\n",MAJOR_NR); return -1; } blk_dev[MAJOR_NR].request_fn = DEVICE_REQUEST; read_ahead[MAJOR_NR] = 8; /* 8 sector (4kB) read ahead */ for (i=0;i<PCD_UNITS;i++) pcd_blocksizes[i] = 1024; blksize_size[MAJOR_NR] = pcd_blocksizes; return 0; } static int pcd_open (struct inode *inode, struct file *file) { int unit = DEVICE_NR(inode->i_rdev); if ((unit >= PCD_UNITS) || (!PCD.present)) return -ENODEV; if (file->f_mode & 2) return -EROFS; /* wants to write ? */ MOD_INC_USE_COUNT; if (pcd_check_media(unit)) { MOD_DEC_USE_COUNT; return -ENXIO; } pcd_lock(unit); PCD.access++; return 0; } static void do_pcd_request (void) { int unit; if (pcd_busy) return; while (1) { if ((!CURRENT) || (CURRENT->rq_status == RQ_INACTIVE)) return; INIT_REQUEST; if (CURRENT->cmd == READ) { unit = MINOR(CURRENT->rq_dev); if (unit != pcd_unit) { pcd_bufblk = -1; pcd_unit = unit; } pcd_sector = CURRENT->sector; pcd_count = CURRENT->nr_sectors; pcd_buf = CURRENT->buffer; pcd_busy = 1; ps_set_intr(do_pcd_read,0,0,nice); return; } else end_request(0); } } static int pcd_ioctl(struct inode *inode,struct file *file, unsigned int cmd, unsigned long arg) /* we currently support only the EJECT ioctl. */ { int unit = DEVICE_NR(inode->i_rdev); if ((unit >= PCD_UNITS) || (!PCD.present)) return -ENODEV; switch (cmd) { case CDROMEJECT: if (PCD.access == 1) { pcd_eject(unit); return 0; } default: return -EINVAL; } } static void pcd_release (struct inode *inode, struct file *file) { kdev_t devp; int unit; devp = inode->i_rdev; unit = DEVICE_NR(devp); if ((unit >= PCD_UNITS) || (PCD.access <= 0)) return; PCD.access--; if (!PCD.access) { fsync_dev(devp); invalidate_inodes(devp); invalidate_buffers(devp); pcd_unlock(unit); } MOD_DEC_USE_COUNT; } #ifdef MODULE /* Glue for modules ... */ int init_module(void) { int err; #ifdef PARIDE_JUMBO { extern paride_init(); paride_init(); } #endif err = pcd_init(); return err; } void cleanup_module(void) { int unit; unregister_blkdev(MAJOR_NR,name); for (unit=0;unit<PCD_UNITS;unit++) if (PCD.present) pi_release(PI); } #endif #define WR(c,r,v) pi_write_regr(PI,c,r,v) #define RR(c,r) (pi_read_regr(PI,c,r)) static int pcd_wait( int unit, int go, int stop, char * fun, char * msg ) { int j, r, e, s, p; j = 0; while ((((r=RR(1,6))&go)||(stop&&(!(r&stop))))&&(j++<PCD_SPIN)) udelay(PCD_DELAY); if ((r&(IDE_ERR&stop))||(j>=PCD_SPIN)) { s = RR(0,7); e = RR(0,1); p = RR(0,2); if (j >= PCD_SPIN) e |= 0x100; if (fun) printk("%s: %s %s: alt=0x%x stat=0x%x err=0x%x" " loop=%d phase=%d\n", PCD.name,fun,msg,r,s,e,j,p); return (s<<8)+r; } return 0; } static int pcd_command( int unit, char * cmd, int dlen, char * fun ) { pi_connect(PI); WR(0,6,0xa0 + 0x10*PCD.drive); if (pcd_wait(unit,IDE_BUSY|IDE_DRQ,0,fun,"before command")) { pi_disconnect(PI); return -1; } WR(0,4,dlen % 256); WR(0,5,dlen / 256); WR(0,7,0xa0); /* ATAPI packet command */ if (pcd_wait(unit,IDE_BUSY,IDE_DRQ,fun,"command DRQ")) { pi_disconnect(PI); return -1; } if (RR(0,2) != 1) { printk("%s: %s: command phase error\n",PCD.name,fun); pi_disconnect(PI); return -1; } pi_write_block(PI,cmd,12); return 0; } static int pcd_completion( int unit, char * buf, char * fun ) { int r, d, p, n, k, j; r = -1; k = 0; j = 0; if (!pcd_wait(unit,IDE_BUSY,IDE_DRQ|IDE_READY|IDE_ERR, fun,"completion")) { r = 0; while (RR(0,7)&IDE_DRQ) { d = (RR(0,4)+256*RR(0,5)); n = ((d+3)&0xfffc); p = RR(0,2)&3; if ((p == 2) && (n > 0) && (j == 0)) { pi_read_block(PI,buf,n); if (verbose > 1) printk("%s: %s: Read %d bytes\n",PCD.name,fun,n); r = 0; j++; } else { if (verbose > 1) printk("%s: %s: Unexpected phase %d, d=%d, k=%d\n", PCD.name,fun,p,d,k); if ((verbose < 2) && !pcd_warned) { pcd_warned = 1; printk("%s: WARNING: ATAPI phase errors\n",PCD.name); } udelay(1000); } if (k++ > PCD_TMO) { printk("%s: Stuck DRQ\n",PCD.name); break; } if (pcd_wait(unit,IDE_BUSY,IDE_DRQ|IDE_READY|IDE_ERR, fun,"completion")) { r = -1; break; } } } pi_disconnect(PI); return r; } static void pcd_req_sense( int unit, char *fun ) { char rs_cmd[12] = { 0x03,0,0,0,16,0,0,0,0,0,0,0 }; char buf[16]; int r; r = pcd_command(unit,rs_cmd,16,"Request sense"); udelay(1000); if (!r) pcd_completion(unit,buf,"Request sense"); PCD.last_sense = -1; if (!r) { if (fun) printk("%s: %s: Sense key: %x, ASC: %x, ASQ: %x\n", PCD.name,fun,buf[2]&0xf,buf[12],buf[13]); PCD.last_sense = (buf[2]&0xf) | ((buf[12]&0xff)<<8) | ((buf[13]&0xff)<<16) ; } } static int pcd_atapi( int unit, char * cmd, int dlen, char * buf, char * fun ) { int r; r = pcd_command(unit,cmd,dlen,fun); udelay(1000); if (!r) r = pcd_completion(unit,buf,fun); if (r) pcd_req_sense(unit,fun); return r; } #define DBMSG(msg) ((verbose>1)?(msg):NULL) static void pcd_lock(int unit) { char lo_cmd[12] = { 0x1e,0,0,0,1,0,0,0,0,0,0,0 }; char cl_cmd[12] = { 0x1b,0,0,0,3,0,0,0,0,0,0,0 }; pcd_atapi(unit,cl_cmd,0,pcd_scratch,DBMSG("cd1")); pcd_atapi(unit,cl_cmd,0,pcd_scratch,DBMSG("cd2")); pcd_atapi(unit,cl_cmd,0,pcd_scratch,DBMSG("cd3")); pcd_atapi(unit,cl_cmd,0,pcd_scratch,DBMSG("cd4")); pcd_atapi(unit,cl_cmd,0,pcd_scratch,"close door"); pcd_atapi(unit,lo_cmd,0,pcd_scratch,DBMSG("ld")); pcd_atapi(unit,lo_cmd,0,pcd_scratch,"lock door"); } static void pcd_unlock( int unit ) { char un_cmd[12] = { 0x1e,0,0,0,0,0,0,0,0,0,0,0 }; pcd_atapi(unit,un_cmd,0,pcd_scratch,"unlock door"); } static void pcd_eject( int unit) { char ej_cmd[12] = { 0x1b,0,0,0,2,0,0,0,0,0,0,0 }; pcd_unlock(unit); pcd_atapi(unit,ej_cmd,0,pcd_scratch,"eject"); } #define PCD_RESET_TMO 100 /* in tenths of a second */ static void pcd_sleep( int cs ) { current->state = TASK_INTERRUPTIBLE; current->timeout = jiffies + cs; schedule(); } static int pcd_reset( int unit ) /* the ATAPI standard actually specifies the contents of all 7 registers after a reset, but the specification is ambiguous concerning the last two bytes, and different drives interpret the standard differently. */ { int i, k, flg; int expect[5] = {1,1,1,0x14,0xeb}; pi_connect(PI); WR(0,6,0xa0 + 0x10*PCD.drive); WR(0,7,8); pcd_sleep(2); /* delay a bit*/ k = 0; while ((k++ < PCD_RESET_TMO) && (RR(1,6)&IDE_BUSY)) pcd_sleep(10); flg = 1; for(i=0;i<5;i++) flg &= (RR(0,i+1) == expect[i]); if (verbose) { printk("%s: Reset (%d) signature = ",PCD.name,k); for (i=0;i<5;i++) printk("%3x",RR(0,i+1)); if (!flg) printk(" (incorrect)"); printk("\n"); } pi_disconnect(PI); return flg-1; } static int pcd_ready_wait( int unit, int tmo ) { char tr_cmd[12] = {0,0,0,0,0,0,0,0,0,0,0,0}; int k, p; k = 0; while (k < tmo) { PCD.last_sense = 0; pcd_atapi(unit,tr_cmd,0,NULL,DBMSG("test unit ready")); p = PCD.last_sense; if (!p) return 0; if (!(((p & 0xffff) == 0x0402)||((p & 0xff) == 6))) return p; k++; pcd_sleep(100); } return 0x000020; /* timeout */ } static int pcd_check_media( int unit ) { char rc_cmd[12] = { 0x25,0,0,0,0,0,0,0,0,0,0,0}; pcd_ready_wait(unit,PCD_READY_TMO); return (pcd_atapi(unit,rc_cmd,8,pcd_scratch,DBMSG("check media"))); } static int pcd_identify( int unit, char * id ) { int k, s; char id_cmd[12] = {0x12,0,0,0,36,0,0,0,0,0,0,0}; pcd_bufblk = -1; s = pcd_atapi(unit,id_cmd,36,pcd_buffer,"identify"); if (s) return -1; if ((pcd_buffer[0] & 0x1f) != 5) { if (verbose) printk("%s: %s is not a CDrom\n", PCD.name,PCD.drive?"Slave":"Master"); return -1; } for (k=0;k<16;k++) id[k] = pcd_buffer[16+k]; id[16] = 0; k = 16; while ((k >= 0) && (id[k] <= 0x20)) { id[k] = 0; k--; } printk("%s: %s: %s\n",PCD.name,PCD.drive?"Slave":"Master",id); return 0; } static int pcd_probe( int unit, int ms, char * id ) /* returns 0, with id set if drive is detected -1, if drive detection failed */ { if (ms == -1) { for (PCD.drive=0;PCD.drive<=1;PCD.drive++) if (!pcd_reset(unit) && !pcd_identify(unit,id)) return 0; } else { PCD.drive = ms; if (!pcd_reset(unit) && !pcd_identify(unit,id)) return 0; } return -1; } static int pcd_detect( void ) { char id[18]; int k, unit; printk("%s: %s version %s, major %d, nice %d\n", name,name,PCD_VERSION,major,nice); k = 0; if (pcd_drive_count == 0) { /* nothing spec'd - so autoprobe for 1 */ unit = 0; if (pi_init(PI,1,-1,-1,-1,-1,-1,pcd_buffer, PI_PCD,verbose,PCD.name)) { if (!pcd_probe(unit,-1,id)) { PCD.present = 1; k++; } else pi_release(PI); } } else for (unit=0;unit<PCD_UNITS;unit++) if (DU[D_PRT]) if (pi_init(PI,0,DU[D_PRT],DU[D_MOD],DU[D_UNI], DU[D_PRO],DU[D_DLY],pcd_buffer,PI_PCD,verbose, PCD.name)) { if (!pcd_probe(unit,DU[D_SLV],id)) { PCD.present = 1; k++; } else pi_release(PI); } if (k) return 0; printk("%s: No CDrom drive found\n",name); return -1; } /* I/O request processing */ static int pcd_ready( void ) { int unit = pcd_unit; return (((RR(1,6)&(IDE_BUSY|IDE_DRQ))==IDE_DRQ)) ; } static void pcd_transfer( void ) { int k, o; while (pcd_count && (pcd_sector/4 == pcd_bufblk)) { o = (pcd_sector % 4) * 512; for(k=0;k<512;k++) pcd_buf[k] = pcd_buffer[o+k]; pcd_count--; pcd_buf += 512; pcd_sector++; } } static void pcd_start( void ) { int unit = pcd_unit; int b, i; char rd_cmd[12] = {0xa8,0,0,0,0,0,0,0,0,1,0,0}; long saved_flags; pcd_bufblk = pcd_sector / 4; b = pcd_bufblk; for(i=0;i<4;i++) { rd_cmd[5-i] = b & 0xff; b = b >> 8; } if (pcd_command(unit,rd_cmd,2048,"read block")) { pcd_bufblk = -1; spin_lock_irqsave(&io_request_lock,saved_flags); pcd_busy = 0; end_request(0); do_pcd_request(); spin_unlock_irqrestore(&io_request_lock,saved_flags); return; } udelay(1000); ps_set_intr(do_pcd_read_drq,pcd_ready,PCD_TMO,nice); } static void do_pcd_read( void ) { int unit = pcd_unit; long saved_flags; pcd_busy = 1; pcd_retries = 0; pcd_transfer(); if (!pcd_count) { spin_lock_irqsave(&io_request_lock,saved_flags); end_request(1); pcd_busy = 0; do_pcd_request(); spin_unlock_irqrestore(&io_request_lock,saved_flags); return; } pi_do_claimed(PI,pcd_start); } static void do_pcd_read_drq( void ) { int unit = pcd_unit; long saved_flags; if (pcd_completion(unit,pcd_buffer,"read block")) { if (pcd_retries < PCD_RETRIES) { udelay(1000); pcd_retries++; pi_do_claimed(PI,pcd_start); return; } spin_lock_irqsave(&io_request_lock,saved_flags); pcd_busy = 0; pcd_bufblk = -1; end_request(0); do_pcd_request(); spin_unlock_irqrestore(&io_request_lock,saved_flags); return; } do_pcd_read(); spin_lock_irqsave(&io_request_lock,saved_flags); do_pcd_request(); spin_unlock_irqrestore(&io_request_lock,saved_flags); } /* end of pcd.c */